Built with Alectryon, running Coq+SerAPI v8.19.0+0.19.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use ⌘ instead of Ctrl.
[Loading ML file number_string_notation_plugin.cmxs (using legacy method) ... done]
Require Import Cubical.DPath Cubical.PathSquare.Require Import Homotopy.NullHomotopy.Require Import Extensions.Require Import Colimits.Pushout.Require Import Truncations.Core Truncations.Connectedness.Require Import Pointed.Core.From HoTT.WildCat Require Import Core UniverseEquiv EquivGpd
ZeroGroupoid Yoneda FunctorCat NatTrans Bifunctor Monoidal.Require Import Spaces.Nat.Core.LocalOpen Scope pointed_scope.LocalOpen Scope path_scope.(** * Joins *)(** The join is the pushout of two types under their product. *)SectionJoin.DefinitionJoin (A : Type@{i}) (B : Type@{j})
:= Pushout@{k i j k} (@fst A B) (@snd A B).Definitionjoinl {AB} : A -> Join A B
:= funa => @pushl (A*B) A B fst snd a.Definitionjoinr {AB} : B -> Join A B
:= funb => @pushr (A*B) A B fst snd b.Definitionjglue {AB} ab : joinl a = joinr b
:= @pglue (A*B) A B fst snd (a , b).
A, B: Type P: Join A B -> Type P_A: foralla : A, P (joinl a) P_B: forallb : B, P (joinr b) P_g: forall (a : A) (b : B), transport P (jglue a b) (P_A a) = P_B b
forallx : Join A B, P x
A, B: Type P: Join A B -> Type P_A: foralla : A, P (joinl a) P_B: forallb : B, P (joinr b) P_g: forall (a : A) (b : B), transport P (jglue a b) (P_A a) = P_B b
forallx : Join A B, P x
A, B: Type P: Join A B -> Type P_A: foralla : A, P (joinl a) P_B: forallb : B, P (joinr b) P_g: forall (a : A) (b : B), transport P (jglue a b) (P_A a) = P_B b
foralla : A * B,
transport P (pglue a) (P_A (fst a)) = P_B (snd a)
exact (funab => P_g (fst ab) (snd ab)).Defined.DefinitionJoin_ind_beta_jglue {AB : Type} (P : Join A B -> Type)
(P_A : foralla, P (joinl a)) (P_B : forallb, P (joinr b))
(P_g : forallab, transport P (jglue a b) (P_A a) = (P_B b)) ab
: apD (Join_ind P P_A P_B P_g) (jglue a b) = P_g a b
:= Pushout_ind_beta_pglue _ _ _ _ _.(** A version of [Join_ind] specifically for proving that two functions defined on a [Join] are homotopic. *)
A, B, P: Type f, g: Join A B -> P Hl: foralla : A, f (joinl a) = g (joinl a) Hr: forallb : B, f (joinr b) = g (joinr b) Hglue: forall (a : A) (b : B),
ap f (jglue a b) @ Hr b =
Hl a @ ap g (jglue a b)
f == g
A, B, P: Type f, g: Join A B -> P Hl: foralla : A, f (joinl a) = g (joinl a) Hr: forallb : B, f (joinr b) = g (joinr b) Hglue: forall (a : A) (b : B),
ap f (jglue a b) @ Hr b =
Hl a @ ap g (jglue a b)
f == g
A, B, P: Type f, g: Join A B -> P Hl: foralla : A, f (joinl a) = g (joinl a) Hr: forallb : B, f (joinr b) = g (joinr b) Hglue: forall (a : A) (b : B),
ap f (jglue a b) @ Hr b =
Hl a @ ap g (jglue a b)
forall (a : A) (b : B),
transport (funx : Join A B => f x = g x) (jglue a b)
(Hl a) = Hr b
A, B, P: Type f, g: Join A B -> P Hl: foralla : A, f (joinl a) = g (joinl a) Hr: forallb : B, f (joinr b) = g (joinr b) Hglue: forall (a : A) (b : B),
ap f (jglue a b) @ Hr b =
Hl a @ ap g (jglue a b) a: A b: B
transport (funx : Join A B => f x = g x) (jglue a b)
(Hl a) = Hr b
A, B, P: Type f, g: Join A B -> P Hl: foralla : A, f (joinl a) = g (joinl a) Hr: forallb : B, f (joinr b) = g (joinr b) Hglue: forall (a : A) (b : B),
ap f (jglue a b) @ Hr b =
Hl a @ ap g (jglue a b) a: A b: B
ap f (jglue a b) @ Hr b = Hl a @ ap g (jglue a b)
apply Hglue.Defined.
A, B: Type f: Join A B -> Join A B Hl: foralla : A, f (joinl a) = joinl a Hr: forallb : B, f (joinr b) = joinr b Hglue: forall (a : A) (b : B),
ap f (jglue a b) @ Hr b = Hl a @ jglue a b
forallx : Join A B, f x = x
A, B: Type f: Join A B -> Join A B Hl: foralla : A, f (joinl a) = joinl a Hr: forallb : B, f (joinr b) = joinr b Hglue: forall (a : A) (b : B),
ap f (jglue a b) @ Hr b = Hl a @ jglue a b
forallx : Join A B, f x = x
A, B: Type f: Join A B -> Join A B Hl: foralla : A, f (joinl a) = joinl a Hr: forallb : B, f (joinr b) = joinr b Hglue: forall (a : A) (b : B),
ap f (jglue a b) @ Hr b = Hl a @ jglue a b
forall (a : A) (b : B),
transport (funx : Join A B => f x = x) (jglue a b)
(Hl a) = Hr b
A, B: Type f: Join A B -> Join A B Hl: foralla : A, f (joinl a) = joinl a Hr: forallb : B, f (joinr b) = joinr b Hglue: forall (a : A) (b : B),
ap f (jglue a b) @ Hr b = Hl a @ jglue a b a: A b: B
transport (funx : Join A B => f x = x) (jglue a b)
(Hl a) = Hr b
A, B: Type f: Join A B -> Join A B Hl: foralla : A, f (joinl a) = joinl a Hr: forallb : B, f (joinr b) = joinr b Hglue: forall (a : A) (b : B),
ap f (jglue a b) @ Hr b = Hl a @ jglue a b a: A b: B
ap f (jglue a b) @ Hr b = Hl a @ jglue a b
apply Hglue.Defined.(** And a version for showing that a composite is homotopic to the identity. *)
A, B, P: Type f: Join A B -> P g: P -> Join A B Hl: foralla : A, g (f (joinl a)) = joinl a Hr: forallb : B, g (f (joinr b)) = joinr b Hglue: forall (a : A) (b : B),
ap g (ap f (jglue a b)) @ Hr b =
Hl a @ jglue a b
forallx : Join A B, g (f x) = x
A, B, P: Type f: Join A B -> P g: P -> Join A B Hl: foralla : A, g (f (joinl a)) = joinl a Hr: forallb : B, g (f (joinr b)) = joinr b Hglue: forall (a : A) (b : B),
ap g (ap f (jglue a b)) @ Hr b =
Hl a @ jglue a b
forallx : Join A B, g (f x) = x
A, B, P: Type f: Join A B -> P g: P -> Join A B Hl: foralla : A, g (f (joinl a)) = joinl a Hr: forallb : B, g (f (joinr b)) = joinr b Hglue: forall (a : A) (b : B),
ap g (ap f (jglue a b)) @ Hr b =
Hl a @ jglue a b
forall (a : A) (b : B),
transport (funx : Join A B => g (f x) = x)
(jglue a b) (Hl a) = Hr b
A, B, P: Type f: Join A B -> P g: P -> Join A B Hl: foralla : A, g (f (joinl a)) = joinl a Hr: forallb : B, g (f (joinr b)) = joinr b Hglue: forall (a : A) (b : B),
ap g (ap f (jglue a b)) @ Hr b =
Hl a @ jglue a b a: A b: B
transport (funx : Join A B => g (f x) = x)
(jglue a b) (Hl a) = Hr b
A, B, P: Type f: Join A B -> P g: P -> Join A B Hl: foralla : A, g (f (joinl a)) = joinl a Hr: forallb : B, g (f (joinr b)) = joinr b Hglue: forall (a : A) (b : B),
ap g (ap f (jglue a b)) @ Hr b =
Hl a @ jglue a b a: A b: B
ap g (ap f (jglue a b)) @ Hr b = Hl a @ jglue a b
apply Hglue.Defined.
A, B, C, P: Type f: Join A B -> C g: C -> P h: Join A B -> P Hl: foralla : A, g (f (joinl a)) = h (joinl a) Hr: forallb : B, g (f (joinr b)) = h (joinr b) Hglue: forall (a : A) (b : B),
ap g (ap f (jglue a b)) @ Hr b =
Hl a @ ap h (jglue a b)
g o f == h
A, B, C, P: Type f: Join A B -> C g: C -> P h: Join A B -> P Hl: foralla : A, g (f (joinl a)) = h (joinl a) Hr: forallb : B, g (f (joinr b)) = h (joinr b) Hglue: forall (a : A) (b : B),
ap g (ap f (jglue a b)) @ Hr b =
Hl a @ ap h (jglue a b)
g o f == h
A, B, C, P: Type f: Join A B -> C g: C -> P h: Join A B -> P Hl: foralla : A, g (f (joinl a)) = h (joinl a) Hr: forallb : B, g (f (joinr b)) = h (joinr b) Hglue: forall (a : A) (b : B),
ap g (ap f (jglue a b)) @ Hr b =
Hl a @ ap h (jglue a b)
forall (a : A) (b : B),
transport (funx : Join A B => (g o f) x = h x)
(jglue a b) (Hl a) = Hr b
A, B, C, P: Type f: Join A B -> C g: C -> P h: Join A B -> P Hl: foralla : A, g (f (joinl a)) = h (joinl a) Hr: forallb : B, g (f (joinr b)) = h (joinr b) Hglue: forall (a : A) (b : B),
ap g (ap f (jglue a b)) @ Hr b =
Hl a @ ap h (jglue a b) a: A b: B
transport (funx : Join A B => g (f x) = h x)
(jglue a b) (Hl a) = Hr b
A, B, C, P: Type f: Join A B -> C g: C -> P h: Join A B -> P Hl: foralla : A, g (f (joinl a)) = h (joinl a) Hr: forallb : B, g (f (joinr b)) = h (joinr b) Hglue: forall (a : A) (b : B),
ap g (ap f (jglue a b)) @ Hr b =
Hl a @ ap h (jglue a b) a: A b: B
ap g (ap f (jglue a b)) @ Hr b =
Hl a @ ap h (jglue a b)
apply Hglue.Defined.
A, B, C, P: Type f: Join A B -> C g: C -> P h: Join A B -> P Hl: foralla : A, h (joinl a) = g (f (joinl a)) Hr: forallb : B, h (joinr b) = g (f (joinr b)) Hglue: forall (a : A) (b : B),
ap h (jglue a b) @ Hr b =
Hl a @ ap g (ap f (jglue a b))
h == g o f
A, B, C, P: Type f: Join A B -> C g: C -> P h: Join A B -> P Hl: foralla : A, h (joinl a) = g (f (joinl a)) Hr: forallb : B, h (joinr b) = g (f (joinr b)) Hglue: forall (a : A) (b : B),
ap h (jglue a b) @ Hr b =
Hl a @ ap g (ap f (jglue a b))
h == g o f
A, B, C, P: Type f: Join A B -> C g: C -> P h: Join A B -> P Hl: foralla : A, h (joinl a) = g (f (joinl a)) Hr: forallb : B, h (joinr b) = g (f (joinr b)) Hglue: forall (a : A) (b : B),
ap h (jglue a b) @ Hr b =
Hl a @ ap g (ap f (jglue a b))
forall (a : A) (b : B),
transport (funx : Join A B => h x = (g o f) x)
(jglue a b) (Hl a) = Hr b
A, B, C, P: Type f: Join A B -> C g: C -> P h: Join A B -> P Hl: foralla : A, h (joinl a) = g (f (joinl a)) Hr: forallb : B, h (joinr b) = g (f (joinr b)) Hglue: forall (a : A) (b : B),
ap h (jglue a b) @ Hr b =
Hl a @ ap g (ap f (jglue a b)) a: A b: B
transport (funx : Join A B => h x = g (f x))
(jglue a b) (Hl a) = Hr b
A, B, C, P: Type f: Join A B -> C g: C -> P h: Join A B -> P Hl: foralla : A, h (joinl a) = g (f (joinl a)) Hr: forallb : B, h (joinr b) = g (f (joinr b)) Hglue: forall (a : A) (b : B),
ap h (jglue a b) @ Hr b =
Hl a @ ap g (ap f (jglue a b)) a: A b: B
ap h (jglue a b) @ Hr b =
Hl a @ ap g (ap f (jglue a b))
apply Hglue.Defined.
A, B, C, D, P: Type f: Join A B -> C g: C -> P h: Join A B -> D i: D -> P Hl: foralla : A, i (h (joinl a)) = g (f (joinl a)) Hr: forallb : B, i (h (joinr b)) = g (f (joinr b)) Hglue: forall (a : A) (b : B),
ap i (ap h (jglue a b)) @ Hr b =
Hl a @ ap g (ap f (jglue a b))
i o h == g o f
A, B, C, D, P: Type f: Join A B -> C g: C -> P h: Join A B -> D i: D -> P Hl: foralla : A, i (h (joinl a)) = g (f (joinl a)) Hr: forallb : B, i (h (joinr b)) = g (f (joinr b)) Hglue: forall (a : A) (b : B),
ap i (ap h (jglue a b)) @ Hr b =
Hl a @ ap g (ap f (jglue a b))
i o h == g o f
A, B, C, D, P: Type f: Join A B -> C g: C -> P h: Join A B -> D i: D -> P Hl: foralla : A, i (h (joinl a)) = g (f (joinl a)) Hr: forallb : B, i (h (joinr b)) = g (f (joinr b)) Hglue: forall (a : A) (b : B),
ap i (ap h (jglue a b)) @ Hr b =
Hl a @ ap g (ap f (jglue a b))
forall (a : A) (b : B),
transport (funx : Join A B => (i o h) x = (g o f) x)
(jglue a b) (Hl a) = Hr b
A, B, C, D, P: Type f: Join A B -> C g: C -> P h: Join A B -> D i: D -> P Hl: foralla : A, i (h (joinl a)) = g (f (joinl a)) Hr: forallb : B, i (h (joinr b)) = g (f (joinr b)) Hglue: forall (a : A) (b : B),
ap i (ap h (jglue a b)) @ Hr b =
Hl a @ ap g (ap f (jglue a b)) a: A b: B
transport (funx : Join A B => i (h x) = g (f x))
(jglue a b) (Hl a) = Hr b
A, B, C, D, P: Type f: Join A B -> C g: C -> P h: Join A B -> D i: D -> P Hl: foralla : A, i (h (joinl a)) = g (f (joinl a)) Hr: forallb : B, i (h (joinr b)) = g (f (joinr b)) Hglue: forall (a : A) (b : B),
ap i (ap h (jglue a b)) @ Hr b =
Hl a @ ap g (ap f (jglue a b)) a: A b: B
ap i (ap h (jglue a b)) @ Hr b =
Hl a @ ap g (ap f (jglue a b))
apply Hglue.Defined.
A, B, P: Type P_A: A -> P P_B: B -> P P_g: forall (a : A) (b : B), P_A a = P_B b
Join A B -> P
A, B, P: Type P_A: A -> P P_B: B -> P P_g: forall (a : A) (b : B), P_A a = P_B b
Join A B -> P
A, B, P: Type P_A: A -> P P_B: B -> P P_g: forall (a : A) (b : B), P_A a = P_B b
foralla : A * B, P_A (fst a) = P_B (snd a)
exact (funab => P_g (fst ab) (snd ab)).Defined.
A, B, P: Type P_A: A -> P P_B: B -> P P_g: forall (a : A) (b : B), P_A a = P_B b a: A b: B
ap (Join_rec P_A P_B P_g) (jglue a b) = P_g a b
A, B, P: Type P_A: A -> P P_B: B -> P P_g: forall (a : A) (b : B), P_A a = P_B b a: A b: B
ap (Join_rec P_A P_B P_g) (jglue a b) = P_g a b
exact (Pushout_rec_beta_pglue _ _ _ _ (a, b)).Defined.(** If [A] is pointed, so is [Join A B]. *)Definitionpjoin (A : pType) (B : Type) : pType
:= [Join A B, joinl pt].EndJoin.Arguments joinl {A B}%_type_scope _ , [A] B _.Arguments joinr {A B}%_type_scope _ , A [B] _.(** ** Zigzags in joins *)(** These paths are very common, so we give them names and prove a few results about them. *)Definitionzigzag {AB : Type} (aa' : A) (b : B)
: joinl a = joinl a'
:= jglue a b @ (jglue a' b)^.Definitionzagzig {AB : Type} (a : A) (bb' : B)
: joinr b = joinr b'
:= (jglue a b)^ @ jglue a b'.Definitionzigzag_zigzag {AB : Type} (aa' : A) (b : B)
: zigzag a a' b @ zigzag a' a b = 1
:= concat_pp_p _ _ _ @ (1 @@ concat_V_pp _ _) @ concat_pV _.Definitionzigzag_inv {AB : Type} (aa' : A) (b : B)
: (zigzag a a' b)^ = zigzag a' a b
:= inv_pp _ _ @ (inv_V _ @@ 1).(** And we give a beta rule for zigzags. *)
A, B, P: Type P_A: A -> P P_B: B -> P P_g: forall (a : A) (b : B), P_A a = P_B b a, a': A b: B
ap (Join_rec P_A P_B P_g) (zigzag a a' b) =
P_g a b @ (P_g a' b)^
A, B, P: Type P_A: A -> P P_B: B -> P P_g: forall (a : A) (b : B), P_A a = P_B b a, a': A b: B
ap (Join_rec P_A P_B P_g) (zigzag a a' b) =
P_g a b @ (P_g a' b)^
A, B, P: Type P_A: A -> P P_B: B -> P P_g: forall (a : A) (b : B), P_A a = P_B b a, a': A b: B
ap (Join_rec P_A P_B P_g) (jglue a b) @
(ap (Join_rec P_A P_B P_g) (jglue a' b))^ =
P_g a b @ (P_g a' b)^
exact (Join_rec_beta_jglue _ _ _ a b @@ inverse2 (Join_rec_beta_jglue _ _ _ a' b)).Defined.(** * [Join_rec] gives an equivalence of 0-groupoids We now prove many things about [Join_rec], for example, that it is an equivalence of 0-groupoids from the [JoinRecData] that we define next. The framework we use is a bit elaborate, but it parallels the framework used in TriJoin.v, where careful organization is essential. *)RecordJoinRecData {ABP : Type} := {
jl : A -> P;
jr : B -> P;
jg : forallab, jl a = jr b;
}.Arguments JoinRecData : clear implicits.Arguments Build_JoinRecData {A B P}%_type_scope (jl jr jg)%_function_scope.(** We use the name [join_rec] for the version of [Join_rec] defined on this data. *)Definitionjoin_rec {ABP : Type} (f : JoinRecData A B P)
: Join A B $-> P
:= Join_rec (jl f) (jr f) (jg f).Definitionjoin_rec_beta_jg {ABP : Type} (f : JoinRecData A B P) (a : A) (b : B)
: ap (join_rec f) (jglue a b) = jg f a b
:= Join_rec_beta_jglue _ _ _ a b.(** We're next going to define a map in the other direction. We do it via showing that [JoinRecData] is a 0-coherent 1-functor to [Type]. We'll later show that it is a 1-functor to 0-groupoids. *)
A, B, P, Q: Type g: P -> Q f: JoinRecData A B P
JoinRecData A B Q
A, B, P, Q: Type g: P -> Q f: JoinRecData A B P
JoinRecData A B Q
A, B, P, Q: Type g: P -> Q f: JoinRecData A B P
A -> Q
A, B, P, Q: Type g: P -> Q f: JoinRecData A B P
B -> Q
A, B, P, Q: Type g: P -> Q f: JoinRecData A B P
forall (a : A) (b : B), ?jl a = ?jr b
A, B, P, Q: Type g: P -> Q f: JoinRecData A B P
A -> Q
exact (g o jl f).
A, B, P, Q: Type g: P -> Q f: JoinRecData A B P
B -> Q
exact (g o jr f).
A, B, P, Q: Type g: P -> Q f: JoinRecData A B P
forall (a : A) (b : B), (g o jl f) a = (g o jr f) b
exact (funab => ap g (jg f a b)).Defined.(** The join itself has canonical [JoinRecData]. *)Definitionjoinrecdata_join (AB : Type) : JoinRecData A B (Join A B)
:= Build_JoinRecData joinl joinr jglue.(** Combining these gives a function going in the opposite direction to [join_rec]. *)Definitionjoin_rec_inv {ABP : Type} (f : Join A B -> P)
: JoinRecData A B P
:= joinrecdata_fun f (joinrecdata_join A B).(** Under [Funext], [join_rec] and [join_rec_inv] should be inverse equivalences. We'll avoid [Funext] and show that they are equivalences of 0-groupoids, where we choose the path structures carefully. *)(** ** The graph structure on [JoinRecData A B P] Under [Funext], this type will be equivalent to the identity type. But without [Funext], this definition will be more useful. *)RecordJoinRecPath {ABP : Type} {fg : JoinRecData A B P} := {
hl : foralla, jl f a = jl g a;
hr : forallb, jr f b = jr g b;
hg : forallab, jg f a b @ hr b = hl a @ jg g a b;
}.Arguments JoinRecPath {A B P} f g.(** In the special case where the first two components of [f] and [g] agree definitionally, [hl] and [hr] can be identity paths, and [hg] simplifies slightly. *)
A, B, P: Type jl': A -> P jr': B -> P f, g: forall (a : A) (b : B), jl' a = jr' b h: forall (a : A) (b : B), f a b = g a b
JoinRecPath {| jl := jl'; jr := jr'; jg := f |}
{| jl := jl'; jr := jr'; jg := g |}
A, B, P: Type jl': A -> P jr': B -> P f, g: forall (a : A) (b : B), jl' a = jr' b h: forall (a : A) (b : B), f a b = g a b
JoinRecPath {| jl := jl'; jr := jr'; jg := f |}
{| jl := jl'; jr := jr'; jg := g |}
A, B, P: Type jl': A -> P jr': B -> P f, g: forall (a : A) (b : B), jl' a = jr' b h: forall (a : A) (b : B), f a b = g a b
foralla : A,
jl {| jl := jl'; jr := jr'; jg := f |} a =
jl {| jl := jl'; jr := jr'; jg := g |} a
A, B, P: Type jl': A -> P jr': B -> P f, g: forall (a : A) (b : B), jl' a = jr' b h: forall (a : A) (b : B), f a b = g a b
forallb : B,
jr {| jl := jl'; jr := jr'; jg := f |} b =
jr {| jl := jl'; jr := jr'; jg := g |} b
A, B, P: Type jl': A -> P jr': B -> P f, g: forall (a : A) (b : B), jl' a = jr' b h: forall (a : A) (b : B), f a b = g a b
forall (a : A) (b : B),
jg {| jl := jl'; jr := jr'; jg := f |} a b @ ?hr b =
?hl a @ jg {| jl := jl'; jr := jr'; jg := g |} a b
A, B, P: Type jl': A -> P jr': B -> P f, g: forall (a : A) (b : B), jl' a = jr' b h: forall (a : A) (b : B), f a b = g a b
forall (a : A) (b : B),
jg {| jl := jl'; jr := jr'; jg := f |} a b @
(funb0 : B => 1) b =
(funa0 : A => 1) a @
jg {| jl := jl'; jr := jr'; jg := g |} a b
intros; apply equiv_p1_1q, h.Defined.(** A tactic that helps us apply the previous result. *)Ltacbundle_joinrecpath :=
hnf;
match goal with |- JoinRecPath ?F?G =>
refine (bundle_joinrecpath (f:=jg F) (g:=jg G) _) end.(** Using [JoinRecPath], we can restate the beta rule for [join_rec]. This says that [join_rec_inv] is split surjective. *)Definitionjoin_rec_beta {ABP : Type} (f : JoinRecData A B P)
: JoinRecPath (join_rec_inv (join_rec f)) f
:= bundle_joinrecpath (join_rec_beta_jg f).(** [join_rec_inv] is essentially injective, as a map between 0-groupoids. *)Definitionisinj_join_rec_inv {ABP : Type} {fg : Join A B -> P}
(h : JoinRecPath (join_rec_inv f) (join_rec_inv g))
: f == g
:= Join_ind_FlFr _ _ (hl h) (hr h) (hg h).(** ** Lemmas and tactics about intervals and squares We now introduce several lemmas and tactics that will dispense with some routine goals. The idea is that a generic interval can be assumed to be trivial on the first vertex, and a generic square can be assumed to be the identity on the domain edge. In order to apply the [paths_ind] and [square_ind] lemmas that make this precise, we need to generalize various terms in the goal. *)(** This destructs a three component term [f], generalizes each piece evaluated appropriately, and clears all pieces. *)Ltacgeneralize_three f a b :=
letfg := freshinletfr := freshinletfl := freshindestruct f as [fl fr fg]; cbn;
generalize (fg a b); clear fg;
generalize (fr b); clear fr;
generalize (fl a); clear fl.(** For [f : JoinRecData A B P], if we have [a] and [b] and are trying to prove a statement only involving [jl f a], [jr f b] and [jg f a b], we can assume [jr f b] is [jl f a] and that [jg f a b] is reflexivity. This is just path induction, but it requires generalizing the goal appropriately. *)Ltacinterval_ind f a b :=
generalize_three f a b;
intro f; (* We really only wanted two of them generalized here, so we intro one. *)apply paths_ind.(** Similarly, for [h : JoinRecPath f g], if we have [a] and [b] and are trying to prove a goal only involving [h] and [g] evaluated at those points, we can assume that [g] is [f] and that [h] is "reflexivity". For this, we first define a lemma that is like "path induction on h", and then a tactic that uses it. *)
P: Type a, b: P ab: a = b Q: forall (a'b' : P) (ab' : a' = b') (ha : a = a')
(hb : b = b'), ab @ hb = ha @ ab' -> Type s: Q a b ab 11 (equiv_p1_1q 1)
forall (a'b' : P) (ab' : a' = b') (ha : a = a')
(hb : b = b') (k : ab @ hb = ha @ ab'),
Q a' b' ab' ha hb k
P: Type a, b: P ab: a = b Q: forall (a'b' : P) (ab' : a' = b') (ha : a = a')
(hb : b = b'), ab @ hb = ha @ ab' -> Type s: Q a b ab 11 (equiv_p1_1q 1)
forall (a'b' : P) (ab' : a' = b') (ha : a = a')
(hb : b = b') (k : ab @ hb = ha @ ab'),
Q a' b' ab' ha hb k
P: Type a, b: P ab: a = b Q: forall (a'b' : P) (ab' : a' = b') (ha : a = a')
(hb : b = b'), ab @ hb = ha @ ab' -> Type s: Q a b ab 11 (equiv_p1_1q 1) a', b': P ab': a' = b' ha: a = a' hb: b = b' k: ab @ hb = ha @ ab'
Q a' b' ab' ha hb k
P: Type a, b: P ab: a = b Q: forall (a'b' : P) (ab' : a' = b') (ha : a = a')
(hb : b = b'), ab @ hb = ha @ ab' -> Type s: Q a b ab 11 (equiv_p1_1q 1) ab': a = b k: ab @ 1 = 1 @ ab'
Q a b ab' 11 k
P: Type a, b: P ab: a = b Q: forall (a'b' : P) (ab' : a' = b') (ha : a = a')
(hb : b = b'), ab @ hb = ha @ ab' -> Type s: Q a b ab 11 (equiv_p1_1q 1)
Q a b ab 11 (equiv_p1_1q 1)
P: Type a: P Q: forall (a'b' : P) (ab' : a' = b') (ha : a = a')
(hb : a = b'), 1 @ hb = ha @ ab' -> Type s: Q a a 111 (equiv_p1_1q 1)
Q a a 111 (equiv_p1_1q 1)
exact s.Defined.(* [g] should be the codomain of [h]. *)Global Ltacsquare_ind g h a b :=
generalize_three h a b;
generalize_three g a b;
apply square_ind.(** ** Use the WildCat library to organize things *)(** We begin by showing that [JoinRecData A B P] is a 0-groupoid, one piece at a time. *)Instanceisgraph_joinrecdata (ABP : Type) : IsGraph (JoinRecData A B P)
:= {| Hom := JoinRecPath |}.
A, B, P: Type
Is01Cat (JoinRecData A B P)
A, B, P: Type
Is01Cat (JoinRecData A B P)
A, B, P: Type
foralla : JoinRecData A B P, a $-> a
A, B, P: Type
forallabc : JoinRecData A B P,
(b $-> c) -> (a $-> b) -> a $-> c
A, B, P: Type
foralla : JoinRecData A B P, a $-> a
A, B, P: Type f: JoinRecData A B P
f $-> f
A, B, P: Type f: JoinRecData A B P
forall (a : A) (b : B), jg f a b = jg f a b
reflexivity.
A, B, P: Type
forallabc : JoinRecData A B P,
(b $-> c) -> (a $-> b) -> a $-> c
A, B, P: Type f1, f2, f3: JoinRecData A B P h2: f2 $-> f3 h1: f1 $-> f2
f1 $-> f3
A, B, P: Type f1, f2, f3: JoinRecData A B P h2: f2 $-> f3 h1: f1 $-> f2 a: A
jl f1 a = jl f3 a
A, B, P: Type f1, f2, f3: JoinRecData A B P h2: f2 $-> f3 h1: f1 $-> f2 b: B
jr f1 b = jr f3 b
A, B, P: Type f1, f2, f3: JoinRecData A B P h2: f2 $-> f3 h1: f1 $-> f2 a: A b: B
jg f1 a b @ ?Goal0 = ?Goal @ jg f3 a b
A, B, P: Type f1, f2, f3: JoinRecData A B P h2: f2 $-> f3 h1: f1 $-> f2 a: A
jl f1 a = jl f3 a
exact (hl h1 a @ hl h2 a).
A, B, P: Type f1, f2, f3: JoinRecData A B P h2: f2 $-> f3 h1: f1 $-> f2 b: B
jr f1 b = jr f3 b
exact (hr h1 b @ hr h2 b).
A, B, P: Type f1, f2, f3: JoinRecData A B P h2: f2 $-> f3 h1: f1 $-> f2 a: A b: B
jg f1 a b @ (hr h1 b @ hr h2 b) =
(hl h1 a @ hl h2 a) @ jg f3 a b
A, B, P: Type f1, f2: JoinRecData A B P h1: f1 $-> f2 a: A b: B
jg f1 a b @ (hr h1 b @ 1) = (hl h1 a @ 1) @ jg f2 a b
A, B, P: Type f1: JoinRecData A B P a: A b: B
jg f1 a b @ (1 @ 1) = (1 @ 1) @ jg f1 a b
by interval_ind f1 a b.Defined.
A, B, P: Type
Is0Gpd (JoinRecData A B P)
A, B, P: Type
Is0Gpd (JoinRecData A B P)
A, B, P: Type
forallab : JoinRecData A B P, (a $-> b) -> b $-> a
A, B, P: Type f, g: JoinRecData A B P h: f $-> g
g $-> f
A, B, P: Type f, g: JoinRecData A B P h: f $-> g a: A
jl g a = jl f a
A, B, P: Type f, g: JoinRecData A B P h: f $-> g b: B
jr g b = jr f b
A, B, P: Type f, g: JoinRecData A B P h: f $-> g a: A b: B
jg g a b @ ?Goal0 = ?Goal @ jg f a b
A, B, P: Type f, g: JoinRecData A B P h: f $-> g a: A
jl g a = jl f a
exact (hl h a)^.
A, B, P: Type f, g: JoinRecData A B P h: f $-> g b: B
jr g b = jr f b
exact (hr h b)^.
A, B, P: Type f, g: JoinRecData A B P h: f $-> g a: A b: B
jg g a b @ (hr h b)^ = (hl h a)^ @ jg f a b
A, B, P: Type f: JoinRecData A B P a: A b: B
jg f a b @ 1^ = 1^ @ jg f a b
by interval_ind f a b.Defined.Definitionjoinrecdata_0gpd (ABP : Type) : ZeroGpd
:= Build_ZeroGpd (JoinRecData A B P) _ _ _.(** ** [joinrecdata_0gpd A B] is a 1-functor from [Type] to [ZeroGpd] It's a 1-functor that lands in [ZeroGpd], and the morphisms of [ZeroGpd] are 0-functors, so it's easy to get confused about the levels. *)(** First we need to show that the induced map is a morphism in [ZeroGpd], i.e. that it is a 0-functor. *)
A, B, P, Q: Type g: P -> Q
Is0Functor (joinrecdata_fun g)
A, B, P, Q: Type g: P -> Q
Is0Functor (joinrecdata_fun g)
A, B, P, Q: Type g: P -> Q
forallab : JoinRecData A B P,
(a $-> b) ->
joinrecdata_fun g a $-> joinrecdata_fun g b
A, B, P, Q: Type g: P -> Q f1, f2: JoinRecData A B P h: f1 $-> f2
joinrecdata_fun g f1 $-> joinrecdata_fun g f2
A, B, P, Q: Type g: P -> Q f1, f2: JoinRecData A B P h: f1 $-> f2 a: A
g (jl f1 a) = g (jl f2 a)
A, B, P, Q: Type g: P -> Q f1, f2: JoinRecData A B P h: f1 $-> f2 b: B
g (jr f1 b) = g (jr f2 b)
A, B, P, Q: Type g: P -> Q f1, f2: JoinRecData A B P h: f1 $-> f2 a: A b: B
ap g (jg f1 a b) @ ?Goal0 = ?Goal @ ap g (jg f2 a b)
A, B, P, Q: Type g: P -> Q f1, f2: JoinRecData A B P h: f1 $-> f2 a: A
g (jl f1 a) = g (jl f2 a)
exact (ap g (hl h a)).
A, B, P, Q: Type g: P -> Q f1, f2: JoinRecData A B P h: f1 $-> f2 b: B
g (jr f1 b) = g (jr f2 b)
exact (ap g (hr h b)).
A, B, P, Q: Type g: P -> Q f1, f2: JoinRecData A B P h: f1 $-> f2 a: A b: B
ap g (jg f1 a b) @ ap g (hr h b) =
ap g (hl h a) @ ap g (jg f2 a b)
A, B, P, Q: Type g: P -> Q f1: JoinRecData A B P a: A b: B
ap g (jg f1 a b) @ ap g 1 = ap g 1 @ ap g (jg f1 a b)
by interval_ind f1 a b.Defined.(** [joinrecdata_0gpd A B] is a 0-functor from [Type] to [ZeroGpd] (one level up). *)
A, B: Type
Is0Functor (joinrecdata_0gpd A B)
A, B: Type
Is0Functor (joinrecdata_0gpd A B)
A, B: Type
forallab : Type,
(a $-> b) ->
joinrecdata_0gpd A B a $-> joinrecdata_0gpd A B b
A, B, P, Q: Type g: P $-> Q
joinrecdata_0gpd A B P $-> joinrecdata_0gpd A B Q
exact (Build_Fun01 (joinrecdata_fun g)).Defined.(** [joinrecdata_0gpd A B] is a 1-functor from [Type] to [ZeroGpd]. *)
A, B: Type
Is1Functor (joinrecdata_0gpd A B)
A, B: Type
Is1Functor (joinrecdata_0gpd A B)
A, B: Type
forall (ab : Type) (fg : a $-> b),
f $== g ->
fmap (joinrecdata_0gpd A B) f $==
fmap (joinrecdata_0gpd A B) g
A, B: Type
foralla : Type,
fmap (joinrecdata_0gpd A B) (Id a) $==
Id (joinrecdata_0gpd A B a)
A, B: Type
forall (abc : Type) (f : a $-> b) (g : b $-> c),
fmap (joinrecdata_0gpd A B) (g $o f) $==
fmap (joinrecdata_0gpd A B) g $o
fmap (joinrecdata_0gpd A B) f
(* If [g1 g2 : P -> Q] are homotopic, then the induced maps are homotopic: *)
A, B: Type
forall (ab : Type) (fg : a $-> b),
f $== g ->
fmap (joinrecdata_0gpd A B) f $==
fmap (joinrecdata_0gpd A B) g
A, B, P, Q: Type g1, g2: P -> Q h: g1 == g2 f: JoinRecData A B P
A, B, P, Q: Type g1, g2: P -> Q h: g1 == g2 f: JoinRecData A B P a: A
g1 (jl f a) = g2 (jl f a)
A, B, P, Q: Type g1, g2: P -> Q h: g1 == g2 f: JoinRecData A B P b: B
g1 (jr f b) = g2 (jr f b)
A, B, P, Q: Type g1, g2: P -> Q h: g1 == g2 f: JoinRecData A B P a: A b: B
ap g1 (jg f a b) @ ?Goal2 = ?Goal1 @ ap g2 (jg f a b)
A, B, P, Q: Type g1, g2: P -> Q h: g1 == g2 f: JoinRecData A B P a: A b: B
ap g1 (jg f a b) @ h (jr f b) =
h (jl f a) @ ap g2 (jg f a b)
A, B, P, Q: Type g1, g2: P -> Q h: g1 == g2 a: A b: B f: P
1 @ h f = h f @ 1
apply concat_1p_p1.(* The identity map [P -> P] is sent to a map homotopic to the identity. *)
A, B: Type
foralla : Type,
fmap (joinrecdata_0gpd A B) (Id a) $==
Id (joinrecdata_0gpd A B a)
A, B, P: Type f: Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd A B P))
JoinRecPath (joinrecdata_fun idmap f) f
A, B, P: Type f: Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd A B P)) a: A b: B
ap idmap (jg f a b) = jg f a b
apply ap_idmap.(* It respects composition. *)
A, B: Type
forall (abc : Type) (f : a $-> b) (g : b $-> c),
fmap (joinrecdata_0gpd A B) (g $o f) $==
fmap (joinrecdata_0gpd A B) g $o
fmap (joinrecdata_0gpd A B) f
A, B, P, Q, R: Type g1: P $-> Q g2: Q $-> R f: Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd A B P))
A, B, P, Q, R: Type g1: P $-> Q g2: Q $-> R f: Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd A B P)) a: A b: B
ap (funx : P => g2 (g1 x)) (jg f a b) =
ap g2 (ap g1 (jg f a b))
apply ap_compose.Defined.Definitionjoinrecdata_0gpd_fun (AB : Type) : Fun11 Type ZeroGpd
:= Build_Fun11 _ _ (joinrecdata_0gpd A B).(** By the Yoneda lemma, it follows from [JoinRecData] being a 1-functor that given [JoinRecData] in [J], we get a map [(J -> P) $-> (JoinRecData A B P)] of 0-groupoids which is natural in [P]. Below we will specialize to the case where [J] is [Join A B] with the canonical [JoinRecData]. *)
A, B, J: Type f: JoinRecData A B J
NatTrans (opyon_0gpd J) (joinrecdata_0gpd_fun A B)
A, B, J: Type f: JoinRecData A B J
NatTrans (opyon_0gpd J) (joinrecdata_0gpd_fun A B)
A, B, J: Type f: JoinRecData A B J
opyon_0gpd J $=> joinrecdata_0gpd_fun A B
A, B, J: Type f: JoinRecData A B J
Is1Natural (opyon_0gpd J) (joinrecdata_0gpd_fun A B)
?alpha
A, B, J: Type f: JoinRecData A B J
joinrecdata_0gpd_fun A B J
A, B, J: Type f: JoinRecData A B J
Is1Natural (opyon_0gpd J) (joinrecdata_0gpd_fun A B)
(opyoneda_0gpd J (joinrecdata_0gpd_fun A B) ?Goal)
A, B, J: Type f: JoinRecData A B J
joinrecdata_0gpd_fun A B J
exact f.Defined.(** Thus we get a map [(Join A B -> P) $-> (JoinRecData A B P)] of 0-groupoids, natural in [P]. The underlying map is [join_rec_inv A B P]. *)Definitionjoin_rec_inv_nattrans (AB : Type)
: NatTrans (opyon_0gpd (Join A B)) (joinrecdata_0gpd_fun A B)
:= join_nattrans_recdata (joinrecdata_join A B).(** This natural transformation is in fact a natural equivalence of 0-groupoids. *)
A, B: Type
NatEquiv (opyon_0gpd (Join A B))
(joinrecdata_0gpd_fun A B)
A, B: Type
NatEquiv (opyon_0gpd (Join A B))
(joinrecdata_0gpd_fun A B)
A, B: Type
NatTrans (opyon_0gpd (Join A B))
(joinrecdata_0gpd_fun A B)
A, B: Type
foralla : Type, CatIsEquiv (?alpha a)
A, B: Type
foralla : Type,
CatIsEquiv (join_rec_inv_nattrans A B a)
A, B, P: Type
CatIsEquiv (join_rec_inv_nattrans A B P)
A, B, P: Type
IsSurjInj (join_rec_inv_nattrans A B P)
A, B, P: Type
SplEssSurj (join_rec_inv_nattrans A B P)
A, B, P: Type
forallxy : Graph.graph_carrier
(zerogpd_graph (opyon_0gpd (Join A B) P)),
join_rec_inv_nattrans A B P x $==
join_rec_inv_nattrans A B P y -> x $== y
A, B, P: Type
SplEssSurj (join_rec_inv_nattrans A B P)
A, B, P: Type f: JoinRecData A B P
{a
: Graph.graph_carrier
(zerogpd_graph (opyon_0gpd (Join A B) P)) &
join_rec_inv_nattrans A B P a $== f}
A, B, P: Type f: JoinRecData A B P
join_rec_inv_nattrans A B P (join_rec f) $== f
apply join_rec_beta.
A, B, P: Type
forallxy : Graph.graph_carrier
(zerogpd_graph (opyon_0gpd (Join A B) P)),
join_rec_inv_nattrans A B P x $==
join_rec_inv_nattrans A B P y -> x $== y
exact (@isinj_join_rec_inv A B P).Defined.(** It will be handy to name the inverse natural equivalence. *)Definitionjoin_rec_natequiv (AB : Type)
:= natequiv_inverse (join_rec_inv_natequiv A B).(** [join_rec_natequiv A B P] is an equivalence of 0-groupoids whose underlying function is definitionally [join_rec]. *)Local Definitionjoin_rec_natequiv_check (ABP : Type)
: equiv_fun_0gpd (join_rec_natequiv A B P) = @join_rec A B P
:= idpath.(** It follows that [join_rec A B P] is a 0-functor. *)
A, B, P: Type
Is0Functor join_rec
A, B, P: Type
Is0Functor join_rec
A, B, P: Type
Is0Functor (equiv_fun_0gpd (join_rec_natequiv A B P))
exact _.Defined.(** And that [join_rec A B] is natural. The [$==] in the statement is just [==], but we use WildCat notation so that we can invert and compose these with WildCat notation. *)
A, B, P, Q: Type g: P -> Q f: JoinRecData A B P
join_rec (joinrecdata_fun g f) $== g o join_rec f
A, B, P, Q: Type g: P -> Q f: JoinRecData A B P
join_rec (joinrecdata_fun g f) $== g o join_rec f
exact (isnat (join_rec_natequiv A B) g f).Defined.(** We restate the previous two results using [Join_rec] for convenience. *)DefinitionJoin_rec_homotopic (AB : Type) {P : Type}
(fl : A -> P) (fr : B -> P) (fg : forallab, fl a = fr b)
(fl' : A -> P) (fr' : B -> P) (fg' : forallab, fl' a = fr' b)
(hl : foralla, fl a = fl' a)
(hr : forallb, fr b = fr' b)
(hg : forallab, fg a b @ hr b = hl a @ fg' a b)
: Join_rec fl fr fg == Join_rec fl' fr' fg'
:= fmap join_rec (Build_JoinRecPath _ _ _
{| jl:=fl; jr:=fr; jg:=fg |} {| jl:=fl'; jr:=fr'; jg:=fg' |} hl hr hg).DefinitionJoin_rec_nat (AB : Type) {PQ : Type} (g : P -> Q)
(fl : A -> P) (fr : B -> P) (fg : forallab, fl a = fr b)
: Join_rec (g o fl) (g o fr) (funab => ap g (fg a b)) == g o Join_rec fl fr fg
:= join_rec_nat _ _ g {| jl:=fl; jr:=fr; jg:=fg |}.(** * Various types of equalities between paths in joins *)(** Naturality squares for given paths in [A] and [B]. *)SectionJoinNatSq.
A, B: Type a, a': A b, b': B p: a = a' q: b = b'
ap joinl p @ jglue a' b' = jglue a b @ ap joinr q
A, B: Type a, a': A b, b': B p: a = a' q: b = b'
ap joinl p @ jglue a' b' = jglue a b @ ap joinr q
A, B: Type a: A b: B
ap joinl 1 @ jglue a b = jglue a b @ ap joinr 1
apply concat_1p_p1.Defined.
A, B: Type a, a': A b, b': B p: a = a' q: b = b'
PathSquare (ap joinl p) (ap joinr q) (jglue a b)
(jglue a' b')
A, B: Type a, a': A b, b': B p: a = a' q: b = b'
PathSquare (ap joinl p) (ap joinr q) (jglue a b)
(jglue a' b')
A, B: Type a: A b: B
PathSquare (ap joinl 1) (ap joinr 1) (jglue a b)
(jglue a b)
apply sq_refl_v.Defined.
A, B: Type a, a': A b, b': B p: a = a' q: b = b'
PathSquare (jglue a b) (jglue a' b') (ap joinl p)
(ap joinr q)
A, B: Type a, a': A b, b': B p: a = a' q: b = b'
PathSquare (jglue a b) (jglue a' b') (ap joinl p)
(ap joinr q)
A, B: Type a: A b: B
PathSquare (jglue a b) (jglue a b) (ap joinl 1)
(ap joinr 1)
apply sq_refl_h.Defined.EndJoinNatSq.(** The triangles that arise when one of the given paths is reflexivity. *)SectionTriangle.Context {AB : Type}.
A, B: Type a, a': A b: B p: a = a'
ap joinl p @ jglue a' b = jglue a b
A, B: Type a, a': A b: B p: a = a'
ap joinl p @ jglue a' b = jglue a b
A, B: Type a: A b: B
ap joinl 1 @ jglue a b = jglue a b
apply concat_1p.Defined.
A, B: Type a, a': A b: B p: a = a'
zigzag a a' b = ap joinl p
A, B: Type a, a': A b: B p: a = a'
zigzag a a' b = ap joinl p
A, B: Type a: A b: B
zigzag a a b = ap joinl 1
apply concat_pV.Defined.
A, B: Type a: A b, b': B p: b = b'
jglue a b @ ap joinr p = jglue a b'
A, B: Type a: A b, b': B p: b = b'
jglue a b @ ap joinr p = jglue a b'
A, B: Type a: A b: B
jglue a b @ ap joinr 1 = jglue a b
apply concat_p1.Defined.
A, B: Type a: A b, b': B p: b = b'
zagzig a b b' = ap joinr p
A, B: Type a: A b, b': B p: b = b'
zagzig a b b' = ap joinr p
A, B: Type a: A b: B
zagzig a b b = ap joinr 1
apply concat_Vp.Defined.(** For just one of the above, we give a rule for how it behaves on inverse paths. *)
A, B: Type a: A b, b': B p: b = b'
triangle_v a p^ =
(1 @@ ap_V joinr p) @
moveR_pV (ap joinr p) (jglue a b) (jglue a b')
(triangle_v a p)^
A, B: Type a: A b, b': B p: b = b'
triangle_v a p^ =
(1 @@ ap_V joinr p) @
moveR_pV (ap joinr p) (jglue a b) (jglue a b')
(triangle_v a p)^
A, B: Type a: A b: B
concat_p1 (jglue a b) =
1 @
((concat_p1 (jglue a b) @ (concat_p1 (jglue a b))^) @
concat_p1 (jglue a b))
A, B: Type a: A b: B
concat_p1 (jglue a b) =
(concat_p1 (jglue a b) @ (concat_p1 (jglue a b))^) @
concat_p1 (jglue a b)
symmetry; apply concat_pV_p.Defined.EndTriangle.(** Diamond lemmas for Join *)SectionDiamond.Context {AB : Type}.DefinitionDiamond (aa' : A) (bb' : B)
:= PathSquare (jglue a b) (jglue a' b')^ (jglue a b') (jglue a' b)^.
A, B: Type a, a': A b, b': B p: a = a'
zigzag a a' b = zigzag a a' b'
A, B: Type a, a': A b, b': B p: a = a'
zigzag a a' b = zigzag a a' b'
A, B: Type a: A b, b': B
zigzag a a b = zigzag a a b'
exact (concat_pV _ @ (concat_pV _)^).Defined.
A, B: Type a, a': A b, b': B p: a = a'
Diamond a a' b b'
A, B: Type a, a': A b, b': B p: a = a'
Diamond a a' b b'
byapply sq_path, diamond_h.Defined.Definitiondiamond_v (aa' : A) {bb' : B} (p : b = b')
: zigzag a a' b = zigzag a a' b'
:= ap (zigzag a a') p.
A, B: Type a, a': A b, b': B p: b = b'
Diamond a a' b b'
A, B: Type a, a': A b, b': B p: b = b'
Diamond a a' b b'
byapply sq_path, diamond_v.Defined.
A, B: Type a: A b: B
diamond_v_sq a a 1 = diamond_h_sq b b 1
A, B: Type a: A b: B
diamond_v_sq a a 1 = diamond_h_sq b b 1
A, B: Type a: A b: B
sq_path (ap (zigzag a a) 1) =
sq_path
(concat_pV (jglue a b) @ (concat_pV (jglue a b))^)
symmetry; apply ap, concat_pV.Defined.EndDiamond.
A: Type a, a': A p: a = a'
DPath (funx : A => Diamond a' x a x) p
(diamond_v_sq a' a 1) (diamond_h_sq a a' 1)
A: Type a, a': A p: a = a'
DPath (funx : A => Diamond a' x a x) p
(diamond_v_sq a' a 1) (diamond_h_sq a a' 1)
A: Type a: A
DPath (funx : A => Diamond a x a x) 1
(diamond_v_sq a a 1) (diamond_h_sq a a 1)
apply diamond_symm.Defined.(** * Functoriality of Join. *)SectionFunctorJoin.(** In some cases, we'll need to refer to the recursion data that defines [functor_join], so we make it a separate definition. *)Definitionfunctor_join_recdata {ABCD} (f : A -> C) (g : B -> D)
: JoinRecData A B (Join C D)
:= {| jl := joinl o f; jr := joinr o g; jg := funab => jglue (f a) (g b); |}.Definitionfunctor_join {ABCD} (f : A -> C) (g : B -> D)
: Join A B -> Join C D
:= join_rec (functor_join_recdata f g).Definitionfunctor_join_beta_jglue {ABCD : Type} (f : A -> C) (g : B -> D)
(a : A) (b : B)
: ap (functor_join f g) (jglue a b) = jglue (f a) (g b)
:= join_rec_beta_jg _ a b.Definitionfunctor_join_beta_zigzag {ABCD : Type} (f : A -> C) (g : B -> D)
(aa' : A) (b : B)
: ap (functor_join f g) (zigzag a a' b) = zigzag (f a) (f a') (g b)
:= Join_rec_beta_zigzag _ _ _ a a' b.
A, B, C, D, E, F: Type f: A -> C g: B -> D h: C -> E i: D -> F
functor_join (h o f) (i o g) ==
functor_join h i o functor_join f g
A, B, C, D, E, F: Type f: A -> C g: B -> D h: C -> E i: D -> F
functor_join (h o f) (i o g) ==
functor_join h i o functor_join f g
A, B, C, D, E, F: Type f: A -> C g: B -> D h: C -> E i: D -> F
foralla : A,
functor_join (h o f) (i o g) (joinl a) =
functor_join h i (functor_join f g (joinl a))
A, B, C, D, E, F: Type f: A -> C g: B -> D h: C -> E i: D -> F
forallb : B,
functor_join (h o f) (i o g) (joinr b) =
functor_join h i (functor_join f g (joinr b))
A, B, C, D, E, F: Type f: A -> C g: B -> D h: C -> E i: D -> F
forall (a : A) (b : B),
ap (functor_join (h o f) (i o g)) (jglue a b) @ ?Hr b =
?Hl a @
ap (functor_join h i)
(ap (functor_join f g) (jglue a b))
A, B, C, D, E, F: Type f: A -> C g: B -> D h: C -> E i: D -> F
forall (a : A) (b : B),
ap (functor_join (h o f) (i o g)) (jglue a b) @
(funb0 : B => 1) b =
(funa0 : A => 1) a @
ap (functor_join h i)
(ap (functor_join f g) (jglue a b))
A, B, C, D, E, F: Type f: A -> C g: B -> D h: C -> E i: D -> F a: A b: B
ap (functor_join (h o f) (i o g)) (jglue a b) @
(funb : B => 1) b =
(funa : A => 1) a @
ap (functor_join h i)
(ap (functor_join f g) (jglue a b))
A, B, C, D, E, F: Type f: A -> C g: B -> D h: C -> E i: D -> F a: A b: B
ap
(functor_join (funx : A => h (f x))
(funx : B => i (g x))) (jglue a b) @ 1 =
1 @
ap (functor_join h i)
(ap (functor_join f g) (jglue a b))
A, B, C, D, E, F: Type f: A -> C g: B -> D h: C -> E i: D -> F a: A b: B
ap
(functor_join (funx : A => h (f x))
(funx : B => i (g x))) (jglue a b) =
ap (functor_join h i)
(ap (functor_join f g) (jglue a b))
A, B, C, D, E, F: Type f: A -> C g: B -> D h: C -> E i: D -> F a: A b: B
ap (functor_join h i)
(ap (functor_join f g) (jglue a b)) =
jglue (h (f a)) (i (g b))
A, B, C, D, E, F: Type f: A -> C g: B -> D h: C -> E i: D -> F a: A b: B
ap (functor_join h i) (jglue (f a) (g b)) =
jglue (h (f a)) (i (g b))
napply (functor_join_beta_jglue _ _ (f a) (g b)).Defined.
A, B: Type
functor_join idmap idmap ==
(idmap : Join A B -> Join A B)
A, B: Type
functor_join idmap idmap ==
(idmap : Join A B -> Join A B)
A, B: Type
foralla : A,
functor_join idmap idmap (joinl a) = idmap (joinl a)
A, B: Type
forallb : B,
functor_join idmap idmap (joinr b) = idmap (joinr b)
A, B: Type
forall (a : A) (b : B),
ap (functor_join idmap idmap) (jglue a b) @ ?Hr b =
?Hl a @ ap idmap (jglue a b)
A, B: Type
forall (a : A) (b : B),
ap (functor_join idmap idmap) (jglue a b) @
(funb0 : B => 1) b =
(funa0 : A => 1) a @ ap idmap (jglue a b)
A, B: Type a: A b: B
ap (functor_join idmap idmap) (jglue a b) @
(funb : B => 1) b =
(funa : A => 1) a @ ap idmap (jglue a b)
A, B: Type a: A b: B
ap (functor_join idmap idmap) (jglue a b) @ 1 =
1 @ ap idmap (jglue a b)
A, B: Type a: A b: B
ap (functor_join idmap idmap) (jglue a b) =
ap idmap (jglue a b)
A, B: Type a: A b: B
jglue a b = ap idmap (jglue a b)
symmetry; apply ap_idmap.Defined.
A, B, C, D: Type f, f': A -> C g, g': B -> D h: f == f' k: g == g'
functor_join f g == functor_join f' g'
A, B, C, D: Type f, f': A -> C g, g': B -> D h: f == f' k: g == g'
functor_join f g == functor_join f' g'
A, B, C, D: Type f, f': A -> C g, g': B -> D h: f == f' k: g == g'
foralla : A,
functor_join f g (joinl a) =
functor_join f' g' (joinl a)
A, B, C, D: Type f, f': A -> C g, g': B -> D h: f == f' k: g == g'
forallb : B,
functor_join f g (joinr b) =
functor_join f' g' (joinr b)
A, B, C, D: Type f, f': A -> C g, g': B -> D h: f == f' k: g == g'
forall (a : A) (b : B),
ap (functor_join f g) (jglue a b) @ ?Hr b =
?Hl a @ ap (functor_join f' g') (jglue a b)
A, B, C, D: Type f, f': A -> C g, g': B -> D h: f == f' k: g == g'
foralla : A,
functor_join f g (joinl a) =
functor_join f' g' (joinl a)
simpl; intros; apply ap, h.
A, B, C, D: Type f, f': A -> C g, g': B -> D h: f == f' k: g == g'
forallb : B,
functor_join f g (joinr b) =
functor_join f' g' (joinr b)
simpl; intros; apply ap, k.
A, B, C, D: Type f, f': A -> C g, g': B -> D h: f == f' k: g == g'
forall (a : A) (b : B),
ap (functor_join f g) (jglue a b) @
((funb0 : B => ap joinr (k b0))
:
forallb0 : B,
functor_join f g (joinr b0) =
functor_join f' g' (joinr b0)) b =
((funa0 : A => ap joinl (h a0))
:
foralla0 : A,
functor_join f g (joinl a0) =
functor_join f' g' (joinl a0)) a @
ap (functor_join f' g') (jglue a b)
A, B, C, D: Type f, f': A -> C g, g': B -> D h: f == f' k: g == g' a: A b: B
ap (functor_join f g) (jglue a b) @ ap joinr (k b) =
ap joinl (h a) @ ap (functor_join f' g') (jglue a b)
A, B, C, D: Type f, f': A -> C g, g': B -> D h: f == f' k: g == g' a: A b: B
jglue (f a) (g b) @ ap joinr (k b) =
ap joinl (h a) @ ap (functor_join f' g') (jglue a b)
A, B, C, D: Type f, f': A -> C g, g': B -> D h: f == f' k: g == g' a: A b: B
ap joinl (h a) @ ap (functor_join f' g') (jglue a b) =
jglue (f a) (g b) @ ap joinr (k b)
A, B, C, D: Type f, f': A -> C g, g': B -> D h: f == f' k: g == g' a: A b: B
ap joinl (h a) @ jglue (f' a) (g' b) =
jglue (f a) (g b) @ ap joinr (k b)
apply join_natsq.Defined.
A, B, C, D: Type f: A -> C IsEquiv0: IsEquiv f g: B -> D IsEquiv1: IsEquiv g
IsEquiv (functor_join f g)
A, B, C, D: Type f: A -> C IsEquiv0: IsEquiv f g: B -> D IsEquiv1: IsEquiv g
IsEquiv (functor_join f g)
A, B, C, D: Type f: A -> C IsEquiv0: IsEquiv f g: B -> D IsEquiv1: IsEquiv g
Join C D -> Join A B
A, B, C, D: Type f: A -> C IsEquiv0: IsEquiv f g: B -> D IsEquiv1: IsEquiv g
functor_join f g o ?g == idmap
A, B, C, D: Type f: A -> C IsEquiv0: IsEquiv f g: B -> D IsEquiv1: IsEquiv g
?g o functor_join f g == idmap
A, B, C, D: Type f: A -> C IsEquiv0: IsEquiv f g: B -> D IsEquiv1: IsEquiv g
Join C D -> Join A B
exact (functor_join f^-1 g^-1).
A, B, C, D: Type f: A -> C IsEquiv0: IsEquiv f g: B -> D IsEquiv1: IsEquiv g
functor_join f g o functor_join f^-1 g^-1 == idmap
A, B, C, D: Type f: A -> C IsEquiv0: IsEquiv f g: B -> D IsEquiv1: IsEquiv g
functor_join f g o functor_join f^-1 g^-1 == ?Goal
A, B, C, D: Type f: A -> C IsEquiv0: IsEquiv f g: B -> D IsEquiv1: IsEquiv g
?Goal == idmap
A, B, C, D: Type f: A -> C IsEquiv0: IsEquiv f g: B -> D IsEquiv1: IsEquiv g
functor_join (funx : C => f (f^-1 x))
(funx : D => g (g^-1 x)) == idmap
A, B, C, D: Type f: A -> C IsEquiv0: IsEquiv f g: B -> D IsEquiv1: IsEquiv g
functor_join (funx : C => f (f^-1 x))
(funx : D => g (g^-1 x)) == ?Goal
A, B, C, D: Type f: A -> C IsEquiv0: IsEquiv f g: B -> D IsEquiv1: IsEquiv g
?Goal == idmap
A, B, C, D: Type f: A -> C IsEquiv0: IsEquiv f g: B -> D IsEquiv1: IsEquiv g
functor_join idmap idmap == idmap
exact functor_join_idmap.
A, B, C, D: Type f: A -> C IsEquiv0: IsEquiv f g: B -> D IsEquiv1: IsEquiv g
functor_join f^-1 g^-1 o functor_join f g == idmap
A, B, C, D: Type f: A -> C IsEquiv0: IsEquiv f g: B -> D IsEquiv1: IsEquiv g
functor_join f^-1 g^-1 o functor_join f g == ?Goal
A, B, C, D: Type f: A -> C IsEquiv0: IsEquiv f g: B -> D IsEquiv1: IsEquiv g
?Goal == idmap
A, B, C, D: Type f: A -> C IsEquiv0: IsEquiv f g: B -> D IsEquiv1: IsEquiv g
functor_join (funx : A => f^-1 (f x))
(funx : B => g^-1 (g x)) == idmap
A, B, C, D: Type f: A -> C IsEquiv0: IsEquiv f g: B -> D IsEquiv1: IsEquiv g
functor_join (funx : A => f^-1 (f x))
(funx : B => g^-1 (g x)) == ?Goal
A, B, C, D: Type f: A -> C IsEquiv0: IsEquiv f g: B -> D IsEquiv1: IsEquiv g
?Goal == idmap
A, B, C, D: Type f: A -> C IsEquiv0: IsEquiv f g: B -> D IsEquiv1: IsEquiv g
functor_join idmap idmap == idmap
apply functor_join_idmap.Defined.Definitionequiv_functor_join {ABCD} (f : A <~> C) (g : B <~> D)
: Join A B <~> Join C D := Build_Equiv _ _ (functor_join f g) _.
Is0Bifunctor Join
Is0Bifunctor Join
Is01Cat Type
Is01Cat Type
Is0Functor (uncurry Join)
Is0Functor (uncurry Join)
forallab : Type * Type,
(a $-> b) -> uncurry Join a $-> uncurry Join b
A, B: (Type * Type)%type f: fst A $-> fst B g: snd A $-> snd B
uncurry Join A $-> uncurry Join B
exact (functor_join f g).Defined.
Is1Bifunctor Join
Is1Bifunctor Join
Is1Functor (uncurry Join)
forall (ab : Type * Type) (fg : a $-> b),
f $== g ->
fmap (uncurry Join) f $== fmap (uncurry Join) g
foralla : Type * Type,
fmap (uncurry Join) (Id a) $== Id (uncurry Join a)
forall (abc : Type * Type) (f : a $-> b)
(g : b $-> c),
fmap (uncurry Join) (g $o f) $==
fmap (uncurry Join) g $o fmap (uncurry Join) f
forall (ab : Type * Type) (fg : a $-> b),
f $== g ->
fmap (uncurry Join) f $== fmap (uncurry Join) g
A, B: (Type * Type)%type f, g: A $-> B p: fst f $-> fst g q: snd f $-> snd g
fmap (uncurry Join) f $== fmap (uncurry Join) g
exact (functor2_join p q).
foralla : Type * Type,
fmap (uncurry Join) (Id a) $== Id (uncurry Join a)
intros A; exact functor_join_idmap.
forall (abc : Type * Type) (f : a $-> b)
(g : b $-> c),
fmap (uncurry Join) (g $o f) $==
fmap (uncurry Join) g $o fmap (uncurry Join) f
A, B, C: (Type * Type)%type f: fst A $-> fst B g: snd A $-> snd B h: fst B $-> fst C k: snd B $-> snd C
exact (functor_join_compose f g h k).Defined.EndFunctorJoin.(** * Symmetry of Join We'll use the recursion equivalence above to prove the symmetry of Join, using the Yoneda lemma. The idea is that [Join A B -> P] is equivalent (as a 0-groupoid) to [JoinRecData A B P], and the latter is very symmetrical by construction, which makes it easy to show that it is equivalent to [JoinRecData B A P]. Going back along the first equivalence gets us to [Join B A -> P]. These equivalences are natural in [P], so the symmetry equivalence follows from the Yoneda lemma. This is mainly meant as a warm-up to proving the associativity of the join. *)SectionJoinSym.
A, B, P: Type
joinrecdata_0gpd A B P $-> joinrecdata_0gpd B A P
A, B, P: Type
joinrecdata_0gpd A B P $-> joinrecdata_0gpd B A P
A, B, P: Type
Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd A B P)) ->
Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd B A P))
A, B, P: Type
forallab : Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd A B P)),
(a $-> b) -> ?F a $-> ?F b
(* The map of types [JoinRecData A B P -> JoinRecData B A P]: *)
A, B, P: Type
Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd A B P)) ->
Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd B A P))
A, B, P: Type fl: A -> P fr: B -> P fg: forall (a : A) (b : B), fl a = fr b
Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd B A P))
A, B, P: Type fl: A -> P fr: B -> P fg: forall (a : A) (b : B), fl a = fr b
forall (a : B) (b : A), fr a = fl b
intros b a; exact (fg a b)^.(* It respects the paths. *)
A, B, P: Type
forallab : Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd A B P)),
(a $-> b) ->
(funX : Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd A B P)) =>
(fun (fl : A -> P) (fr : B -> P)
(fg : forall (a0 : A) (b0 : B), fl a0 = fr b0) =>
{|
jl := fr;
jr := fl;
jg := fun (b0 : B) (a0 : A) => (fg a0 b0)^
|}) (jl X) (jr X) (jg X)) a $->
(funX : Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd A B P)) =>
(fun (fl : A -> P) (fr : B -> P)
(fg : forall (a0 : A) (b0 : B), fl a0 = fr b0) =>
{|
jl := fr;
jr := fl;
jg := fun (b0 : B) (a0 : A) => (fg a0 b0)^
|}) (jl X) (jr X) (jg X)) b
A, B, P: Type f, g: Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd A B P)) h: f $-> g
JoinRecPath
{|
jl := jr f;
jr := jl f;
jg := fun (b : B) (a : A) => (jg f a b)^
|}
{|
jl := jr g;
jr := jl g;
jg := fun (b : B) (a : A) => (jg g a b)^
|}
A, B, P: Type f, g: Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd A B P)) h: f $-> g
foralla : B, jr f a = jr g a
A, B, P: Type f, g: Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd A B P)) h: f $-> g
forallb : A, jl f b = jl g b
A, B, P: Type f, g: Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd A B P)) h: f $-> g
forall (a : B) (b : A),
(jg f b a)^ @ ?Goal0 b = ?Goal a @ (jg g b a)^
A, B, P: Type f, g: Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd A B P)) h: f $-> g
forall (a : B) (b : A),
(jg f b a)^ @ (funb0 : A => letX := hl h in X b0) b =
(funa0 : B => letX := hr h in X a0) a @ (jg g b a)^
A, B, P: Type f, g: Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd A B P)) h: f $-> g b: B a: A
(jg f a b)^ @ (funb : A => letX := hl h in X b) a =
(funa : B => letX := hr h in X a) b @ (jg g a b)^
A, B, P: Type f: Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd A B P)) b: B a: A
(jg f a b)^ @ 1 = 1 @ (jg f a b)^
by interval_ind f a b.Defined.(** This map is its own inverse in the 1-category of 0-groupoids. *)
A, B, P: Type
joinrecdata_sym B A P $o joinrecdata_sym A B P $==
Id (joinrecdata_0gpd A B P)
A, B, P: Type
joinrecdata_sym B A P $o joinrecdata_sym A B P $==
Id (joinrecdata_0gpd A B P)
A, B, P: Type f: Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd A B P))
JoinRecPath
{|
jl := jl f;
jr := jr f;
jg := fun (b : A) (a : B) => ((jg f b a)^)^
|} f
A, B, P: Type f: Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd A B P))
forall (a : A) (b : B),
jg
{|
jl := jl f;
jr := jr f;
jg := fun (b0 : A) (a0 : B) => ((jg f b0 a0)^)^
|} a b = jg f a b
A, B, P: Type f: Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd A B P)) a: A b: B
((jg f a b)^)^ = jg f a b
apply inv_V.Defined.(** We get the symmetry natural equivalence on [TriJoinRecData]. *)
A, B: Type
NatEquiv (joinrecdata_0gpd_fun A B)
(joinrecdata_0gpd_fun B A)
A, B: Type
NatEquiv (joinrecdata_0gpd_fun A B)
(joinrecdata_0gpd_fun B A)
A, B: Type
foralla : Type,
joinrecdata_0gpd_fun A B a $<~>
joinrecdata_0gpd_fun B A a
A, B: Type
Is1Natural (joinrecdata_0gpd_fun A B)
(joinrecdata_0gpd_fun B A) (funa : Type => ?e a)
(* An equivalence of 0-groupoids for each [P]: *)
A, B: Type
foralla : Type,
joinrecdata_0gpd_fun A B a $<~>
joinrecdata_0gpd_fun B A a
A, B, P: Type
joinrecdata_0gpd_fun A B P $<~>
joinrecdata_0gpd_fun B A P
A, B, P: Type
joinrecdata_0gpd_fun A B P $->
joinrecdata_0gpd_fun B A P
A, B, P: Type
joinrecdata_0gpd_fun B A P $->
joinrecdata_0gpd_fun A B P
A, B, P: Type
?f $o ?g $== Id (joinrecdata_0gpd_fun B A P)
A, B, P: Type
?g $o ?f $== Id (joinrecdata_0gpd_fun A B P)
A, B, P: Type
joinrecdata_sym A B P $o joinrecdata_sym B A P $==
Id (joinrecdata_0gpd_fun B A P)
A, B, P: Type
joinrecdata_sym B A P $o joinrecdata_sym A B P $==
Id (joinrecdata_0gpd_fun A B P)
1, 2: apply joinrecdata_sym_inv.(* Naturality: *)
A, B: Type
Is1Natural (joinrecdata_0gpd_fun A B)
(joinrecdata_0gpd_fun B A)
(funa : Type =>
(funP : Type =>
cate_adjointify (joinrecdata_sym A B P)
(joinrecdata_sym B A P)
(joinrecdata_sym_inv B A P)
(joinrecdata_sym_inv A B P)) a)
A, B: Type
forall (aa' : Type) (f : a $-> a'),
(funa0 : Type =>
cate_fun
((funP : Type =>
cate_adjointify (joinrecdata_sym A B P)
(joinrecdata_sym B A P)
(joinrecdata_sym_inv B A P)
(joinrecdata_sym_inv A B P)) a0)) a' $o
fmap (joinrecdata_0gpd A B) f $==
fmap (joinrecdata_0gpd B A) f $o
(funa0 : Type =>
cate_fun
((funP : Type =>
cate_adjointify (joinrecdata_sym A B P)
(joinrecdata_sym B A P)
(joinrecdata_sym_inv B A P)
(joinrecdata_sym_inv A B P)) a0)) a
A, B, P, Q: Type g: P $-> Q f: Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd_fun A B P))
JoinRecPath
{|
jl := funx : B => g (jr f x);
jr := funx : A => g (jl f x);
jg := fun (b : B) (a : A) => (ap g (jg f a b))^
|}
(joinrecdata_fun g
{|
jl := jr f;
jr := jl f;
jg := fun (b : B) (a : A) => (jg f a b)^
|})
A, B, P, Q: Type g: P $-> Q f: Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd_fun A B P))
forall (a : B) (b : A),
jg
{|
jl := funx : B => g (jr f x);
jr := funx : A => g (jl f x);
jg :=
fun (b0 : B) (a0 : A) => (ap g (jg f a0 b0))^
|} a b =
jg
(joinrecdata_fun g
{|
jl := jr f;
jr := jl f;
jg := fun (b0 : B) (a0 : A) => (jg f a0 b0)^
|}) a b
A, B, P, Q: Type g: P $-> Q f: Graph.graph_carrier
(zerogpd_graph (joinrecdata_0gpd_fun A B P)) b: B a: A
(ap g (jg f a b))^ = ap g (jg f a b)^
symmetry; apply ap_V.Defined.(** Combining with the recursion equivalence [join_rec_inv_natequiv] and its inverse gives the symmetry natural equivalence between the representable functors. *)Definitionjoinrecdata_fun_sym (AB : Type)
: NatEquiv (opyon_0gpd (Join A B)) (opyon_0gpd (Join B A))
:= natequiv_compose (join_rec_natequiv B A)
(natequiv_compose (joinrecdata_sym_natequiv A B) (join_rec_inv_natequiv A B)).(** The Yoneda lemma for 0-groupoid valued functors therefore gives us an equivalence between the representing objects. We mark this with a prime, since we'll use a homotopic map with a slightly simpler definition. *)
A, B: Type
Join A B <~> Join B A
A, B: Type
Join A B <~> Join B A
A, B: Type
opyon1_0gpd (Join B A) $<~> opyon1_0gpd (Join A B)
apply joinrecdata_fun_sym.Defined.(** It has the nice property that the underlying function of the inverse is again [equiv_join_sym'], with arguments permuted. *)Local Definitionequiv_join_sym_check1 (AB : Type)
: (equiv_join_sym' A B)^-1 = equiv_fun (equiv_join_sym' B A)
:= idpath.(** The definition we end up with is almost the same as the obvious one, but has an extra [ap idmap] in it. *)Local Definitionequiv_join_sym_check2 (AB : Type)
: equiv_fun (equiv_join_sym' A B) = Join_rec (funa : A => joinr a) (funb : B => joinl b)
(fun (a : A) (b : B) => (ap idmap (jglue b a))^)
:= idpath.(** The next two give the obvious definition. *)Definitionjoin_sym_recdata (AB : Type)
: JoinRecData A B (Join B A)
:= Build_JoinRecData joinr joinl (funab => (jglue b a)^).Definitionjoin_sym (AB : Type)
: Join A B -> Join B A
:= join_rec (join_sym_recdata A B).Definitionjoin_sym_beta_jglue {AB} (a : A) (b : B)
: ap (join_sym A B) (jglue a b) = (jglue b a)^
:= Join_rec_beta_jglue _ _ _ _ _.(** The obvious definition is homotopic to the definition via the Yoneda lemma. *)
A, B: Type
join_sym A B == equiv_join_sym' A B
A, B: Type
join_sym A B == equiv_join_sym' A B
A, B: Type
equiv_join_sym' A B == join_sym A B
(** Both sides are [join_rec] applied to [JoinRecData]: *)
A, B: Type
natequiv_compose (joinrecdata_sym_natequiv B A)
(join_rec_inv_natequiv B A) (Join B A)
(Id (Join B A)) $-> join_sym_recdata A B
A, B: Type a: A b: B
(ap idmap (jglue b a))^ = (jglue b a)^
A, B: Type a: A b: B
ap idmap (jglue b a) = jglue b a
apply ap_idmap.Defined.(** Therefore the obvious definition is also an equivalence, and the inverse function can also be chosen to be [join_sym]. *)Definitionequiv_join_sym (AB : Type) : Join A B <~> Join B A
:= equiv_homotopic_inverse (equiv_join_sym' A B)
(join_sym_homotopic A B)
(join_sym_homotopic B A).#[export] Instanceisequiv_join_symAB : IsEquiv (join_sym A B)
:= equiv_isequiv (equiv_join_sym A B).(** It's also straightforward to directly prove that [join_sym] is an equivalence. The above approach is meant to illustrate the Yoneda lemma. In the case of [equiv_trijoin_twist], the Yoneda approach seems to be more straightforward. *)
A, B: Type
join_sym A B o join_sym B A == idmap
A, B: Type
join_sym A B o join_sym B A == idmap
A, B: Type
foralla : B,
join_sym A B (join_sym B A (joinl a)) = joinl a
A, B: Type
forallb : A,
join_sym A B (join_sym B A (joinr b)) = joinr b
A, B: Type
forall (a : B) (b : A),
ap (join_sym A B) (ap (join_sym B A) (jglue a b)) @
?Hr b = ?Hl a @ jglue a b
A, B: Type
foralla : B,
join_sym A B (join_sym B A (joinl a)) = joinl a
reflexivity.
A, B: Type
forallb : A,
join_sym A B (join_sym B A (joinr b)) = joinr b
reflexivity.
A, B: Type
forall (a : B) (b : A),
ap (join_sym A B) (ap (join_sym B A) (jglue a b)) @
(funb0 : A => 1) b = (funa0 : B => 1) a @ jglue a b
A, B: Type a: B b: A
ap (join_sym A B) (ap (join_sym B A) (jglue a b)) @ 1 =
1 @ jglue a b
A, B: Type a: B b: A
ap (join_sym A B) (ap (join_sym B A) (jglue a b)) =
jglue a b
A, B: Type a: B b: A
ap (join_sym A B) (jglue b a)^ = jglue a b
A, B: Type a: B b: A
(ap (join_sym A B) (jglue b a))^ = jglue a b
A, B: Type a: B b: A
(jg (join_sym_recdata A B) b a)^ = jglue a b
apply inv_V.Defined.(** Finally, one can also prove that the join is symmetric using [pushout_sym] and [equiv_prod_symm], but this results in an equivalence whose inverse isn't of the same form. *)(** We give a direct proof that [join_sym] is natural. *)
A, B, A', B': Type f: A -> A' g: B -> B'
join_sym A' B' o functor_join f g ==
functor_join g f o join_sym A B
A, B, A', B': Type f: A -> A' g: B -> B'
join_sym A' B' o functor_join f g ==
functor_join g f o join_sym A B
A, B, A', B': Type f: A -> A' g: B -> B'
foralla : A,
join_sym A' B' (functor_join f g (joinl a)) =
functor_join g f (join_sym A B (joinl a))
A, B, A', B': Type f: A -> A' g: B -> B'
forallb : B,
join_sym A' B' (functor_join f g (joinr b)) =
functor_join g f (join_sym A B (joinr b))
A, B, A', B': Type f: A -> A' g: B -> B'
forall (a : A) (b : B),
ap (join_sym A' B')
(ap (functor_join f g) (jglue a b)) @ ?Hr b =
?Hl a @
ap (functor_join g f) (ap (join_sym A B) (jglue a b))
A, B, A', B': Type f: A -> A' g: B -> B'
forall (a : A) (b : B),
ap (join_sym A' B')
(ap (functor_join f g) (jglue a b)) @
(funb0 : B => 1) b =
(funa0 : A => 1) a @
ap (functor_join g f) (ap (join_sym A B) (jglue a b))
A, B, A', B': Type f: A -> A' g: B -> B' a: A b: B
ap (join_sym A' B')
(ap (functor_join f g) (jglue a b)) @ 1 =
1 @
ap (functor_join g f) (ap (join_sym A B) (jglue a b))
A, B, A', B': Type f: A -> A' g: B -> B' a: A b: B
ap (join_sym A' B')
(ap (functor_join f g) (jglue a b)) =
ap (functor_join g f) (ap (join_sym A B) (jglue a b))
A, B, A', B': Type f: A -> A' g: B -> B' a: A b: B
ap (join_sym A' B') (jglue (f a) (g b)) =
ap (functor_join g f) (ap (join_sym A B) (jglue a b))
A, B, A', B': Type f: A -> A' g: B -> B' a: A b: B
(jglue (g b) (f a))^ =
ap (functor_join g f) (ap (join_sym A B) (jglue a b))
A, B, A', B': Type f: A -> A' g: B -> B' a: A b: B
ap (functor_join g f) (ap (join_sym A B) (jglue a b)) =
(jglue (g b) (f a))^
A, B, A', B': Type f: A -> A' g: B -> B' a: A b: B
ap (functor_join g f) (jglue b a)^ =
(jglue (g b) (f a))^
A, B, A', B': Type f: A -> A' g: B -> B' a: A b: B
ap (functor_join g f) (jglue b a) = jglue (g b) (f a)
apply functor_join_beta_jglue.Defined.EndJoinSym.(** * Other miscellaneous results about joins *)(** Relationship to truncation levels and connectedness. *)SectionJoinTrunc.(** Joining with a contractible type produces a contractible type *)
A, B: Type Contr0: Contr A
Contr (Join A B)
A, B: Type Contr0: Contr A
Contr (Join A B)
A, B: Type Contr0: Contr A
forally : Join A B, joinl (center A) = y
A, B: Type Contr0: Contr A
foralla : A, joinl (center A) = joinl a
A, B: Type Contr0: Contr A
forallb : B, joinl (center A) = joinr b
A, B: Type Contr0: Contr A
forall (a : A) (b : B),
transport (paths (joinl (center A)))
(jglue a b) (?P_A a) =
?P_B b
A, B: Type Contr0: Contr A
foralla : A, joinl (center A) = joinl a
intros a; apply ap, contr.
A, B: Type Contr0: Contr A
forallb : B, joinl (center A) = joinr b
intros b; apply jglue.
A, B: Type Contr0: Contr A
forall (a : A) (b : B),
transport (paths (joinl (center A))) (jglue a b)
((funa0 : A => ap joinl (contr a0)) a) =
(funb0 : B => jglue (center A) b0) b
A, B: Type Contr0: Contr A a: A b: B
transport (paths (joinl (center A))) (jglue a b)
(ap joinl (contr a)) = jglue (center A) b
A, B: Type Contr0: Contr A a: A b: B
ap joinl (contr a) @ jglue a b = jglue (center A) b
apply triangle_h.Defined.(** The join of hprops is an hprop *)
H: Funext A, B: Type IsHProp0: IsHProp A IsHProp1: IsHProp B
IsHProp (Join A B)
H: Funext A, B: Type IsHProp0: IsHProp A IsHProp1: IsHProp B
IsHProp (Join A B)
H: Funext A, B: Type IsHProp0: IsHProp A IsHProp1: IsHProp B
Join A B -> Contr (Join A B)
H: Funext A, B: Type IsHProp0: IsHProp A IsHProp1: IsHProp B
A -> Contr (Join A B)
H: Funext A, B: Type IsHProp0: IsHProp A IsHProp1: IsHProp B
B -> Contr (Join A B)
H: Funext A, B: Type IsHProp0: IsHProp A IsHProp1: IsHProp B
forall (a : A) (b : B), ?P_A a = ?P_B b
H: Funext A, B: Type IsHProp0: IsHProp A IsHProp1: IsHProp B
A -> Contr (Join A B)
H: Funext A, B: Type IsHProp0: IsHProp A IsHProp1: IsHProp B a: A
Contr A
exact (contr_inhabited_hprop A a).
H: Funext A, B: Type IsHProp0: IsHProp A IsHProp1: IsHProp B
B -> Contr (Join A B)
H: Funext A, B: Type IsHProp0: IsHProp A IsHProp1: IsHProp B b: B
Contr (Join B A)
H: Funext A, B: Type IsHProp0: IsHProp A IsHProp1: IsHProp B b: B
Contr B
exact (contr_inhabited_hprop B b).(* The two proofs of contractibility are equal because [Contr] is an [HProp]. This uses [Funext]. *)
H: Funext A, B: Type IsHProp0: IsHProp A IsHProp1: IsHProp B
forall (a : A) (b : B),
(funa0 : A => contr_join A B) a =
(funb0 : B =>
contr_equiv (Join B A) (equiv_join_sym B A)) b
intros a b; apply path_ishprop.Defined.
H: Funext A, B, P: Type IsHProp0: IsHProp P f: A -> P
(Join A B -> P) <~> (B -> P)
H: Funext A, B, P: Type IsHProp0: IsHProp P f: A -> P
(Join A B -> P) <~> (B -> P)
H: Funext A, B, P: Type IsHProp0: IsHProp P f: A -> P
(Join A B -> P) -> B -> P
H: Funext A, B, P: Type IsHProp0: IsHProp P f: A -> P
(B -> P) -> Join A B -> P
H: Funext A, B, P: Type IsHProp0: IsHProp P f: A -> P
(B -> P) -> Join A B -> P
H: Funext A, B, P: Type IsHProp0: IsHProp P f: A -> P g: B -> P
Join A B -> P
H: Funext A, B, P: Type IsHProp0: IsHProp P f: A -> P g: B -> P
A -> P
H: Funext A, B, P: Type IsHProp0: IsHProp P f: A -> P g: B -> P
B -> P
H: Funext A, B, P: Type IsHProp0: IsHProp P f: A -> P g: B -> P
forall (a : A) (b : B), ?P_A a = ?P_B b
H: Funext A, B, P: Type IsHProp0: IsHProp P f: A -> P g: B -> P
forall (a : A) (b : B), f a = g b
H: Funext A, B, P: Type IsHProp0: IsHProp P f: A -> P g: B -> P a: A b: B
f a = g b
apply path_ishprop.Defined.(** And coincides with their disjunction *)
H: Funext A, B: Type IsHProp0: IsHProp A IsHProp1: IsHProp B
Join A B <~> hor A B
H: Funext A, B: Type IsHProp0: IsHProp A IsHProp1: IsHProp B
Join A B <~> hor A B
H: Funext A, B: Type IsHProp0: IsHProp A IsHProp1: IsHProp B
Join A B -> hor A B
H: Funext A, B: Type IsHProp0: IsHProp A IsHProp1: IsHProp B
hor A B -> Join A B
H: Funext A, B: Type IsHProp0: IsHProp A IsHProp1: IsHProp B
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B
IsConnected (Tr (m +2+ n)) (Join A B)
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B
IsConnected (Tr (m +2+ n)) (Join A B)
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C
NullHomotopy k
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C
A ->
{s : Unit -> C & forallx : B, s tt = k (joinr x)}
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C f:= ?Goal: A ->
{s : Unit -> C & forallx : B, s tt = k (joinr x)}
NullHomotopy k
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C
A ->
{s : Unit -> C & forallx : B, s tt = k (joinr x)}
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C a: A b: B
k (joinl a) = k (joinr b)
exact (ap k (jglue a b)).
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C f:= funa : A =>
(unit_name (k (joinl a));
funb : B => ap k (jglue a b)): A ->
{s : Unit -> C & forallx : B, s tt = k (joinr x)}
NullHomotopy k
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C f:= funa : A =>
(unit_name (k (joinl a));
funb : B => ap k (jglue a b)): A ->
{s : Unit -> C & forallx : B, s tt = k (joinr x)}
NullHomotopy f
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C f:= funa : A =>
(unit_name (k (joinl a));
funb : B => ap k (jglue a b)): A ->
{s : Unit -> C & forallx : B, s tt = k (joinr x)} h: NullHomotopy f
NullHomotopy k
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C f:= funa : A =>
(unit_name (k (joinl a));
funb : B => ap k (jglue a b)): A ->
{s : Unit -> C & forallx : B, s tt = k (joinr x)}
NullHomotopy f
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C f:= funa : A =>
(unit_name (k (joinl a));
funb : B => ap k (jglue a b)): A ->
{s : Unit -> C & forallx : B, s tt = k (joinr x)}
In (Tr m)
{s : Unit -> C & forallx : B, s tt = k (joinr x)}
rapply (istrunc_extension_along_conn (n:=n)).
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C f:= funa : A =>
(unit_name (k (joinl a));
funb : B => ap k (jglue a b)): A ->
{s : Unit -> C & forallx : B, s tt = k (joinr x)} h: NullHomotopy f
NullHomotopy k
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C f:= funa : A =>
(unit_name (k (joinl a));
funb : B => ap k (jglue a b)): A ->
{s : Unit -> C & forallx : B, s tt = k (joinr x)} c: Unit -> C g: forallx : B, c tt = k (joinr x) h: forallx : A, f x = (c; g)
{y : C & forallx : Join A B, k x = y}
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C f:= funa : A =>
(unit_name (k (joinl a));
funb : B => ap k (jglue a b)): A ->
{s : Unit -> C & forallx : B, s tt = k (joinr x)} c: Unit -> C g: forallx : B, c tt = k (joinr x) h: forallx : A, f x = (c; g)
forallx : Join A B, k x = c tt
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C f:= funa : A =>
(unit_name (k (joinl a));
funb : B => ap k (jglue a b)): A ->
{s : Unit -> C & forallx : B, s tt = k (joinr x)} c: Unit -> C g: forallx : B, c tt = k (joinr x) h: forallx : A, f x = (c; g)
foralla : A,
(funx : Join A B => k x = c tt) (joinl a)
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C f:= funa : A =>
(unit_name (k (joinl a));
funb : B => ap k (jglue a b)): A ->
{s : Unit -> C & forallx : B, s tt = k (joinr x)} c: Unit -> C g: forallx : B, c tt = k (joinr x) h: forallx : A, f x = (c; g)
forallb : B,
(funx : Join A B => k x = c tt) (joinr b)
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C f:= funa : A =>
(unit_name (k (joinl a));
funb : B => ap k (jglue a b)): A ->
{s : Unit -> C & forallx : B, s tt = k (joinr x)} c: Unit -> C g: forallx : B, c tt = k (joinr x) h: forallx : A, f x = (c; g)
forall (a : A) (b : B),
transport (funx : Join A B => k x = c tt) (jglue a b)
(?P_A a) = ?P_B b
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C f:= funa : A =>
(unit_name (k (joinl a));
funb : B => ap k (jglue a b)): A ->
{s : Unit -> C & forallx : B, s tt = k (joinr x)} c: Unit -> C g: forallx : B, c tt = k (joinr x) h: forallx : A, f x = (c; g)
foralla : A,
(funx : Join A B => k x = c tt) (joinl a)
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C f:= funa : A =>
(unit_name (k (joinl a));
funb : B => ap k (jglue a b)): A ->
{s : Unit -> C & forallx : B, s tt = k (joinr x)} c: Unit -> C g: forallx : B, c tt = k (joinr x) h: forallx : A, f x = (c; g) a: A
k (joinl a) = c tt
exact (ap10 (h a)..1 tt).
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C f:= funa : A =>
(unit_name (k (joinl a));
funb : B => ap k (jglue a b)): A ->
{s : Unit -> C & forallx : B, s tt = k (joinr x)} c: Unit -> C g: forallx : B, c tt = k (joinr x) h: forallx : A, f x = (c; g)
forallb : B,
(funx : Join A B => k x = c tt) (joinr b)
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C f:= funa : A =>
(unit_name (k (joinl a));
funb : B => ap k (jglue a b)): A ->
{s : Unit -> C & forallx : B, s tt = k (joinr x)} c: Unit -> C g: forallx : B, c tt = k (joinr x) h: forallx : A, f x = (c; g) b: B
k (joinr b) = c tt
exact (g b)^.
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C f:= funa : A =>
(unit_name (k (joinl a));
funb : B => ap k (jglue a b)): A ->
{s : Unit -> C & forallx : B, s tt = k (joinr x)} c: Unit -> C g: forallx : B, c tt = k (joinr x) h: forallx : A, f x = (c; g)
forall (a : A) (b : B),
transport (funx : Join A B => k x = c tt) (jglue a b)
((funa0 : A =>
ap10 (h a0) ..1 tt
:
(funx : Join A B => k x = c tt) (joinl a0)) a) =
(funb0 : B =>
(g b0)^ : (funx : Join A B => k x = c tt) (joinr b0))
b
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C f:= funa : A =>
(unit_name (k (joinl a));
funb : B => ap k (jglue a b)): A ->
{s : Unit -> C & forallx : B, s tt = k (joinr x)} c: Unit -> C g: forallx : B, c tt = k (joinr x) h: forallx : A, f x = (c; g) a: A b: B
transport (funx : Join A B => k x = c tt) (jglue a b)
((funa : A =>
ap10 (h a) ..1 tt
:
(funx : Join A B => k x = c tt) (joinl a)) a) =
(funb : B =>
(g b)^ : (funx : Join A B => k x = c tt) (joinr b))
b
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C f:= funa : A =>
(unit_name (k (joinl a));
funb : B => ap k (jglue a b)): A ->
{s : Unit -> C & forallx : B, s tt = k (joinr x)} c: Unit -> C g: forallx : B, c tt = k (joinr x) h: forallx : A, f x = (c; g) a: A b: B
ap10 (h a) ..1 tt = ap k (jglue a b) @ (g b)^
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C f:= funa : A =>
(unit_name (k (joinl a));
funb : B => ap k (jglue a b)): A ->
{s : Unit -> C & forallx : B, s tt = k (joinr x)} c: Unit -> C g: forallx : B, c tt = k (joinr x) h: forallx : A, f x = (c; g) a: A b: B
g b = (ap10 (h a) ..1 tt)^ @ ap k (jglue a b)
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C f:= funa : A =>
(unit_name (k (joinl a));
funb : B => ap k (jglue a b)): A ->
{s : Unit -> C & forallx : B, s tt = k (joinr x)} c: Unit -> C g: forallx : B, c tt = k (joinr x) h: forallx : A, f x = (c; g) a: A b: B
transport
(funs : Unit -> C =>
forallx : B, s tt = k (joinr x)) (h a) ..1
(funb : B => ap k (jglue a b)) b =
(ap10 (h a) ..1 tt)^ @ ap k (jglue a b)
H: Funext m, n: trunc_index A, B: Type H0: IsConnected (Tr m) A H1: IsConnected (Tr n) B C: Type H2: In (Tr (m +2+ n)) C k: Join A B -> C f:= funa : A =>
(unit_name (k (joinl a));
funb : B => ap k (jglue a b)): A ->
{s : Unit -> C & forallx : B, s tt = k (joinr x)} c: Unit -> C g: forallx : B, c tt = k (joinr x) h: forallx : A, f x = (c; g) a: A b: B
transport (funx : Unit -> C => x tt = k (joinr b))
(h a) ..1 (ap k (jglue a b)) =
(ap10 (h a) ..1 tt)^ @ ap k (jglue a b)
napply transport_paths_Fl.Defined.EndJoinTrunc.(** Join with Empty *)SectionJoinEmpty.
join_rec
{|
jl := idmap;
jr :=
funH : Empty =>
Empty_rect (fun_ : Empty => A) H;
jg :=
fun (a : A) (b : Empty) =>
Empty_rect
(funb0 : Empty =>
a = Empty_rect (fun_ : Empty => A) b0) b
|} o joinl == idmap
reflexivity.
A: Type
joinl
o join_rec
{|
jl := idmap;
jr :=
funH : Empty =>
Empty_rect (fun_ : Empty => A) H;
jg :=
fun (a : A) (b : Empty) =>
Empty_rect
(funb0 : Empty =>
a = Empty_rect (fun_ : Empty => A) b0) b
|} == idmap
snapply Join_ind; [reflexivity| |]; contradiction.Defined.Definitionequiv_join_empty_leftA : Join Empty A <~> A
:= equiv_join_empty_right _ oE equiv_join_sym _ _.
RightUnitor Join Empty
RightUnitor Join Empty
foralla : Type, flip Join Empty a $<~> idmap a
Is1Natural (flip Join Empty) idmap
(funa : Type => ?e a)
foralla : Type, flip Join Empty a $<~> idmap a
exact equiv_join_empty_right.
Is1Natural (flip Join Empty) idmap
(funa : Type => equiv_join_empty_right a)
forall (aa' : Type) (f : a $-> a'),
(funa0 : Type => cate_fun (equiv_join_empty_right a0))
a' $o fmap (flip Join Empty) f $==
fmap idmap f $o
(funa0 : Type => cate_fun (equiv_join_empty_right a0))
a
A, B: Type f: A $-> B
(funa : Type => cate_fun (equiv_join_empty_right a))
B $o fmap (flip Join Empty) f $==
fmap idmap f $o
(funa : Type => cate_fun (equiv_join_empty_right a))
A
A, B: Type f: A $-> B
(funx : Join A Empty =>
equiv_join_empty_right B (functor_join f idmap x)) ==
(funx : Join A Empty =>
f (equiv_join_empty_right A x))
A, B: Type f: A $-> B
foralla : A,
(funx : Join A Empty =>
equiv_join_empty_right B (functor_join f idmap x))
(joinl a) =
(funx : Join A Empty =>
f (equiv_join_empty_right A x)) (joinl a)
A, B: Type f: A $-> B
forallb : Empty,
(funx : Join A Empty =>
equiv_join_empty_right B (functor_join f idmap x))
(joinr b) =
(funx : Join A Empty =>
f (equiv_join_empty_right A x)) (joinr b)
A, B: Type f: A $-> B
forall (a : A) (b : Empty),
ap
(funx : Join A Empty =>
equiv_join_empty_right B (functor_join f idmap x))
(jglue a b) @ ?Hr b =
?Hl a @
ap
(funx : Join A Empty =>
f (equiv_join_empty_right A x)) (jglue a b)
A, B: Type f: A $-> B
foralla : A,
(funx : Join A Empty =>
equiv_join_empty_right B (functor_join f idmap x))
(joinl a) =
(funx : Join A Empty =>
f (equiv_join_empty_right A x)) (joinl a)
A, B: Type f: A $-> B a: A
(funx : Join A Empty =>
equiv_join_empty_right B (functor_join f idmap x))
(joinl a) =
(funx : Join A Empty =>
f (equiv_join_empty_right A x)) (joinl a)
reflexivity.
A, B: Type f: A $-> B
forallb : Empty,
(funx : Join A Empty =>
equiv_join_empty_right B (functor_join f idmap x))
(joinr b) =
(funx : Join A Empty =>
f (equiv_join_empty_right A x)) (joinr b)
intros [].
A, B: Type f: A $-> B
forall (a : A) (b : Empty),
ap
(funx : Join A Empty =>
equiv_join_empty_right B (functor_join f idmap x))
(jglue a b) @
(funb0 : Empty =>
match
b0 as e
return
(equiv_join_empty_right B
(functor_join f idmap (joinr e)) =
f (equiv_join_empty_right A (joinr e)))
withend) b =
(funa0 : A => 1) a @
ap
(funx : Join A Empty =>
f (equiv_join_empty_right A x)) (jglue a b)
intros a [].Defined.
LeftUnitor Join Empty
LeftUnitor Join Empty
foralla : Type, Join Empty a $<~> idmap a
Is1Natural (Join Empty) idmap (funa : Type => ?e a)
foralla : Type, Join Empty a $<~> idmap a
exact equiv_join_empty_left.
Is1Natural (Join Empty) idmap
(funa : Type => equiv_join_empty_left a)
forall (aa' : Type) (f : a $-> a'),
(funa0 : Type => cate_fun (equiv_join_empty_left a0))
a' $o fmap (Join Empty) f $==
fmap idmap f $o
(funa0 : Type => cate_fun (equiv_join_empty_left a0))
a
A, B: Type f: A $-> B x: Join Empty A
(equiv_join_empty_left B $o fmap (Join Empty) f) x =
(fmap idmap f $o equiv_join_empty_left A) x
A, B: Type f: A $-> B x: Join Empty A
equiv_join_empty_right B
(join_sym Empty B (functor_join idmap f x)) =
f (equiv_join_empty_right A (join_sym Empty A x))
A, B: Type f: A $-> B x: Join Empty A
equiv_join_empty_right B
(join_sym Empty B (functor_join idmap f x)) =
(join_right_unitor B $o fmap (flip Join Empty) f)
(join_sym Empty A x)
A, B: Type f: A $-> B x: Join Empty A
equiv_join_empty_right B
(join_sym Empty B (functor_join idmap f x)) =
equiv_join_empty_right B
(functor_join f idmap (join_sym Empty A x))
apply ap, join_sym_nat.Defined.EndJoinEmpty.Arguments equiv_join_empty_right : simpl never.(** Iterated Join powers of a type. *)SectionJoinPower.(** The join of [n.+1] copies of a type. This is convenient because it produces [A] definitionally when [n] is [0]. We annotate the universes to reduce universe variables. *)Definitioniterated_join (A : Type@{u}) (n : nat) : Type@{u}
:= nat_iter n (Join A) A.(** The join of [n] copies of a type. This is sometimes convenient for proofs by induction as it gives a trivial base case. *)Definitionjoin_power (A : Type@{u}) (n : nat) : Type@{u}
:= nat_iter n (Join A) (Empty : Type@{u}).
A: Type n: nat
join_power A n.+1 <~> iterated_join A n
A: Type n: nat
join_power A n.+1 <~> iterated_join A n
A: Type
Join A Empty <~> A
A: Type n: nat IHn: join_power A n.+1 <~> iterated_join A n
Join A (Join A (join_power A n)) <~>
Join A (iterated_join A n)
A: Type
Join A Empty <~> A
exact (equiv_join_empty_right A).
A: Type n: nat IHn: join_power A n.+1 <~> iterated_join A n
Join A (Join A (join_power A n)) <~>
Join A (iterated_join A n)
exact (equiv_functor_join equiv_idmap IHn).Defined.EndJoinPower.(** ** Double recursion for Join *)SectionRec2.Context {ABCD : Type} (P : Type)
(P_AC : A -> C -> P) (P_AD : A -> D -> P) (P_BC : B -> C -> P) (P_BD : B -> D -> P)
(P_gAx : forallacd, P_AC a c = P_AD a d)
(P_gBx : forallbcd, P_BC b c = P_BD b d)
(P_gxC : forallcab, P_AC a c = P_BC b c)
(P_gxD : foralldab, P_AD a d = P_BD b d)
(P_g : forallabcd, P_gAx a c d @ P_gxD d a b = P_gxC c a b @ P_gBx b c d).
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d
Join A B -> Join C D -> P
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d
Join A B -> Join C D -> P
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d y: Join C D
Join A B -> P
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d y: Join C D
A -> P
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d y: Join C D
B -> P
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d y: Join C D
forall (a : A) (b : B), ?P_A a = ?P_B b
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d y: Join C D
B -> P
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d y: Join C D
forall (a : A) (b : B),
(funa0 : A =>
Join_rec (P_AC a0) (P_AD a0) (P_gAx a0) y) a =
?P_B b
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d y: Join C D
forall (a : A) (b : B),
(funa0 : A =>
Join_rec (P_AC a0) (P_AD a0) (P_gAx a0) y) a =
(funb0 : B =>
Join_rec (P_BC b0) (P_BD b0) (P_gBx b0) y) b
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d y: Join C D a: A b: B
(funa : A => Join_rec (P_AC a) (P_AD a) (P_gAx a) y)
a =
(funb : B => Join_rec (P_BC b) (P_BD b) (P_gBx b) y)
b
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d a: A b: B
forally : Join C D,
(funa : A => Join_rec (P_AC a) (P_AD a) (P_gAx a) y)
a =
(funb : B => Join_rec (P_BC b) (P_BD b) (P_gBx b) y)
b
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d a: A b: B
foralla0 : C,
(funx : Join C D =>
(funa : A => Join_rec (P_AC a) (P_AD a) (P_gAx a) x)
a) (joinl a0) =
(funx : Join C D =>
(funb : B => Join_rec (P_BC b) (P_BD b) (P_gBx b) x)
b) (joinl a0)
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d a: A b: B
forallb0 : D,
(funx : Join C D =>
(funa : A => Join_rec (P_AC a) (P_AD a) (P_gAx a) x)
a) (joinr b0) =
(funx : Join C D =>
(funb : B => Join_rec (P_BC b) (P_BD b) (P_gBx b) x)
b) (joinr b0)
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d a: A b: B
forall (a0 : C) (b0 : D),
ap
(funx : Join C D =>
(funa : A =>
Join_rec (P_AC a) (P_AD a) (P_gAx a) x) a)
(jglue a0 b0) @ ?Hr b0 =
?Hl a0 @
ap
(funx : Join C D =>
(funb : B =>
Join_rec (P_BC b) (P_BD b) (P_gBx b) x) b)
(jglue a0 b0)
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d a: A b: B
forallb0 : D,
(funx : Join C D =>
(funa : A => Join_rec (P_AC a) (P_AD a) (P_gAx a) x)
a) (joinr b0) =
(funx : Join C D =>
(funb : B => Join_rec (P_BC b) (P_BD b) (P_gBx b) x)
b) (joinr b0)
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d a: A b: B
forall (a0 : C) (b0 : D),
ap
(funx : Join C D =>
(funa : A =>
Join_rec (P_AC a) (P_AD a) (P_gAx a) x) a)
(jglue a0 b0) @ ?Hr b0 =
(func : C => P_gxC c a b) a0 @
ap
(funx : Join C D =>
(funb : B =>
Join_rec (P_BC b) (P_BD b) (P_gBx b) x) b)
(jglue a0 b0)
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d a: A b: B
forall (a0 : C) (b0 : D),
ap
(funx : Join C D =>
(funa : A =>
Join_rec (P_AC a) (P_AD a) (P_gAx a) x) a)
(jglue a0 b0) @ (fund : D => P_gxD d a b) b0 =
(func : C => P_gxC c a b) a0 @
ap
(funx : Join C D =>
(funb : B =>
Join_rec (P_BC b) (P_BD b) (P_gBx b) x) b)
(jglue a0 b0)
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d a: A b: B c: C d: D
ap
(funx : Join C D =>
(funa : A =>
Join_rec (P_AC a) (P_AD a) (P_gAx a) x) a)
(jglue c d) @ (fund : D => P_gxD d a b) d =
(func : C => P_gxC c a b) c @
ap
(funx : Join C D =>
(funb : B =>
Join_rec (P_BC b) (P_BD b) (P_gBx b) x) b)
(jglue c d)
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d a: A b: B c: C d: D
ap
(funx : Join C D =>
Join_rec (P_AC a) (P_AD a) (P_gAx a) x) (jglue c d) @
P_gxD d a b =
P_gxC c a b @
ap
(funx : Join C D =>
Join_rec (P_BC b) (P_BD b) (P_gBx b) x) (jglue c d)
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d a: A b: B c: C d: D
ap
(funx : Join C D =>
Join_rec (P_AC a) (P_AD a) (P_gAx a) x) (jglue c d) =
?Goal
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d a: A b: B c: C d: D
?Goal @ P_gxD d a b =
P_gxC c a b @
ap
(funx : Join C D =>
Join_rec (P_BC b) (P_BD b) (P_gBx b) x)
(jglue c d)
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d a: A b: B c: C d: D
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @
ap
(funx : Join C D =>
Join_rec (P_BC b) (P_BD b) (P_gBx b) x) (jglue c d)
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d a: A b: B c: C d: D
P_gAx a c d @ P_gxD d a b = P_gxC c a b @ ?Goal
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d a: A b: B c: C d: D
ap
(funx : Join C D =>
Join_rec (P_BC b) (P_BD b) (P_gBx b) x)
(jglue c d) = ?Goal
A, B, C, D, P: Type P_AC: A -> C -> P P_AD: A -> D -> P P_BC: B -> C -> P P_BD: B -> D -> P P_gAx: forall (a : A) (c : C) (d : D),
P_AC a c = P_AD a d P_gBx: forall (b : B) (c : C) (d : D),
P_BC b c = P_BD b d P_gxC: forall (c : C) (a : A) (b : B),
P_AC a c = P_BC b c P_gxD: forall (d : D) (a : A) (b : B),
P_AD a d = P_BD b d P_g: forall (a : A) (b : B) (c : C)
(d : D),
P_gAx a c d @ P_gxD d a b =
P_gxC c a b @ P_gBx b c d a: A b: B c: C d: D
P_gAx a c d @ P_gxD d a b = P_gxC c a b @ P_gBx b c d