Built with Alectryon, running Coq+SerAPI v8.18.0+0.18.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
(* -*- mode: coq; mode: visual-line -*-  *)

(** * The groupid structure of paths *)

[Loading ML file number_string_notation_plugin.cmxs (using legacy method) ... done]
Local Open Scope path_scope. (** ** Naming conventions We need good naming conventions that allow us to name theorems without looking them up. The names should indicate the structure of the theorem, but they may sometimes be ambiguous, in which case you just have to know what is going on. We shall adopt the following principles: - we are not afraid of long names - we are not afraid of short names when they are used frequently - we use underscores - name of theorems and lemmas are lower-case - records and other types may be upper or lower case Theorems about concatenation of paths are called [concat_XXX] where [XXX] tells us what is on the left-hand side of the equation. You have to guess the right-hand side. We use the following symbols in [XXX]: - [1] means the identity path - [p] means 'the path' - [V] means 'the inverse path' - [A] means '[ap]' - [M] means the thing we are moving across equality - [x] means 'the point' which is not a path, e.g. in [transport p x] - [2] means relating to 2-dimensional paths - [3] means relating to 3-dimensional paths, and so on Associativity is indicated with an underscore. Here are some examples of how the name gives hints about the left-hand side of the equation. - [concat_1p] means [1 * p] - [concat_Vp] means [p^ * p] - [concat_p_pp] means [p * (q * r)] - [concat_pp_p] means [(p * q) * r] - [concat_V_pp] means [p^ * (p * q)] - [concat_pV_p] means [(q * p^) * p] or [(p * p^) * q], but probably the former because for the latter you could just use [concat_pV]. Laws about inverse of something are of the form [inv_XXX], and those about [ap] are of the form [ap_XXX], and so on. For example: - [inv_pp] is about [(p @ q)^] - [inv_V] is about [(p^)^] - [inv_A] is about [(ap f p)^] - [ap_V] is about [ap f (p^)] - [ap_pp] is about [ap f (p @ q)] - [ap_idmap] is about [ap idmap p] - [ap_1] is about [ap f 1] - [ap02_p2p] is about [ap02 f (p @@ q)] Then we have laws which move things around in an equation. The naming scheme here is [moveD_XXX]. The direction [D] indicates where to move to: [L] means that we move something to the left-hand side, whereas [R] means we are moving something to the right-hand side. The part [XXX] describes the shape of the side _from_ which we are moving where the thing that is getting moves is called [M]. The presence of 1 next to an [M] generally indicates an *implied* identity path which is inserted automatically after the movement. Examples: - [moveL_pM] means that we transform [p = q @ r] to [p @ r^ = q] because we are moving something to the left-hand side, and we are moving the right argument of concat. - [moveR_Mp] means that we transform [p @ q = r] to [q = p^ @ r] because we move to the right-hand side, and we are moving the left argument of concat. - [moveR_1M] means that we transform [p = q] (rather than [p = 1 @ q]) to [p * q^ = 1]. There are also cancellation laws called [cancelR] and [cancelL], which are inverse to the 2-dimensional 'whiskering' operations [whiskerR] and [whiskerL]. We may now proceed with the groupoid structure proper. *) (** ** The 1-dimensional groupoid structure. *) (** The identity path is a right unit. *) Definition concat_p1 {A : Type} {x y : A} (p : x = y) : p @ 1 = p := match p with idpath => 1 end. (** The identity is a left unit. *) Definition concat_1p {A : Type} {x y : A} (p : x = y) : 1 @ p = p := match p with idpath => 1 end. (** It's common to need to use both. *) Definition concat_p1_1p {A : Type} {x y : A} (p : x = y) : p @ 1 = 1 @ p := concat_p1 p @ (concat_1p p)^. Definition concat_1p_p1 {A : Type} {x y : A} (p : x = y) : 1 @ p = p @ 1 := concat_1p p @ (concat_p1 p)^. (** Concatenation is associative. *) Definition concat_p_pp {A : Type} {x y z t : A} (p : x = y) (q : y = z) (r : z = t) : p @ (q @ r) = (p @ q) @ r := match r with idpath => match q with idpath => match p with idpath => 1 end end end. Definition concat_pp_p {A : Type} {x y z t : A} (p : x = y) (q : y = z) (r : z = t) : (p @ q) @ r = p @ (q @ r) := match r with idpath => match q with idpath => match p with idpath => 1 end end end. (** The left inverse law. *) Definition concat_pV {A : Type} {x y : A} (p : x = y) : p @ p^ = 1 := match p with idpath => 1 end. (** The right inverse law. *) Definition concat_Vp {A : Type} {x y : A} (p : x = y) : p^ @ p = 1 := match p with idpath => 1 end. (** Several auxiliary theorems about canceling inverses across associativity. These are somewhat redundant, following from earlier theorems. *) Definition concat_V_pp {A : Type} {x y z : A} (p : x = y) (q : y = z) : p^ @ (p @ q) = q := match q with idpath => match p with idpath => 1 end end. Definition concat_p_Vp {A : Type} {x y z : A} (p : x = y) (q : x = z) : p @ (p^ @ q) = q := match q with idpath => match p with idpath => 1 end end. Definition concat_pp_V {A : Type} {x y z : A} (p : x = y) (q : y = z) : (p @ q) @ q^ = p := match q with idpath => match p with idpath => 1 end end. Definition concat_pV_p {A : Type} {x y z : A} (p : x = z) (q : y = z) : (p @ q^) @ q = p := (match q as i return forall p, (p @ i^) @ i = p with idpath => fun p => match p with idpath => 1 end end) p. (** Inverse distributes over concatenation *) Definition inv_pp {A : Type} {x y z : A} (p : x = y) (q : y = z) : (p @ q)^ = q^ @ p^ := match q with idpath => match p with idpath => 1 end end. Definition inv_Vp {A : Type} {x y z : A} (p : y = x) (q : y = z) : (p^ @ q)^ = q^ @ p := match q with idpath => match p with idpath => 1 end end.
A: Type
x, y, z: A
p: x = y
q: z = y

(p @ q^)^ = q @ p^
A: Type
x, y, z: A
p: x = y
q: z = y

(p @ q^)^ = q @ p^
A: Type
x, z: A
q: z = x

(1 @ q^)^ = q @ 1^
A: Type
z: A

(1 @ 1^)^ = 1 @ 1^
reflexivity. Defined.
A: Type
x, y, z: A
p: y = x
q: z = y

(p^ @ q^)^ = q @ p
A: Type
x, y, z: A
p: y = x
q: z = y

(p^ @ q^)^ = q @ p
A: Type
y, z: A
q: z = y

(1^ @ q^)^ = q @ 1
A: Type
z: A

(1^ @ 1^)^ = 1 @ 1
reflexivity. Defined. (** Inverse is an involution. *) Definition inv_V {A : Type} {x y : A} (p : x = y) : p^^ = p := match p with idpath => 1 end. (** *** Theorems for moving things around in equations. *)
A: Type
x, y, z: A
p: x = z
q: y = z
r: y = x

p = r^ @ q -> r @ p = q
A: Type
x, y, z: A
p: x = z
q: y = z
r: y = x

p = r^ @ q -> r @ p = q
A: Type
y, z: A
p, q: y = z

p = 1^ @ q -> 1 @ p = q
A: Type
y, z: A
p, q: y = z
h: p = 1^ @ q

1 @ p = q
exact (concat_1p _ @ h @ concat_1p _). Defined.
A: Type
x, y, z: A
p: x = z
q: y = z
r: y = x

r = q @ p^ -> r @ p = q
A: Type
x, y, z: A
p: x = z
q: y = z
r: y = x

r = q @ p^ -> r @ p = q
A: Type
x, y: A
q, r: y = x

r = q @ 1^ -> r @ 1 = q
A: Type
x, y: A
q, r: y = x
h: r = q @ 1^

r @ 1 = q
exact (concat_p1 _ @ h @ concat_p1 _). Defined.
A: Type
x, y, z: A
p: x = z
q: y = z
r: x = y

p = r @ q -> r^ @ p = q
A: Type
x, y, z: A
p: x = z
q: y = z
r: x = y

p = r @ q -> r^ @ p = q
A: Type
x, z: A
p, q: x = z

p = 1 @ q -> 1^ @ p = q
A: Type
x, z: A
p, q: x = z
h: p = 1 @ q

1^ @ p = q
exact (concat_1p _ @ h @ concat_1p _). Defined.
A: Type
x, y, z: A
p: z = x
q: y = z
r: y = x

r = q @ p -> r @ p^ = q
A: Type
x, y, z: A
p: z = x
q: y = z
r: y = x

r = q @ p -> r @ p^ = q
A: Type
y, z: A
q, r: y = z

r = q @ 1 -> r @ 1^ = q
A: Type
y, z: A
q, r: y = z
h: r = q @ 1

r @ 1^ = q
exact (concat_p1 _ @ h @ concat_p1 _). Defined.
A: Type
x, y, z: A
p: x = z
q: y = z
r: y = x

r^ @ q = p -> q = r @ p
A: Type
x, y, z: A
p: x = z
q: y = z
r: y = x

r^ @ q = p -> q = r @ p
A: Type
y, z: A
p, q: y = z

1^ @ q = p -> q = 1 @ p
A: Type
y, z: A
p, q: y = z
h: 1^ @ q = p

q = 1 @ p
exact ((concat_1p _)^ @ h @ (concat_1p _)^). Defined.
A: Type
x, y, z: A
p: x = z
q: y = z
r: y = x

q @ p^ = r -> q = r @ p
A: Type
x, y, z: A
p: x = z
q: y = z
r: y = x

q @ p^ = r -> q = r @ p
A: Type
x, y: A
q, r: y = x

q @ 1^ = r -> q = r @ 1
A: Type
x, y: A
q, r: y = x
h: q @ 1^ = r

q = r @ 1
exact ((concat_p1 _)^ @ h @ (concat_p1 _)^). Defined.
A: Type
x, y, z: A
p: x = z
q: y = z
r: x = y

r @ q = p -> q = r^ @ p
A: Type
x, y, z: A
p: x = z
q: y = z
r: x = y

r @ q = p -> q = r^ @ p
A: Type
x, z: A
p, q: x = z

1 @ q = p -> q = 1^ @ p
A: Type
x, z: A
p, q: x = z
h: 1 @ q = p

q = 1^ @ p
exact ((concat_1p _)^ @ h @ (concat_1p _)^). Defined.
A: Type
x, y, z: A
p: z = x
q: y = z
r: y = x

q @ p = r -> q = r @ p^
A: Type
x, y, z: A
p: z = x
q: y = z
r: y = x

q @ p = r -> q = r @ p^
A: Type
y, z: A
q, r: y = z

q @ 1 = r -> q = r @ 1^
A: Type
y, z: A
q, r: y = z
h: q @ 1 = r

q = r @ 1^
exact ((concat_p1 _)^ @ h @ (concat_p1 _)^). Defined.
A: Type
x, y: A
p, q: x = y

p @ q^ = 1 -> p = q
A: Type
x, y: A
p, q: x = y

p @ q^ = 1 -> p = q
A: Type
x: A
p: x = x

p @ 1^ = 1 -> p = 1
A: Type
x: A
p: x = x
h: p @ 1^ = 1

p = 1
exact ((concat_p1 _)^ @ h). Defined.
A: Type
x, y: A
p, q: x = y

q^ @ p = 1 -> p = q
A: Type
x, y: A
p, q: x = y

q^ @ p = 1 -> p = q
A: Type
x: A
p: x = x

1^ @ p = 1 -> p = 1
A: Type
x: A
p: x = x
h: 1^ @ p = 1

p = 1
exact ((concat_1p _)^ @ h). Defined.
A: Type
x, y: A
p: x = y
q: y = x

p @ q = 1 -> p = q^
A: Type
x, y: A
p: x = y
q: y = x

p @ q = 1 -> p = q^
A: Type
y: A
p: y = y

p @ 1 = 1 -> p = 1^
A: Type
y: A
p: y = y
h: p @ 1 = 1

p = 1^
exact ((concat_p1 _)^ @ h). Defined.
A: Type
x, y: A
p: x = y
q: y = x

q @ p = 1 -> p = q^
A: Type
x, y: A
p: x = y
q: y = x

q @ p = 1 -> p = q^
A: Type
y: A
p: y = y

1 @ p = 1 -> p = 1^
A: Type
y: A
p: y = y
h: 1 @ p = 1

p = 1^
exact ((concat_1p _)^ @ h). Defined.
A: Type
x, y: A
p, q: x = y

1 = p^ @ q -> p = q
A: Type
x, y: A
p, q: x = y

1 = p^ @ q -> p = q
A: Type
x: A
q: x = x

1 = 1^ @ q -> 1 = q
A: Type
x: A
q: x = x
h: 1 = 1^ @ q

1 = q
exact (h @ (concat_1p _)). Defined.
A: Type
x, y: A
p, q: x = y

1 = q @ p^ -> p = q
A: Type
x, y: A
p, q: x = y

1 = q @ p^ -> p = q
A: Type
x: A
q: x = x

1 = q @ 1^ -> 1 = q
A: Type
x: A
q: x = x
h: 1 = q @ 1^

1 = q
exact (h @ (concat_p1 _)). Defined.
A: Type
x, y: A
p: x = y
q: y = x

1 = q @ p -> p^ = q
A: Type
x, y: A
p: x = y
q: y = x

1 = q @ p -> p^ = q
A: Type
x: A
q: x = x

1 = q @ 1 -> 1^ = q
A: Type
x: A
q: x = x
h: 1 = q @ 1

1^ = q
exact (h @ (concat_p1 _)). Defined.
A: Type
x, y: A
p: x = y
q: y = x

1 = p @ q -> p^ = q
A: Type
x, y: A
p: x = y
q: y = x

1 = p @ q -> p^ = q
A: Type
x: A
q: x = x

1 = 1 @ q -> 1^ = q
A: Type
x: A
q: x = x
h: 1 = 1 @ q

1^ = q
exact (h @ (concat_1p _)). Defined. (* In general, the path we want to move might be arbitrarily deeply nested at the beginning of a long concatenation. Thus, instead of defining functions such as [moveL_Mp_p], we define a tactical that can repeatedly rewrite with associativity to expose it. *) Ltac with_rassoc tac := repeat rewrite concat_pp_p; tac; (* After moving, we reassociate to the left (the canonical direction for paths). *) repeat rewrite concat_p_pp. Ltac rewrite_moveL_Mp_p := with_rassoc ltac:(apply moveL_Mp). Ltac rewrite_moveL_Vp_p := with_rassoc ltac:(apply moveL_Vp). Ltac rewrite_moveR_Mp_p := with_rassoc ltac:(apply moveR_Mp). Ltac rewrite_moveR_Vp_p := with_rassoc ltac:(apply moveR_Vp).
A: Type
P: A -> Type
x, y: A
p: x = y
u: P x
v: P y

u = transport P p^ v -> transport P p u = v
A: Type
P: A -> Type
x, y: A
p: x = y
u: P x
v: P y

u = transport P p^ v -> transport P p u = v
A: Type
P: A -> Type
x: A
u, v: P x

u = transport P 1^ v -> transport P 1 u = v
exact idmap. Defined.
A: Type
P: A -> Type
x, y: A
p: y = x
u: P x
v: P y

u = transport P p v -> transport P p^ u = v
A: Type
P: A -> Type
x, y: A
p: y = x
u: P x
v: P y

u = transport P p v -> transport P p^ u = v
A: Type
P: A -> Type
y: A
u, v: P y

u = transport P 1 v -> transport P 1^ u = v
exact idmap. Defined.
A: Type
P: A -> Type
x, y: A
p: x = y
u: P x
v: P y

transport P p u = v -> u = transport P p^ v
A: Type
P: A -> Type
x, y: A
p: x = y
u: P x
v: P y

transport P p u = v -> u = transport P p^ v
A: Type
P: A -> Type
x: A
u, v: P x

transport P 1 u = v -> u = transport P 1^ v
exact idmap. Defined.
A: Type
P: A -> Type
x, y: A
p: y = x
u: P x
v: P y

transport P p^ u = v -> u = transport P p v
A: Type
P: A -> Type
x, y: A
p: y = x
u: P x
v: P y

transport P p^ u = v -> u = transport P p v
A: Type
P: A -> Type
y: A
u, v: P y

transport P 1^ u = v -> u = transport P 1 v
exact idmap. Defined. (* We have some coherences between those proofs. *)
A: Type
P: A -> Type
x, y: A
p: x = y
u: P x
v: P y
q: u = transport P p^ v

(moveR_transport_p P p u v q)^ = moveL_transport_p P p v u q^
A: Type
P: A -> Type
x, y: A
p: x = y
u: P x
v: P y
q: u = transport P p^ v

(moveR_transport_p P p u v q)^ = moveL_transport_p P p v u q^
destruct p; reflexivity. Defined.
A: Type
P: A -> Type
x, y: A
p: y = x
u: P x
v: P y
q: u = transport P p v

(moveR_transport_V P p u v q)^ = moveL_transport_V P p v u q^
A: Type
P: A -> Type
x, y: A
p: y = x
u: P x
v: P y
q: u = transport P p v

(moveR_transport_V P p u v q)^ = moveL_transport_V P p v u q^
destruct p; reflexivity. Defined.
A: Type
P: A -> Type
x, y: A
p: x = y
u: P x
v: P y
q: transport P p u = v

(moveL_transport_V P p u v q)^ = moveR_transport_V P p v u q^
A: Type
P: A -> Type
x, y: A
p: x = y
u: P x
v: P y
q: transport P p u = v

(moveL_transport_V P p u v q)^ = moveR_transport_V P p v u q^
destruct p; reflexivity. Defined.
A: Type
P: A -> Type
x, y: A
p: y = x
u: P x
v: P y
q: transport P p^ u = v

(moveL_transport_p P p u v q)^ = moveR_transport_p P p v u q^
A: Type
P: A -> Type
x, y: A
p: y = x
u: P x
v: P y
q: transport P p^ u = v

(moveL_transport_p P p u v q)^ = moveR_transport_p P p v u q^
destruct p; reflexivity. Defined. (** *** Functoriality of functions *) (** Here we prove that functions behave like functors between groupoids, and that [ap] itself is functorial. *) (** Functions take identity paths to identity paths. *) Definition ap_1 {A B : Type} (x : A) (f : A -> B) : ap f 1 = 1 :> (f x = f x) := 1. Definition apD_1 {A B} (x : A) (f : forall x : A, B x) : apD f 1 = 1 :> (f x = f x) := 1. (** Functions commute with concatenation. *) Definition ap_pp {A B : Type} (f : A -> B) {x y z : A} (p : x = y) (q : y = z) : ap f (p @ q) = (ap f p) @ (ap f q) := match q with idpath => match p with idpath => 1 end end.
A, B: Type
f: A -> B
w: B
x, y, z: A
r: w = f x
p: x = y
q: y = z

r @ ap f (p @ q) = (r @ ap f p) @ ap f q
A, B: Type
f: A -> B
w: B
x, y, z: A
r: w = f x
p: x = y
q: y = z

r @ ap f (p @ q) = (r @ ap f p) @ ap f q
A, B: Type
f: A -> B
w: B
x: A
r: w = f x

r @ ap f (1 @ 1) = (r @ ap f 1) @ ap f 1
A, B: Type
f: A -> B
w: B
x: A
r: w = f x

r @ 1 = (r @ 1) @ 1
exact (concat_p_pp r 1 1). Defined.
A, B: Type
f: A -> B
x, y, z: A
w: B
p: x = y
q: y = z
r: f z = w

ap f (p @ q) @ r = ap f p @ (ap f q @ r)
A, B: Type
f: A -> B
x, y, z: A
w: B
p: x = y
q: y = z
r: f z = w

ap f (p @ q) @ r = ap f p @ (ap f q @ r)
A, B: Type
f: A -> B
x: A
w: B
r: f x = w

ap f (1 @ 1) @ r = ap f 1 @ (ap f 1 @ r)
A, B: Type
f: A -> B
x: A
w: B
r: f x = w

1 @ r = 1 @ (1 @ r)
exact (concat_pp_p 1 1 r). Defined. (** Functions commute with path inverses. *) Definition inverse_ap {A B : Type} (f : A -> B) {x y : A} (p : x = y) : (ap f p)^ = ap f (p^) := match p with idpath => 1 end. Definition ap_V {A B : Type} (f : A -> B) {x y : A} (p : x = y) : ap f (p^) = (ap f p)^ := match p with idpath => 1 end. (** [ap] itself is functorial in the first argument. *) Definition ap_idmap {A : Type} {x y : A} (p : x = y) : ap idmap p = p := match p with idpath => 1 end. Definition ap_compose {A B C : Type} (f : A -> B) (g : B -> C) {x y : A} (p : x = y) : ap (g o f) p = ap g (ap f p) := match p with idpath => 1 end. (* Sometimes we don't have the actual function [compose]. *) Definition ap_compose' {A B C : Type} (f : A -> B) (g : B -> C) {x y : A} (p : x = y) : ap (fun a => g (f a)) p = ap g (ap f p) := match p with idpath => 1 end. (** The action of constant maps. *) Definition ap_const {A B : Type} {x y : A} (p : x = y) (z : B) : ap (fun _ => z) p = 1 := match p with idpath => idpath end. (** Naturality of [ap]. *) Definition concat_Ap {A B : Type} {f g : A -> B} (p : forall x, f x = g x) {x y : A} (q : x = y) : (ap f q) @ (p y) = (p x) @ (ap g q) := match q with | idpath => concat_1p_p1 _ end. (* A useful variant of concat_Ap. *)
A, B: Type
f, g: A -> B
p: forall x : A, f x = g x
x, y: A
q: x = y

ap f q = (p x @ ap g q) @ (p y)^
A, B: Type
f, g: A -> B
p: forall x : A, f x = g x
x, y: A
q: x = y

ap f q = (p x @ ap g q) @ (p y)^
A, B: Type
f, g: A -> B
p: forall x : A, f x = g x
x, y: A
q: x = y

ap f q @ p y = p x @ ap g q
apply concat_Ap. Defined. (** Naturality of [ap] at identity. *) Definition concat_A1p {A : Type} {f : A -> A} (p : forall x, f x = x) {x y : A} (q : x = y) : (ap f q) @ (p y) = (p x) @ q := match q with | idpath => concat_1p_p1 _ end. (* The corresponding variant of concat_A1p. *)
A: Type
f: A -> A
p: forall x : A, f x = x
x, y: A
q: x = y

ap f q = (p x @ q) @ (p y)^
A: Type
f: A -> A
p: forall x : A, f x = x
x, y: A
q: x = y

ap f q = (p x @ q) @ (p y)^
A: Type
f: A -> A
p: forall x : A, f x = x
x, y: A
q: x = y

ap f q @ p y = p x @ q
apply concat_A1p. Defined. Definition concat_pA1 {A : Type} {f : A -> A} (p : forall x, x = f x) {x y : A} (q : x = y) : (p x) @ (ap f q) = q @ (p y) := match q as i in (_ = y) return (p x @ ap f i = i @ p y) with | idpath => concat_p1_1p _ end.
A: Type
B: A -> Type
f, g: forall x : A, B x
p: forall x : A, f x = g x
x, y: A
q: x = y

apD f q = (ap (transport B q) (p x) @ apD g q) @ (p y)^
A: Type
B: A -> Type
f, g: forall x : A, B x
p: forall x : A, f x = g x
x, y: A
q: x = y

apD f q = (ap (transport B q) (p x) @ apD g q) @ (p y)^
A: Type
B: A -> Type
f, g: forall x : A, B x
p: forall x : A, f x = g x
x, y: A
q: x = y

apD f q @ p y = ap (transport B q) (p x) @ apD g q
A: Type
B: A -> Type
f, g: forall x : A, B x
p: forall x : A, f x = g x
x: A

1 @ p x = ap idmap (p x) @ 1
A: Type
B: A -> Type
f, g: forall x : A, B x
p: forall x : A, f x = g x
x: A

ap idmap (p x) @ 1 = 1 @ p x
exact (concat_p1 _ @ ap_idmap _ @ (concat_1p _)^). Defined. (** Naturality with other paths hanging around. *)
A, B: Type
f, g: A -> B
p: forall x : A, f x = g x
x, y: A
q: x = y
w, z: B
r: w = f x
s: g y = z

(r @ ap f q) @ (p y @ s) = (r @ p x) @ (ap g q @ s)
A, B: Type
f, g: A -> B
p: forall x : A, f x = g x
x, y: A
q: x = y
w, z: B
r: w = f x
s: g y = z

(r @ ap f q) @ (p y @ s) = (r @ p x) @ (ap g q @ s)
A, B: Type
f, g: A -> B
p: forall x : A, f x = g x
x: A
w: B
r: w = f x

(r @ 1) @ (p x @ 1) = (r @ p x) @ 1
A, B: Type
f, g: A -> B
p: forall x : A, f x = g x
x: A
w: B
r: w = f x

(r @ 1) @ (1 @ 1) = (r @ 1) @ 1
reflexivity. Defined.
A, B: Type
f, g: A -> B
p: forall x : A, f x = g x
x, y: A
q: x = y
w: B
r: w = f x

(r @ ap f q) @ p y = (r @ p x) @ ap g q
A, B: Type
f, g: A -> B
p: forall x : A, f x = g x
x, y: A
q: x = y
w: B
r: w = f x

(r @ ap f q) @ p y = (r @ p x) @ ap g q
A, B: Type
f, g: A -> B
p: forall x : A, f x = g x
x: A
w: B
r: w = f x

(r @ 1) @ p x = (r @ p x) @ 1
A, B: Type
f, g: A -> B
p: forall x : A, f x = g x
x: A
w: B
r: w = f x

(r @ 1) @ 1 = (r @ 1) @ 1
reflexivity. Defined.
A, B: Type
f, g: A -> B
p: forall x : A, f x = g x
x, y: A
q: x = y
z: B
s: g y = z

ap f q @ (p y @ s) = p x @ (ap g q @ s)
A, B: Type
f, g: A -> B
p: forall x : A, f x = g x
x, y: A
q: x = y
z: B
s: g y = z

ap f q @ (p y @ s) = p x @ (ap g q @ s)
A, B: Type
f, g: A -> B
p: forall x : A, f x = g x
x: A

1 @ (p x @ 1) = p x @ 1
apply concat_1p. Defined.
A: Type
f: A -> A
p: forall x : A, f x = x
x, y: A
q: x = y
w, z: A
r: w = f x
s: y = z

(r @ ap f q) @ (p y @ s) = (r @ p x) @ (q @ s)
A: Type
f: A -> A
p: forall x : A, f x = x
x, y: A
q: x = y
w, z: A
r: w = f x
s: y = z

(r @ ap f q) @ (p y @ s) = (r @ p x) @ (q @ s)
A: Type
f: A -> A
p: forall x : A, f x = x
x, w: A
r: w = f x

(r @ 1) @ (p x @ 1) = (r @ p x) @ 1
A: Type
f: A -> A
p: forall x : A, f x = x
x, w: A
r: w = f x

(r @ 1) @ (1 @ 1) = (r @ 1) @ 1
reflexivity. Defined.
A: Type
g: A -> A
p: forall x : A, x = g x
x, y: A
q: x = y
w, z: A
r: w = x
s: g y = z

(r @ p x) @ (ap g q @ s) = (r @ q) @ (p y @ s)
A: Type
g: A -> A
p: forall x : A, x = g x
x, y: A
q: x = y
w, z: A
r: w = x
s: g y = z

(r @ p x) @ (ap g q @ s) = (r @ q) @ (p y @ s)
A: Type
g: A -> A
p: forall x : A, x = g x
x, w: A
r: w = x

(r @ p x) @ 1 = (r @ 1) @ (p x @ 1)
A: Type
g: A -> A
p: forall x : A, x = g x
x, w: A
r: w = x

(r @ 1) @ 1 = (r @ 1) @ (1 @ 1)
reflexivity. Defined.
A: Type
f: A -> A
p: forall x : A, f x = x
x, y: A
q: x = y
w: A
r: w = f x

(r @ ap f q) @ p y = (r @ p x) @ q
A: Type
f: A -> A
p: forall x : A, f x = x
x, y: A
q: x = y
w: A
r: w = f x

(r @ ap f q) @ p y = (r @ p x) @ q
A: Type
f: A -> A
p: forall x : A, f x = x
x, w: A
r: w = f x

(r @ 1) @ p x = (r @ p x) @ 1
A: Type
f: A -> A
p: forall x : A, f x = x
x, w: A
r: w = f x

(r @ 1) @ 1 = (r @ 1) @ 1
reflexivity. Defined.
A: Type
f: A -> A
p: forall x : A, f x = x
x, y: A
q: x = y
z: A
s: y = z

ap f q @ (p y @ s) = p x @ (q @ s)
A: Type
f: A -> A
p: forall x : A, f x = x
x, y: A
q: x = y
z: A
s: y = z

ap f q @ (p y @ s) = p x @ (q @ s)
A: Type
f: A -> A
p: forall x : A, f x = x
x: A

1 @ (p x @ 1) = p x @ 1
apply concat_1p. Defined.
A: Type
g: A -> A
p: forall x : A, x = g x
x, y: A
q: x = y
w: A
r: w = x

(r @ p x) @ ap g q = (r @ q) @ p y
A: Type
g: A -> A
p: forall x : A, x = g x
x, y: A
q: x = y
w: A
r: w = x

(r @ p x) @ ap g q = (r @ q) @ p y
A: Type
g: A -> A
p: forall x : A, x = g x
x, w: A
r: w = x

(r @ p x) @ 1 = (r @ 1) @ p x
A: Type
g: A -> A
p: forall x : A, x = g x
x, w: A
r: w = x

(r @ 1) @ 1 = (r @ 1) @ 1
reflexivity. Defined.
A: Type
g: A -> A
p: forall x : A, x = g x
x, y: A
q: x = y
z: A
s: g y = z

p x @ (ap g q @ s) = q @ (p y @ s)
A: Type
g: A -> A
p: forall x : A, x = g x
x, y: A
q: x = y
z: A
s: g y = z

p x @ (ap g q @ s) = q @ (p y @ s)
A: Type
g: A -> A
p: forall x : A, x = g x
x: A

p x @ 1 = 1 @ (p x @ 1)
symmetry; apply concat_1p. Defined. (** Some coherence lemmas for functoriality *)
A: Type
x: A
p: x = x
q: p = 1

concat_1p p @ q = ap (fun p' : x = x => 1 @ p') q
A: Type
x: A
p: x = x
q: p = 1

concat_1p p @ q = ap (fun p' : x = x => 1 @ p') q
A: Type
x: A
p: x = x
q: p = 1

concat_1p p @ (q^)^ = ap (fun p' : x = x => 1 @ p') (q^)^
A: Type
x: A
p: x = x
q: p = 1
r:= q^: 1 = p

concat_1p p @ r^ = ap (fun p' : x = x => 1 @ p') r^
A: Type
x: A

concat_1p 1 @ 1^ = ap (fun p' : x = x => 1 @ p') 1^
reflexivity. Defined.
A: Type
x: A
p: x = x
q: p = 1

concat_p1 p @ q = ap (fun p' : x = x => p' @ 1) q
A: Type
x: A
p: x = x
q: p = 1

concat_p1 p @ q = ap (fun p' : x = x => p' @ 1) q
A: Type
x: A
p: x = x
q: p = 1

concat_p1 p @ (q^)^ = ap (fun p' : x = x => p' @ 1) (q^)^
A: Type
x: A
p: x = x
q: p = 1
r:= q^: 1 = p

concat_p1 p @ r^ = ap (fun p' : x = x => p' @ 1) r^
A: Type
x: A

concat_p1 1 @ 1^ = ap (fun p' : x = x => p' @ 1) 1^
reflexivity. Defined. (** *** Action of [apD10] and [ap10] on paths. *) (** Application of paths between functions preserves the groupoid structure *) Definition apD10_1 {A} {B:A->Type} (f : forall x, B x) (x:A) : apD10 (idpath f) x = 1 := 1.
A: Type
B: A -> Type
f, f', f'': forall x : A, B x
h: f = f'
h': f' = f''
x: A

apD10 (h @ h') x = apD10 h x @ apD10 h' x
A: Type
B: A -> Type
f, f', f'': forall x : A, B x
h: f = f'
h': f' = f''
x: A

apD10 (h @ h') x = apD10 h x @ apD10 h' x
case h, h'; reflexivity. Defined. Definition apD10_V {A} {B:A->Type} {f g : forall x, B x} (h:f=g) (x:A) : apD10 (h^) x = (apD10 h x)^ := match h with idpath => 1 end. Definition ap10_1 {A B} {f:A->B} (x:A) : ap10 (idpath f) x = 1 := 1. Definition ap10_pp {A B} {f f' f'':A->B} (h:f=f') (h':f'=f'') (x:A) : ap10 (h @ h') x = ap10 h x @ ap10 h' x := apD10_pp h h' x. Definition ap10_V {A B} {f g : A->B} (h : f = g) (x:A) : ap10 (h^) x = (ap10 h x)^ := apD10_V h x. (** [apD10] and [ap10] also behave nicely on paths produced by [ap] *)
A, B: Type
C: B -> Type
f: A -> B
g, g': forall x : B, C x
p: g = g'
a: A

apD10 (ap (fun h : forall x : B, C x => h oD f) p) a = apD10 p (f a)
A, B: Type
C: B -> Type
f: A -> B
g, g': forall x : B, C x
p: g = g'
a: A

apD10 (ap (fun h : forall x : B, C x => h oD f) p) a = apD10 p (f a)
destruct p; reflexivity. Defined. Definition ap10_ap_precompose {A B C} (f : A -> B) {g g' : B -> C} (p : g = g') a : ap10 (ap (fun h : B -> C => h o f) p) a = ap10 p (f a) := apD10_ap_precompose f p a.
A: Type
B: A -> Type
C: Type
f: forall x : A, B x -> C
g, g': forall x : A, B x
p: g = g'
a: A

apD10 (ap (fun (h : forall x : A, B x) (x : A) => f x (h x)) p) a = ap (f a) (apD10 p a)
A: Type
B: A -> Type
C: Type
f: forall x : A, B x -> C
g, g': forall x : A, B x
p: g = g'
a: A

apD10 (ap (fun (h : forall x : A, B x) (x : A) => f x (h x)) p) a = ap (f a) (apD10 p a)
destruct p; reflexivity. Defined. Definition ap10_ap_postcompose {A B C} (f : B -> C) {g g' : A -> B} (p : g = g') a : ap10 (ap (fun h : A -> B => f o h) p) a = ap f (ap10 p a) := apD10_ap_postcompose (fun a => f) p a. Definition ap100 {X Y Z : Type} {f g : X -> Y -> Z} (p : f = g) (x : X) (y : Y) : f x y = g x y := (ap10 (ap10 p x) y). (** *** Transport and the groupoid structure of paths *) Definition transport_1 {A : Type} (P : A -> Type) {x : A} (u : P x) : 1 # u = u := 1. Definition transport_pp {A : Type} (P : A -> Type) {x y z : A} (p : x = y) (q : y = z) (u : P x) : p @ q # u = q # p # u := match q with idpath => match p with idpath => 1 end end. Definition transport_pV {A : Type} (P : A -> Type) {x y : A} (p : x = y) (z : P y) : p # p^ # z = z := (transport_pp P p^ p z)^ @ ap (fun r => transport P r z) (concat_Vp p). Definition transport_Vp {A : Type} (P : A -> Type) {x y : A} (p : x = y) (z : P x) : p^ # p # z = z := (transport_pp P p p^ z)^ @ ap (fun r => transport P r z) (concat_pV p). (** In the future, we may expect to need some higher coherence for transport: for instance, that transport acting on the associator is trivial. *)
A: Type
P: A -> Type
x, y, z, w: A
p: x = y
q: y = z
r: z = w
u: P x

(ap (fun e : x = w => transport P e u) (concat_p_pp p q r) @ transport_pp P (p @ q) r u) @ ap (transport P r) (transport_pp P p q u) = transport_pp P p (q @ r) u @ transport_pp P q r (transport P p u)
A: Type
P: A -> Type
x, y, z, w: A
p: x = y
q: y = z
r: z = w
u: P x

(ap (fun e : x = w => transport P e u) (concat_p_pp p q r) @ transport_pp P (p @ q) r u) @ ap (transport P r) (transport_pp P p q u) = transport_pp P p (q @ r) u @ transport_pp P q r (transport P p u)
A: Type
P: A -> Type
x: A
u: P x

(ap (fun e : x = x => transport P e u) (concat_p_pp 1 1 1) @ transport_pp P (1 @ 1) 1 u) @ ap (transport P 1) (transport_pp P 1 1 u) = transport_pp P 1 (1 @ 1) u @ transport_pp P 1 1 (transport P 1 u)
A: Type
P: A -> Type
x: A
u: P x

1 = 1
exact 1. Defined. (* Here are other coherence lemmas for transport. *)
A: Type
P: A -> Type
x, y: A
p: x = y
z: P x

transport_pV P p (transport P p z) = ap (transport P p) (transport_Vp P p z)
A: Type
P: A -> Type
x, y: A
p: x = y
z: P x

transport_pV P p (transport P p z) = ap (transport P p) (transport_Vp P p z)
destruct p; reflexivity. Defined.
A: Type
P: A -> Type
x, y: A
p: x = y
z: P y

transport_Vp P p (transport P p^ z) = ap (transport P p^) (transport_pV P p z)
A: Type
P: A -> Type
x, y: A
p: x = y
z: P y

transport_Vp P p (transport P p^ z) = ap (transport P p^) (transport_pV P p z)
destruct p; reflexivity. Defined.
A: Type
P: A -> Type
x, y: A
p: x = y
u: P x
v: P y
e: transport P p u = v

ap (transport P p) (moveL_transport_V P p u v e) @ transport_pV P p v = e
A: Type
P: A -> Type
x, y: A
p: x = y
u: P x
v: P y
e: transport P p u = v

ap (transport P p) (moveL_transport_V P p u v e) @ transport_pV P p v = e
by destruct e, p. Defined.
A: Type
P: A -> Type
x, y: A
p: x = y
u: P x

moveL_transport_V P p u (transport P p u) 1 = (transport_Vp P p u)^
(* moveL_transport_V P p (transport P p^ v) (transport P p (transport P p^ v)) 1 *) (* = ap (transport P p^) (transport_pV P p v)^. *)
A: Type
P: A -> Type
x, y: A
p: x = y
u: P x

moveL_transport_V P p u (transport P p u) 1 = (transport_Vp P p u)^
(* pose (u := p^ # v). *) (* assert (moveL_transport_V P p u (p # u) 1 = (transport_Vp P p u)^). *) destruct p; reflexivity. (* subst u. rewrite X. *) Defined. (** Occasionally the induction principles for the identity type show up explicitly; these let us turn them into transport. *) Definition paths_rect_transport {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) : paths_rect A x (fun a _ => P a) u y p = transport P p u := 1. Definition paths_ind_transport {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) : paths_ind x (fun a _ => P a) u y p = transport P p u := 1.
A: Type
P: A -> Type
x, y: A
p: x = y
u: P y

paths_ind_r y (fun (b : A) (_ : b = y) => P b) u x p = transport P p^ u
A: Type
P: A -> Type
x, y: A
p: x = y
u: P y

paths_ind_r y (fun (b : A) (_ : b = y) => P b) u x p = transport P p^ u
by destruct p. Defined. (** ** [ap11] *)
A, B: Type
f, g: A -> B
h: f = g
x, y: A
p: x = y

ap11 h p = ap10 h x @ ap g p
A, B: Type
f, g: A -> B
h: f = g
x, y: A
p: x = y

ap11 h p = ap10 h x @ ap g p
by path_induction. Defined. (** Dependent transport in doubly dependent types and more. *) Definition transportD {A : Type} (B : A -> Type) (C : forall a:A, B a -> Type) {x1 x2 : A} (p : x1 = x2) (y : B x1) (z : C x1 y) : C x2 (p # y) := match p with idpath => z end. Definition transportD2 {A : Type} (B C : A -> Type) (D : forall a:A, B a -> C a -> Type) {x1 x2 : A} (p : x1 = x2) (y : B x1) (z : C x1) (w : D x1 y z) : D x2 (p # y) (p # z) := match p with idpath => w end. (** *** [ap] for curried two variable functions *)
A, B, C: Type
f: A -> B -> C
x, x': A
y, y': B
p: x = x'
q: y = y'

f x y = f x' y'
A, B, C: Type
f: A -> B -> C
x, x': A
y, y': B
p: x = x'
q: y = y'

f x y = f x' y'
A, B, C: Type
f: A -> B -> C
x: A
y, y': B
q: y = y'

f x y = f x y'
A, B, C: Type
f: A -> B -> C
x: A
y, y': B
q: y = y'

y = y'
exact q. Defined.
A, B, C: Type
f: A -> B -> C
x, x': A
y, y': B
p: x = x'
q: y = y'

ap011 f p^ q^ = (ap011 f p q)^
A, B, C: Type
f: A -> B -> C
x, x': A
y, y': B
p: x = x'
q: y = y'

ap011 f p^ q^ = (ap011 f p q)^
A, B, C: Type
f: A -> B -> C
x: A
y, y': B
q: y = y'

ap011 f 1^ q^ = (ap011 f 1 q)^
apply ap_V. Defined.
A, B, C: Type
f: A -> B -> C
x, x', x'': A
y, y', y'': B
p: x = x'
p': x' = x''
q: y = y'
q': y' = y''

ap011 f (p @ p') (q @ q') = ap011 f p q @ ap011 f p' q'
A, B, C: Type
f: A -> B -> C
x, x', x'': A
y, y', y'': B
p: x = x'
p': x' = x''
q: y = y'
q': y' = y''

ap011 f (p @ p') (q @ q') = ap011 f p q @ ap011 f p' q'
A, B, C: Type
f: A -> B -> C
x: A
y, y', y'': B
q: y = y'
q': y' = y''

ap011 f (1 @ 1) (q @ q') = ap011 f 1 q @ ap011 f 1 q'
apply ap_pp. Defined.
A, B, C, D: Type
f: A -> B -> C
g: C -> D
x, x': A
y, y': B
p: x = x'
q: y = y'

ap011 (fun (x : A) (y : B) => g (f x y)) p q = ap g (ap011 f p q)
A, B, C, D: Type
f: A -> B -> C
g: C -> D
x, x': A
y, y': B
p: x = x'
q: y = y'

ap011 (fun (x : A) (y : B) => g (f x y)) p q = ap g (ap011 f p q)
A, B, C, D: Type
f: A -> B -> C
g: C -> D
x: A
y, y': B
q: y = y'

ap (fun y : B => g (f x y)) q = ap g (ap (f x) q)
apply ap_compose. Defined.
A, B, C, D, E: Type
f: A -> B -> C
g: D -> A
h: E -> B
x, x': D
y, y': E
p: x = x'
q: y = y'

ap011 (fun (x : D) (y : E) => f (g x) (h y)) p q = ap011 f (ap g p) (ap h q)
A, B, C, D, E: Type
f: A -> B -> C
g: D -> A
h: E -> B
x, x': D
y, y': E
p: x = x'
q: y = y'

ap011 (fun (x : D) (y : E) => f (g x) (h y)) p q = ap011 f (ap g p) (ap h q)
A, B, C, D, E: Type
f: A -> B -> C
g: D -> A
h: E -> B
x: D
y, y': E
q: y = y'

ap (fun y : E => f (g x) (h y)) q = ap (f (g x)) (ap h q)
apply ap_compose. Defined.
A, B, C: Type
f: A -> B -> C
x, x': A
y, y': B
p: x = x'
q: y = y'

ap011 f p q = ap (fun x : A => f x y) p @ ap (fun y : B => f x' y) q
A, B, C: Type
f: A -> B -> C
x, x': A
y, y': B
p: x = x'
q: y = y'

ap011 f p q = ap (fun x : A => f x y) p @ ap (fun y : B => f x' y) q
A, B, C: Type
f: A -> B -> C
x: A
y, y': B
q: y = y'

ap011 f 1 q = ap (fun x : A => f x y) 1 @ ap (fun y : B => f x y) q
A, B, C: Type
f: A -> B -> C
x: A
y, y': B
q: y = y'

ap (fun x : A => f x y) 1 @ ap (fun y : B => f x y) q = ap011 f 1 q
apply concat_1p. Defined. (** It would be nice to have a consistent way to name the different ways in which this can be dependent. The following are a sort of half-hearted attempt. *)
A: Type
B: A -> Type
C: Type
f: forall a : A, B a -> C
x, x': A
p: x = x'
y: B x
y': B x'
q: transport B p y = y'

f x y = f x' y'
A: Type
B: A -> Type
C: Type
f: forall a : A, B a -> C
x, x': A
p: x = x'
y: B x
y': B x'
q: transport B p y = y'

f x y = f x' y'
destruct p, q; reflexivity. Defined.
A: Type
B, C: A -> Type
f: forall a : A, B a -> C a
x, x': A
p: x = x'
y: B x
y': B x'
q: transport B p y = y'

transport C p (f x y) = f x' y'
A: Type
B, C: A -> Type
f: forall a : A, B a -> C a
x, x': A
p: x = x'
y: B x
y': B x'
q: transport B p y = y'

transport C p (f x y) = f x' y'
destruct p, q; reflexivity. Defined.
A: Type
B: A -> Type
C: forall x : A, B x -> Type
f: forall (a : A) (b : B a), C a b
x, x': A
p: x = x'
y: B x
y': B x'
q: transport B p y = y'

transport (C x') q (transportD B C p y (f x y)) = f x' y'
A: Type
B: A -> Type
C: forall x : A, B x -> Type
f: forall (a : A) (b : B a), C a b
x, x': A
p: x = x'
y: B x
y': B x'
q: transport B p y = y'

transport (C x') q (transportD B C p y (f x y)) = f x' y'
destruct p, q; reflexivity. Defined. (** Transporting along two 1-dimensional paths *) Definition transport011 {A B} (P : A -> B -> Type) {x1 x2 : A} {y1 y2 : B} (p : x1 = x2) (q : y1 = y2) (z : P x1 y1) : P x2 y2 := transport (fun x => P x y2) p (transport (fun y => P x1 y) q z).
A, B: Type
P: A -> B -> Type
x1, x2, x3: A
y1, y2, y3: B
p1: x1 = x2
p2: x2 = x3
q1: y1 = y2
q2: y2 = y3
z: P x1 y1

transport011 P (p1 @ p2) (q1 @ q2) z = transport011 P p2 q2 (transport011 P p1 q1 z)
A, B: Type
P: A -> B -> Type
x1, x2, x3: A
y1, y2, y3: B
p1: x1 = x2
p2: x2 = x3
q1: y1 = y2
q2: y2 = y3
z: P x1 y1

transport011 P (p1 @ p2) (q1 @ q2) z = transport011 P p2 q2 (transport011 P p1 q1 z)
destruct p1, p2, q1, q2; reflexivity. Defined.
A, B, A', B': Type
P: A -> B -> Type
f: A' -> A
g: B' -> B
x1, x2: A'
y1, y2: B'
p: x1 = x2
q: y1 = y2
z: P (f x1) (g y1)

transport011 (fun (x : A') (y : B') => P (f x) (g y)) p q z = transport011 P (ap f p) (ap g q) z
A, B, A', B': Type
P: A -> B -> Type
f: A' -> A
g: B' -> B
x1, x2: A'
y1, y2: B'
p: x1 = x2
q: y1 = y2
z: P (f x1) (g y1)

transport011 (fun (x : A') (y : B') => P (f x) (g y)) p q z = transport011 P (ap f p) (ap g q) z
destruct p, q; reflexivity. Defined. (** Naturality of [transport011]. *)
A, B: Type
P, Q: A -> B -> Type
a1, a2: A
b1, b2: B
p: a1 = a2
q: b1 = b2
f: forall (a : A) (b : B), P a b -> Q a b
x: P a1 b1

f a2 b2 (transport011 P p q x) = transport011 Q p q (f a1 b1 x)
A, B: Type
P, Q: A -> B -> Type
a1, a2: A
b1, b2: B
p: a1 = a2
q: b1 = b2
f: forall (a : A) (b : B), P a b -> Q a b
x: P a1 b1

f a2 b2 (transport011 P p q x) = transport011 Q p q (f a1 b1 x)
destruct p, q; reflexivity. Defined. (** Transporting along higher-dimensional paths *) Definition transport2 {A : Type} (P : A -> Type) {x y : A} {p q : x = y} (r : p = q) (z : P x) : p # z = q # z := ap (fun p' => p' # z) r. (** An alternative definition. *) Definition transport2_is_ap10 {A : Type} (Q : A -> Type) {x y : A} {p q : x = y} (r : p = q) (z : Q x) : transport2 Q r z = ap10 (ap (transport Q) r) z := match r with idpath => 1 end.
A: Type
P: A -> Type
x, y: A
p1, p2, p3: x = y
r1: p1 = p2
r2: p2 = p3
z: P x

transport2 P (r1 @ r2) z = transport2 P r1 z @ transport2 P r2 z
A: Type
P: A -> Type
x, y: A
p1, p2, p3: x = y
r1: p1 = p2
r2: p2 = p3
z: P x

transport2 P (r1 @ r2) z = transport2 P r1 z @ transport2 P r2 z
destruct r1, r2; reflexivity. Defined. Definition transport2_V {A : Type} (Q : A -> Type) {x y : A} {p q : x = y} (r : p = q) (z : Q x) : transport2 Q (r^) z = (transport2 Q r z)^ := match r with idpath => 1 end. Definition concat_AT {A : Type} (P : A -> Type) {x y : A} {p q : x = y} {z w : P x} (r : p = q) (s : z = w) : ap (transport P p) s @ transport2 P r w = transport2 P r z @ ap (transport P q) s := match r with idpath => (concat_p1_1p _) end.
A: Type
P: A -> Type
a, b: A
p: a = b
x: P a

transport_pp P p 1 x = transport2 P (concat_p1 p) x
A: Type
P: A -> Type
a, b: A
p: a = b
x: P a

transport_pp P p 1 x = transport2 P (concat_p1 p) x
by induction p. Defined. (* TODO: What should this be called? *)
A: Type
P, Q: A -> Type
x, y: A
p: x = y
f: forall x : A, P x -> Q x
z: P x

f y (transport P p z) = transport Q p (f x z)
A: Type
P, Q: A -> Type
x, y: A
p: x = y
f: forall x : A, P x -> Q x
z: P x

f y (transport P p z) = transport Q p (f x z)
by induction p. Defined.
A: Type
B: A -> Type
C1, C2: forall a : A, B a -> Type
f: forall (a : A) (b : B a), C1 a b -> C2 a b
x1, x2: A
p: x1 = x2
y: B x1
z: C1 x1 y

f x2 (transport B p y) (transportD B C1 p y z) = transportD B C2 p y (f x1 y z)
A: Type
B: A -> Type
C1, C2: forall a : A, B a -> Type
f: forall (a : A) (b : B a), C1 a b -> C2 a b
x1, x2: A
p: x1 = x2
y: B x1
z: C1 x1 y

f x2 (transport B p y) (transportD B C1 p y z) = transportD B C2 p y (f x1 y z)
by induction p. Defined.
A: Type
B, C: A -> Type
D1, D2: forall a : A, B a -> C a -> Type
f: forall (a : A) (b : B a) (c : C a), D1 a b c -> D2 a b c
x1, x2: A
p: x1 = x2
y: B x1
z: C x1
w: D1 x1 y z

f x2 (transport B p y) (transport C p z) (transportD2 B C D1 p y z w) = transportD2 B C D2 p y z (f x1 y z w)
A: Type
B, C: A -> Type
D1, D2: forall a : A, B a -> C a -> Type
f: forall (a : A) (b : B a) (c : C a), D1 a b c -> D2 a b c
x1, x2: A
p: x1 = x2
y: B x1
z: C x1
w: D1 x1 y z

f x2 (transport B p y) (transport C p z) (transportD2 B C D1 p y z w) = transportD2 B C D2 p y z (f x1 y z w)
by induction p. Defined. (* TODO: What should this be called? *)
X: Type
Y: X -> Type
x1, x2: X
p: x1 = x2
y1, y2: Y x2
q: y1 = y2

ap (transport Y p) (ap (transport Y p^) q) = (transport_pV Y p y1 @ q) @ (transport_pV Y p y2)^
X: Type
Y: X -> Type
x1, x2: X
p: x1 = x2
y1, y2: Y x2
q: y1 = y2

ap (transport Y p) (ap (transport Y p^) q) = (transport_pV Y p y1 @ q) @ (transport_pV Y p y2)^
destruct p, q; reflexivity. Defined. (* TODO: And this? *)
X: Type
P: X -> Type
f: forall x : X, P x
x1, x2: X
p: x1 = x2

ap (transport P p) (apD f p^) @ apD f p = transport_pV P p (f x2)
X: Type
P: X -> Type
f: forall x : X, P x
x1, x2: X
p: x1 = x2

ap (transport P p) (apD f p^) @ apD f p = transport_pV P p (f x2)
destruct p; reflexivity. Defined.
A: Type
P: A -> Type
f: forall x : A, P x
x, y, z: A
p: x = y
q: y = z

apD f (p @ q) = (transport_pp P p q (f x) @ ap (transport P q) (apD f p)) @ apD f q
A: Type
P: A -> Type
f: forall x : A, P x
x, y, z: A
p: x = y
q: y = z

apD f (p @ q) = (transport_pp P p q (f x) @ ap (transport P q) (apD f p)) @ apD f q
destruct p, q; reflexivity. Defined.
A: Type
P: A -> Type
f: forall x : A, P x
x, y: A
p: x = y

apD f p^ = moveR_transport_V P p (f y) (f x) (apD f p)^
A: Type
P: A -> Type
f: forall x : A, P x
x, y: A
p: x = y

apD f p^ = moveR_transport_V P p (f y) (f x) (apD f p)^
destruct p; reflexivity. Defined. (** *** Transporting in particular fibrations. *) (** One frequently needs lemmas showing that transport in a certain dependent type is equal to some more explicitly defined operation, defined according to the structure of that dependent type. For most dependent types, we prove these lemmas in the appropriate file in the types/ subdirectory. Here we consider only the most basic cases. *) (** Transporting in a constant fibration. *)
A, B: Type
x1, x2: A
p: x1 = x2
y: B

transport (fun _ : A => B) p y = y
A, B: Type
x1, x2: A
p: x1 = x2
y: B

transport (fun _ : A => B) p y = y
A, B: Type
x1: A
y: B

transport (fun _ : A => B) 1 y = y
exact 1. Defined. Definition transport2_const {A B : Type} {x1 x2 : A} {p q : x1 = x2} (r : p = q) (y : B) : transport_const p y = transport2 (fun _ => B) r y @ transport_const q y := match r with idpath => (concat_1p _)^ end. (** Transporting in a pulled back fibration. *)
A, B: Type
x, y: A
P: B -> Type
f: A -> B
p: x = y
z: P (f x)

transport (fun x : A => P (f x)) p z = transport P (ap f p) z
A, B: Type
x, y: A
P: B -> Type
f: A -> B
p: x = y
z: P (f x)

transport (fun x : A => P (f x)) p z = transport P (ap f p) z
destruct p; reflexivity. Defined.
A, A': Type
B: A' -> Type
x, x': A
C: forall x : A', B x -> Type
f: A -> A'
p: x = x'
y: B (f x)
z: C (f x) y

transportD (B o f) (C oD f) p y z = transport (C (f x')) (transport_compose B f p y)^ (transportD B C (ap f p) y z)
A, A': Type
B: A' -> Type
x, x': A
C: forall x : A', B x -> Type
f: A -> A'
p: x = x'
y: B (f x)
z: C (f x) y

transportD (B o f) (C oD f) p y z = transport (C (f x')) (transport_compose B f p y)^ (transportD B C (ap f p) y z)
destruct p; reflexivity. Defined. (* TODO: Is there a lemma like [transportD_compose], but for [apD], which subsumes this? *)
A: Type
B: A -> Type
f: forall x : A, B x
C: forall x : A, B x -> Type
x1, x2: A
p: x1 = x2
z: C x1 (f x1)

transport (C x2) (apD f p) (transportD B C p (f x1) z) = transport (fun x : A => C x (f x)) p z
A: Type
B: A -> Type
f: forall x : A, B x
C: forall x : A, B x -> Type
x1, x2: A
p: x1 = x2
z: C x1 (f x1)

transport (C x2) (apD f p) (transportD B C p (f x1) z) = transport (fun x : A => C x (f x)) p z
destruct p; reflexivity. Defined.
A, B, C: Type
f: A -> B
g, g': B -> C
p: g = g'

transport (fun h : B -> C => g o f = h o f) p 1 = ap (fun h : B -> C => h o f) p
A, B, C: Type
f: A -> B
g, g': B -> C
p: g = g'

transport (fun h : B -> C => g o f = h o f) p 1 = ap (fun h : B -> C => h o f) p
destruct p; reflexivity. Defined. (** A special case of [transport_compose] which seems to come up a lot. *) Definition transport_idmap_ap {A} (P : A -> Type) {x y : A} (p : x = y) (u : P x) : transport P p u = transport idmap (ap P p) u := match p with idpath => idpath end. (** Sometimes, it's useful to have the goal be in terms of [ap], so we can use lemmas about [ap]. However, we can't just [rewrite !transport_idmap_ap], as that's likely to loop. So, instead, we provide a tactic [transport_to_ap], that replaces all [transport P p u] with [transport idmap (ap P p) u] for non-[idmap] [P]. *) Ltac transport_to_ap := repeat match goal with | [ |- context[transport ?P ?p ?u] ] => match P with | idmap => fail 1 (* we don't want to turn [transport idmap (ap _ _)] into [transport idmap (ap idmap (ap _ _))] *) | _ => idtac end; progress rewrite (transport_idmap_ap P p u) end. (** Transporting in a fibration dependent on two independent types commutes. *)
A, B: Type
C: A -> B -> Type
x1, x2: A
p: x1 = x2
y1, y2: B
q: y1 = y2
c: C x1 y1

transport (C x2) q (transport (fun x : A => C x y1) p c) = transport (fun x : A => C x y2) p (transport (C x1) q c)
A, B: Type
C: A -> B -> Type
x1, x2: A
p: x1 = x2
y1, y2: B
q: y1 = y2
c: C x1 y1

transport (C x2) q (transport (fun x : A => C x y1) p c) = transport (fun x : A => C x y2) p (transport (C x1) q c)
destruct p, q; reflexivity. Defined. (** *** The behavior of [ap] and [apD]. *) (** In a constant fibration, [apD] reduces to [ap], modulo [transport_const]. *)
A, B: Type
x, y: A
f: A -> B
p: x = y

apD f p = transport_const p (f x) @ ap f p
A, B: Type
x, y: A
f: A -> B
p: x = y

apD f p = transport_const p (f x) @ ap f p
destruct p; reflexivity. Defined.
A, A': Type
B: A' -> Type
g: A -> A'
f: forall a : A', B a
x, y: A
p: x = y

apD (f o g) p = transport_compose B g p (f (g x)) @ apD f (ap g p)
A, A': Type
B: A' -> Type
g: A -> A'
f: forall a : A', B a
x, y: A
p: x = y

apD (f o g) p = transport_compose B g p (f (g x)) @ apD f (ap g p)
by destruct p. Defined.
A, A': Type
B: A' -> Type
g: A -> A'
f: forall a : A', B a
x, y: A
p: x = y

apD f (ap g p) = (transport_compose B g p (f (g x)))^ @ apD (f o g) p
A, A': Type
B: A' -> Type
g: A -> A'
f: forall a : A', B a
x, y: A
p: x = y

apD f (ap g p) = (transport_compose B g p (f (g x)))^ @ apD (f o g) p
by destruct p. Defined. (** ** The 2-dimensional groupoid structure *) (** Horizontal composition of 2-dimensional paths. *) Definition concat2 {A} {x y z : A} {p p' : x = y} {q q' : y = z} (h : p = p') (h' : q = q') : p @ q = p' @ q' := match h, h' with idpath, idpath => 1 end. Notation "p @@ q" := (concat2 p q)%path : path_scope. Arguments concat2 : simpl nomatch.
A, B: Type
x', y', z': B
f: A -> x' = y'
g: A -> y' = z'
x, y: A
p: x = y

ap f p @@ ap g p = ap (fun u : A => f u @ g u) p
A, B: Type
x', y', z': B
f: A -> x' = y'
g: A -> y' = z'
x, y: A
p: x = y

ap f p @@ ap g p = ap (fun u : A => f u @ g u) p
by path_induction. Defined. (** 2-dimensional path inversion *) Definition inverse2 {A : Type} {x y : A} {p q : x = y} (h : p = q) : p^ = q^ := ap inverse h. (** Some higher coherences *)
A, B: Type
f: A -> B
a, b: A
p: a = b

ap_pp f p 1 @ concat_p1 (ap f p) = ap (ap f) (concat_p1 p)
A, B: Type
f: A -> B
a, b: A
p: a = b

ap_pp f p 1 @ concat_p1 (ap f p) = ap (ap f) (concat_p1 p)
destruct p; reflexivity. Defined.
A, B: Type
f: A -> B
a, b: A
p: a = b

ap_pp f 1 p @ concat_1p (ap f p) = ap (ap f) (concat_1p p)
A, B: Type
f: A -> B
a, b: A
p: a = b

ap_pp f 1 p @ concat_1p (ap f p) = ap (ap f) (concat_1p p)
destruct p; reflexivity. Defined.
A, B: Type
f: A -> B
x, y: A
p: x = y

ap_pp f p p^ @ ((1 @@ ap_V f p) @ concat_pV (ap f p)) = ap (ap f) (concat_pV p)
A, B: Type
f: A -> B
x, y: A
p: x = y

ap_pp f p p^ @ ((1 @@ ap_V f p) @ concat_pV (ap f p)) = ap (ap f) (concat_pV p)
destruct p; reflexivity. Defined.
A, B: Type
f: A -> B
x, y: A
p: x = y

ap_pp f p^ p @ ((ap_V f p @@ 1) @ concat_Vp (ap f p)) = ap (ap f) (concat_Vp p)
A, B: Type
f: A -> B
x, y: A
p: x = y

ap_pp f p^ p @ ((ap_V f p @@ 1) @ concat_Vp (ap f p)) = ap (ap f) (concat_Vp p)
destruct p; reflexivity. Defined.
A: Type
x, y: A
p, q: x = y
r: p = q

(r @@ inverse2 r) @ concat_pV q = concat_pV p
A: Type
x, y: A
p, q: x = y
r: p = q

(r @@ inverse2 r) @ concat_pV q = concat_pV p
destruct r, p; reflexivity. Defined.
A: Type
x, y: A
p, q: x = y
r: p = q

(inverse2 r @@ r) @ concat_Vp q = concat_Vp p
A: Type
x, y: A
p, q: x = y
r: p = q

(inverse2 r @@ r) @ concat_Vp q = concat_Vp p
destruct r, p; reflexivity. Defined. (** *** Whiskering *) Definition whiskerL {A : Type} {x y z : A} (p : x = y) {q r : y = z} (h : q = r) : p @ q = p @ r := 1 @@ h. Definition whiskerR {A : Type} {x y z : A} {p q : x = y} (h : p = q) (r : y = z) : p @ r = q @ r := h @@ 1. (** *** Unwhiskering, a.k.a. cancelling. *) Definition cancelL {A} {x y z : A} (p : x = y) (q r : y = z) : (p @ q = p @ r) -> (q = r) := fun h => (concat_V_pp p q)^ @ whiskerL p^ h @ (concat_V_pp p r). Definition cancelR {A} {x y z : A} (p q : x = y) (r : y = z) : (p @ r = q @ r) -> (p = q) := fun h => (concat_pp_V p r)^ @ whiskerR h r^ @ (concat_pp_V q r). (** Whiskering and identity paths. *) Definition whiskerR_p1 {A : Type} {x y : A} {p q : x = y} (h : p = q) : (concat_p1 p)^ @ whiskerR h 1 @ concat_p1 q = h := match h with idpath => match p with idpath => 1 end end. Definition whiskerR_1p {A : Type} {x y z : A} (p : x = y) (q : y = z) : whiskerR 1 q = 1 :> (p @ q = p @ q) := match q with idpath => 1 end. Definition whiskerL_p1 {A : Type} {x y z : A} (p : x = y) (q : y = z) : whiskerL p 1 = 1 :> (p @ q = p @ q) := match q with idpath => 1 end. Definition whiskerL_1p {A : Type} {x y : A} {p q : x = y} (h : p = q) : (concat_1p p) ^ @ whiskerL 1 h @ concat_1p q = h := match h with idpath => match p with idpath => 1 end end.
A: Type
x: A
h: 1 = 1

whiskerR h 1 = h
A: Type
x: A
h: 1 = 1

whiskerR h 1 = h
A: Type
x: A
h: 1 = 1

whiskerR h 1 = (1 @ whiskerR h 1) @ 1
symmetry; refine (concat_p1 _ @ concat_1p _). Defined.
A: Type
x: A
h: 1 = 1

whiskerL 1 h = h
A: Type
x: A
h: 1 = 1

whiskerL 1 h = h
A: Type
x: A
h: 1 = 1

whiskerL 1 h = (1 @ whiskerL 1 h) @ 1
symmetry; refine (concat_p1 _ @ concat_1p _). Defined.
A: Type
x, y, z: A
p, p': x = y
q, q': y = z
g: p = p'
h, k: q = q'

g @@ h = g @@ k -> h = k
A: Type
x, y, z: A
p, p': x = y
q, q': y = z
g: p = p'
h, k: q = q'

g @@ h = g @@ k -> h = k
A: Type
x, y, z: A
p, p': x = y
q, q': y = z
g: p = p'
h, k: q = q'
r: g @@ h = g @@ k

h = k
A: Type
x: A
q': x = x
h, k: 1 = q'
r: 1 @@ h = 1 @@ k

h = k
A: Type
x: A
q': x = x
h, k: 1 = q'
r: 1 @@ h = 1 @@ k

((concat_1p 1)^ @ whiskerL 1 h) @ concat_1p q' = k
A: Type
x: A
q': x = x
h, k: 1 = q'
r: 1 @@ h = 1 @@ k

((concat_1p 1)^ @ whiskerL 1 h) @ concat_1p q' = ((concat_1p 1)^ @ whiskerL 1 k) @ concat_1p q'
A: Type
x: A
q': x = x
h, k: 1 = q'
r: 1 @@ h = 1 @@ k

(concat_1p 1)^ @ whiskerL 1 h = (concat_1p 1)^ @ whiskerL 1 k
A: Type
x: A
q': x = x
h, k: 1 = q'
r: 1 @@ h = 1 @@ k

whiskerL 1 h = whiskerL 1 k
apply r. Defined.
A: Type
x, y, z: A
p, p': x = y
q, q': y = z
g, h: p = p'
k: q = q'

g @@ k = h @@ k -> g = h
A: Type
x, y, z: A
p, p': x = y
q, q': y = z
g, h: p = p'
k: q = q'

g @@ k = h @@ k -> g = h
A: Type
x, y, z: A
p, p': x = y
q, q': y = z
g, h: p = p'
k: q = q'
r: g @@ k = h @@ k

g = h
A: Type
x: A
p': x = x
g, h: 1 = p'
r: g @@ 1 = h @@ 1

g = h
A: Type
x: A
p': x = x
g, h: 1 = p'
r: g @@ 1 = h @@ 1

((concat_p1 1)^ @ whiskerR g 1) @ concat_p1 p' = h
A: Type
x: A
p': x = x
g, h: 1 = p'
r: g @@ 1 = h @@ 1

((concat_p1 1)^ @ whiskerR g 1) @ concat_p1 p' = ((concat_p1 1)^ @ whiskerR h 1) @ concat_p1 p'
A: Type
x: A
p': x = x
g, h: 1 = p'
r: g @@ 1 = h @@ 1

(concat_p1 1)^ @ whiskerR g 1 = (concat_p1 1)^ @ whiskerR h 1
A: Type
x: A
p': x = x
g, h: 1 = p'
r: g @@ 1 = h @@ 1

whiskerR g 1 = whiskerR h 1
apply r. Defined. (** Whiskering and composition *) (* The naming scheme for these is a little unclear; should [pp] refer to concatenation of the 2-paths being whiskered or of the paths we are whiskering by? *)
A: Type
x, y, z: A
p: x = y
q, q', q'': y = z
r: q = q'
s: q' = q''

whiskerL p (r @ s) = whiskerL p r @ whiskerL p s
A: Type
x, y, z: A
p: x = y
q, q', q'': y = z
r: q = q'
s: q' = q''

whiskerL p (r @ s) = whiskerL p r @ whiskerL p s
destruct p, r, s; reflexivity. Defined.
A: Type
x, y, z: A
p, p', p'': x = y
q: y = z
r: p = p'
s: p' = p''

whiskerR (r @ s) q = whiskerR r q @ whiskerR s q
A: Type
x, y, z: A
p, p', p'': x = y
q: y = z
r: p = p'
s: p' = p''

whiskerR (r @ s) q = whiskerR r q @ whiskerR s q
destruct q, r, s; reflexivity. Defined. (* For now, I've put an [L] or [R] to mark when we're referring to the whiskering paths. *)
A: Type
x, y, z: A
p: x = y
q, q': y = z
r: q = q'

((concat_V_pp p q)^ @ whiskerL p^ (whiskerL p r)) @ concat_V_pp p q' = r
A: Type
x, y, z: A
p: x = y
q, q': y = z
r: q = q'

((concat_V_pp p q)^ @ whiskerL p^ (whiskerL p r)) @ concat_V_pp p q' = r
A: Type
x: A

((concat_V_pp 1 1)^ @ whiskerL 1^ (whiskerL 1 1)) @ concat_V_pp 1 1 = 1
reflexivity. Defined.
A: Type
x, y, z: A
p: y = x
q, q': y = z
r: q = q'

((concat_p_Vp p q)^ @ whiskerL p (whiskerL p^ r)) @ concat_p_Vp p q' = r
A: Type
x, y, z: A
p: y = x
q, q': y = z
r: q = q'

((concat_p_Vp p q)^ @ whiskerL p (whiskerL p^ r)) @ concat_p_Vp p q' = r
A: Type
y: A

((concat_p_Vp 1 1)^ @ whiskerL 1 (whiskerL 1^ 1)) @ concat_p_Vp 1 1 = 1
reflexivity. Defined.
A: Type
x, y, z: A
p, p': x = y
r: p = p'
q: y = z

((concat_pp_V p q)^ @ whiskerR (whiskerR r q) q^) @ concat_pp_V p' q = r
A: Type
x, y, z: A
p, p': x = y
r: p = p'
q: y = z

((concat_pp_V p q)^ @ whiskerR (whiskerR r q) q^) @ concat_pp_V p' q = r
A: Type
x: A

((concat_pp_V 1 1)^ @ whiskerR (whiskerR 1 1) 1^) @ concat_pp_V 1 1 = 1
reflexivity. Defined.
A: Type
x, y, z: A
p, p': x = y
r: p = p'
q: z = y

((concat_pV_p p q)^ @ whiskerR (whiskerR r q^) q) @ concat_pV_p p' q = r
A: Type
x, y, z: A
p, p': x = y
r: p = p'
q: z = y

((concat_pV_p p q)^ @ whiskerR (whiskerR r q^) q) @ concat_pV_p p' q = r
A: Type
z: A

((concat_pV_p 1 1)^ @ whiskerR (whiskerR 1 1^) 1) @ concat_pV_p 1 1 = 1
reflexivity. Defined. (** Naturality of [concat_p_pp] in left-most argument. *)
A: Type
w, x, y, z: A
p, p': w = x
h: p = p'
q: x = y
r: y = z

whiskerR h (q @ r) @ concat_p_pp p' q r = concat_p_pp p q r @ whiskerR (whiskerR h q) r
A: Type
w, x, y, z: A
p, p': w = x
h: p = p'
q: x = y
r: y = z

whiskerR h (q @ r) @ concat_p_pp p' q r = concat_p_pp p q r @ whiskerR (whiskerR h q) r
by destruct h, p, q, r. Defined. (** Naturality of [concat_p_pp] in middle argument. *)
A: Type
w, x, y, z: A
p: w = x
q, q': x = y
h: q = q'
r: y = z

whiskerL p (whiskerR h r) @ concat_p_pp p q' r = concat_p_pp p q r @ whiskerR (whiskerL p h) r
A: Type
w, x, y, z: A
p: w = x
q, q': x = y
h: q = q'
r: y = z

whiskerL p (whiskerR h r) @ concat_p_pp p q' r = concat_p_pp p q r @ whiskerR (whiskerL p h) r
by destruct h, p, q, r. Defined. (** Naturality of [concat_p_pp] in right-most argument. *)
A: Type
w, x, y, z: A
p: w = x
q: x = y
r, r': y = z
h: r = r'

whiskerL p (whiskerL q h) @ concat_p_pp p q r' = concat_p_pp p q r @ whiskerL (p @ q) h
A: Type
w, x, y, z: A
p: w = x
q: x = y
r, r': y = z
h: r = r'

whiskerL p (whiskerL q h) @ concat_p_pp p q r' = concat_p_pp p q r @ whiskerL (p @ q) h
by destruct h, p, q, r. Defined. (** The interchange law for concatenation. *)
A: Type
x, y, z: A
p, p', p'': x = y
q, q', q'': y = z
a: p = p'
b: p' = p''
c: q = q'
d: q' = q''

(a @@ c) @ (b @@ d) = (a @ b) @@ (c @ d)
A: Type
x, y, z: A
p, p', p'': x = y
q, q', q'': y = z
a: p = p'
b: p' = p''
c: q = q'
d: q' = q''

(a @@ c) @ (b @@ d) = (a @ b) @@ (c @ d)
A: Type
x, y, z: A
p, p', p'': x = y
q, q', q'': y = z
a: p = p'
b: p' = p''
c: q = q'
d: q' = q''

(a @@ c) @ (b @@ 1) = (a @ b) @@ (c @ 1)
A: Type
x, y, z: A
p, p', p'': x = y
q, q', q'': y = z
a: p = p'
b: p' = p''
c: q = q'
d: q' = q''

(a @@ 1) @ (b @@ 1) = (a @ b) @@ (1 @ 1)
A: Type
x, y, z: A
p, p', p'': x = y
q, q', q'': y = z
a: p = p'
b: p' = p''
c: q = q'
d: q' = q''

(a @@ 1) @ (1 @@ 1) = (a @ 1) @@ (1 @ 1)
A: Type
x, y, z: A
p, p', p'': x = y
q, q', q'': y = z
a: p = p'
b: p' = p''
c: q = q'
d: q' = q''

(1 @@ 1) @ (1 @@ 1) = (1 @ 1) @@ (1 @ 1)
reflexivity. Defined. (** The interchange law for whiskering. Special case of [concat_concat2]. *) Definition concat_whisker {A} {x y z : A} (p p' : x = y) (q q' : y = z) (a : p = p') (b : q = q') : (whiskerR a q) @ (whiskerL p' b) = (whiskerL p b) @ (whiskerR a q') := match b with idpath => match a with idpath => (concat_1p _)^ end end. (** Structure corresponding to the coherence equations of a bicategory. *) (** The "pentagonator": the 3-cell witnessing the associativity pentagon. *)
A: Type
v, w, x, y, z: A
p: v = w
q: w = x
r: x = y
s: y = z

(whiskerL p (concat_p_pp q r s) @ concat_p_pp p (q @ r) s) @ whiskerR (concat_p_pp p q r) s = concat_p_pp p q (r @ s) @ concat_p_pp (p @ q) r s
A: Type
v, w, x, y, z: A
p: v = w
q: w = x
r: x = y
s: y = z

(whiskerL p (concat_p_pp q r s) @ concat_p_pp p (q @ r) s) @ whiskerR (concat_p_pp p q r) s = concat_p_pp p q (r @ s) @ concat_p_pp (p @ q) r s
A: Type
v: A

(whiskerL 1 (concat_p_pp 1 1 1) @ concat_p_pp 1 (1 @ 1) 1) @ whiskerR (concat_p_pp 1 1 1) 1 = concat_p_pp 1 1 (1 @ 1) @ concat_p_pp (1 @ 1) 1 1
reflexivity. Defined. (** The 3-cell witnessing the left unit triangle. *)
A: Type
x, y, z: A
p: x = y
q: y = z

concat_p_pp p 1 q @ whiskerR (concat_p1 p) q = whiskerL p (concat_1p q)
A: Type
x, y, z: A
p: x = y
q: y = z

concat_p_pp p 1 q @ whiskerR (concat_p1 p) q = whiskerL p (concat_1p q)
A: Type
x: A

concat_p_pp 1 1 1 @ whiskerR (concat_p1 1) 1 = whiskerL 1 (concat_1p 1)
reflexivity. Defined. (** The Eckmann-Hilton argument *) Definition eckmann_hilton {A : Type} {x:A} (p q : 1 = 1 :> (x = x)) : p @ q = q @ p := (whiskerR_p1 p @@ whiskerL_1p q)^ @ (concat_p1 _ @@ concat_p1 _) @ (concat_1p _ @@ concat_1p _) @ (concat_whisker _ _ _ _ p q) @ (concat_1p _ @@ concat_1p _)^ @ (concat_p1 _ @@ concat_p1 _)^ @ (whiskerL_1p q @@ whiskerR_p1 p). (** The action of functions on 2-dimensional paths *) Definition ap02 {A B : Type} (f:A->B) {x y:A} {p q:x=y} (r:p=q) : ap f p = ap f q := ap (ap f) r. Definition ap02_pp {A B} (f:A->B) {x y:A} {p p' p'':x=y} (r:p=p') (r':p'=p'') : ap02 f (r @ r') = ap02 f r @ ap02 f r' := ap_pp (ap f) r r'.
A, B: Type
f: A -> B
x, y, z: A
p, p': x = y
q, q': y = z
r: p = p'
s: q = q'

ap02 f (r @@ s) = (ap_pp f p q @ (ap02 f r @@ ap02 f s)) @ (ap_pp f p' q')^
A, B: Type
f: A -> B
x, y, z: A
p, p': x = y
q, q': y = z
r: p = p'
s: q = q'

ap02 f (r @@ s) = (ap_pp f p q @ (ap02 f r @@ ap02 f s)) @ (ap_pp f p' q')^
A, B: Type
f: A -> B
x: A

ap02 f (1 @@ 1) = (ap_pp f 1 1 @ (ap02 f 1 @@ ap02 f 1)) @ (ap_pp f 1 1)^
reflexivity. Defined. Definition apD02 {A : Type} {B : A -> Type} {x y : A} {p q : x = y} (f : forall x, B x) (r : p = q) : apD f p = transport2 B r (f x) @ apD f q := match r with idpath => (concat_1p _)^ end. Definition apD02_const {A B : Type} (f : A -> B) {x y : A} {p q : x = y} (r : p = q) : apD02 f r = (apD_const f p) @ (transport2_const r (f x) @@ ap02 f r) @ (concat_p_pp _ _ _)^ @ (whiskerL (transport2 _ r (f x)) (apD_const f q)^) := match r with idpath => match p with idpath => 1 end end. (* And now for a lemma whose statement is much longer than its proof. *)
A: Type
B: A -> Type
f: forall x : A, B x
x, y: A
p1, p2, p3: x = y
r1: p1 = p2
r2: p2 = p3

apD02 f (r1 @ r2) = ((apD02 f r1 @ whiskerL (transport2 B r1 (f x)) (apD02 f r2)) @ concat_p_pp (transport2 B r1 (f x)) (transport2 B r2 (f x)) (apD f p3)) @ whiskerR (transport2_p2p B r1 r2 (f x))^ (apD f p3)
A: Type
B: A -> Type
f: forall x : A, B x
x, y: A
p1, p2, p3: x = y
r1: p1 = p2
r2: p2 = p3

apD02 f (r1 @ r2) = ((apD02 f r1 @ whiskerL (transport2 B r1 (f x)) (apD02 f r2)) @ concat_p_pp (transport2 B r1 (f x)) (transport2 B r2 (f x)) (apD f p3)) @ whiskerR (transport2_p2p B r1 r2 (f x))^ (apD f p3)
A: Type
B: A -> Type
f: forall x : A, B x
x, y: A
p1: x = y

apD02 f (1 @ 1) = ((apD02 f 1 @ whiskerL (transport2 B 1 (f x)) (apD02 f 1)) @ concat_p_pp (transport2 B 1 (f x)) (transport2 B 1 (f x)) (apD f p1)) @ whiskerR (transport2_p2p B 1 1 (f x))^ (apD f p1)
A: Type
B: A -> Type
f: forall x : A, B x
x: A

apD02 f (1 @ 1) = ((apD02 f 1 @ whiskerL (transport2 B 1 (f x)) (apD02 f 1)) @ concat_p_pp (transport2 B 1 (f x)) (transport2 B 1 (f x)) (apD f 1)) @ whiskerR (transport2_p2p B 1 1 (f x))^ (apD f 1)
reflexivity. Defined.
A, B, C: Type
f: A -> B -> C
x, x': A
y, y': B
p, p': x = x'
r: p = p'
q, q': y = y'
s: q = q'

ap011 f p q = ap011 f p' q'
A, B, C: Type
f: A -> B -> C
x, x': A
y, y': B
p, p': x = x'
r: p = p'
q, q': y = y'
s: q = q'

ap011 f p q = ap011 f p' q'
A, B, C: Type
f: A -> B -> C
x: A
y, y': B
q, q': y = y'
s: q = q'

ap011 f 1 q = ap011 f 1 q'
A, B, C: Type
f: A -> B -> C
x: A
y, y': B
q, q': y = y'
s: q = q'

q = q'
exact s. Defined. (** These lemmas need better names. *)
A, B: Type
p, q: A = B
r: q = p
z: A

(ap (transport idmap q^) (ap (fun s : A = B => transport idmap s z) r) @ ap (fun s : B = A => transport idmap s (transport idmap p z)) (inverse2 r)) @ transport_Vp idmap p z = transport_Vp idmap q z
A, B: Type
p, q: A = B
r: q = p
z: A

(ap (transport idmap q^) (ap (fun s : A = B => transport idmap s z) r) @ ap (fun s : B = A => transport idmap s (transport idmap p z)) (inverse2 r)) @ transport_Vp idmap p z = transport_Vp idmap q z
by path_induction. Defined.
A, B: Type
p, q: A = B
r: q = p
z: B

(ap (transport idmap q) (ap (fun s : A = B => transport idmap s^ z) r) @ ap (fun s : A = B => transport idmap s (transport idmap p^ z)) r) @ transport_pV idmap p z = transport_pV idmap q z
A, B: Type
p, q: A = B
r: q = p
z: B

(ap (transport idmap q) (ap (fun s : A = B => transport idmap s^ z) r) @ ap (fun s : A = B => transport idmap s (transport idmap p^ z)) r) @ transport_pV idmap p z = transport_pV idmap q z
by path_induction. Defined. (** ** Tactics, hints, and aliases *) (** [concat], with arguments flipped. Useful mainly in the idiom [apply (concatR (expression))]. Given as a notation not a definition so that the resultant terms are literally instances of [concat], with no unfolding required. *) Notation concatR := (fun p q => concat q p). #[export] Hint Resolve concat_1p concat_p1 concat_p_pp inv_pp inv_V : path_hints. (* First try at a paths db We want the RHS of the equation to become strictly simpler *) #[export] Hint Rewrite @concat_p1 @concat_1p @concat_p_pp (* there is a choice here !*) @concat_pV @concat_Vp @concat_V_pp @concat_p_Vp @concat_pp_V @concat_pV_p (*@inv_pp*) (* I am not sure about this one *) @inv_V @moveR_Mp @moveR_pM @moveL_Mp @moveL_pM @moveL_1M @moveL_M1 @moveR_M1 @moveR_1M @ap_1 (* @ap_pp @ap_p_pp ?*) @inverse_ap @ap_idmap (* @ap_compose @ap_compose'*) @ap_const (* Unsure about naturality of [ap], was absent in the old implementation*) @apD10_1 :paths. Ltac hott_simpl := autorewrite with paths in * |- * ; auto with path_hints.