Timings for Core.v
Require Import Basics.Overture.
Local Unset Elimination Schemes.
Local Set Universe Minimization ToSet.
Local Set Polymorphic Inductive Cumulativity.
(** * Lists *)
(** ** Definition *)
Declare Scope list_scope.
Local Open Scope list_scope.
(** A list is a sequence of elements from a type [A]. This is a very useful datatype and has many applications ranging from programming to algebra. It can be thought of a free monoid. *)
Inductive list@{i|} (A : Type@{i}) : Type@{i} :=
| nil : list A
| cons : A -> list A -> list A.
Delimit Scope list_scope with list.
Bind Scope list_scope with list.
(** This messes with Coq's parsing of [] in Ltac. Therefore we keep it commented out. It's not difficult to write [nil] instead. *)
(* Notation "[]" := nil : list_scope. *)
Infix "::" := cons : list_scope.
Scheme list_rect := Induction for list Sort Type.
Scheme list_ind := Induction for list Sort Type.
Scheme list_rec := Minimality for list Sort Type.
(** A tactic for doing induction over a list that avoids spurious universes. *)
Ltac simple_list_induction l h t IH :=
try generalize dependent l;
fix IH 1;
intros [| h t];
[ clear IH | specialize (IH t) ].
(** Syntactic sugar for creating lists. [ [a1, b2, ..., an] = a1 :: b2 :: ... :: an :: nil ]. *)
Notation "[ x ]" := (x :: nil) : list_scope.
Notation "[ x , y , .. , z ]" := (x :: (y :: .. (z :: nil) ..)) : list_scope.
(** ** Length *)
(** Notice that the definition of a list looks very similar to the definition of [nat]. It is as if each [S] constructor from [nat] has an element of [A] attached to it. We can discard this extra element and get a list invariant that we call [length]. *)
(** The length (number of elements) of a list. *)
Fixpoint length {A : Type} (l : list A) :=
match l with
| nil => O
| _ :: l => S (length l)
end.
(** ** Concatenation *)
(** Given two lists [ [a1; a2; ...; an] ] and [ [b1; b2; ...; bm] ], we can concatenate them to get [ [a1; a2; ...; an; b1; b2; ...; bm] ]. *)
Definition app {A : Type} : list A -> list A -> list A :=
fix app l m :=
match l with
| nil => m
| a :: l1 => a :: app l1 m
end.
Infix "++" := app : list_scope.
(** ** Folding *)
(** Folding is a very important operation on lists. It is a way to reduce a list to a single value. The [fold_left] function starts from the left and the [fold_right] function starts from the right. *)
(** [fold_left f l a0] computes [f (... (f (f a0 x1) x2) ...) xn] where [l = [x1; x2; ...; xn]]. *)
Fixpoint fold_left {A B} (f : A -> B -> A) (l : list B) (default : A) : A :=
match l with
| nil => default
| cons b l => fold_left f l (f default b)
end.
(** [fold_right f a0 l] computes [f x1 (f x2 ... (f xn a0) ...)] where [l = [x1; x2; ...; xn]]. *)
Fixpoint fold_right {A B} (f : B -> A -> A) (default : A) (l : list B) : A :=
match l with
| nil => default
| cons b l => f b (fold_right f default l)
end.
(** ** Maps - Functoriality of Lists *)
(** The [list_map] function applies a function to each element of a list. In other words [ list_map f [a1; a2; ...; an] = [f a1; f a2; ...; f an] ]. *)
Fixpoint list_map {A B : Type} (f : A -> B) (l : list A) :=
match l with
| nil => nil
| x :: l => (f x) :: (list_map f l)
end.
(** The [list_map2] function applies a binary function to corresponding elements of two lists. When one of the lists run out, it uses one of the default functions to fill in the rest. *)
Fixpoint list_map2 {A B C : Type} (f : A -> B -> C)
(def_l : list A -> list C) (def_r : list B -> list C) l1 l2 :=
match l1, l2 with
| nil, nil => nil
| nil, _ => def_r l2
| _, nil => def_l l1
| x :: l1, y :: l2 => (f x y) :: (list_map2 f def_l def_r l1 l2)
end.
(** ** Reversal *)
(** Tail-recursive list reversal. *)
Fixpoint reverse_acc {A : Type} (acc : list A) (l : list A) : list A :=
match l with
| nil => acc
| x :: l => reverse_acc (x :: acc) l
end.
(** Reversing the order of a list. The list [ [a1; a2; ...; an] ] becomes [ [an; ...; a2; a1] ]. *)
Definition reverse {A : Type} (l : list A) : list A := reverse_acc nil l.
(** ** Getting Elements *)
(** The head of a list is its first element. Returns [None] If the list is empty. *)
Definition head {A : Type} (l : list A) : option A :=
match l with
| nil => None
| a :: _ => Some a
end.
(** The tail of a list is the list without its first element. *)
Definition tail {A : Type} (l : list A) : list A :=
match l with
| nil => nil
| a :: m => m
end.
(** The last element of a list. If the list is empty, it returns [None]. *)
Fixpoint last {A : Type} (l : list A) : option A :=
match l with
| nil => None
| a :: nil => Some a
| _ :: l => last l
end.
(** The [n]-th element of a list. If the list is too short, it returns [None]. *)
Fixpoint nth {A : Type} (l : list A) (n : nat) : option A :=
match n, l with
| O, x :: _ => Some x
| S n, _ :: l => nth l n
| _, _ => None
end.
(** ** Removing Elements *)
(** Remove the last element of a list and do nothing if it is empty. *)
Fixpoint remove_last {A : Type} (l : list A) : list A :=
match l with
| nil => nil
| _ :: nil => nil
| x :: l => x :: remove_last l
end.
(** ** Sequences *)
(** Descending sequence of natural numbers starting from [n.-1] to [0]. *)
Fixpoint seq_rev (n : nat) : list nat :=
match n with
| O => nil
| S n => n :: seq_rev n
end.
(** Ascending sequence of natural numbers [< n]. *)
Definition seq (n : nat) : list nat := reverse (seq_rev n).
(** ** Repeat *)
(** Repeat an element [n] times. *)
Fixpoint repeat {A : Type} (x : A) (n : nat) : list A :=
match n with
| O => nil
| S n => x :: repeat x n
end.
(** ** Membership Predicate *)
(** The "In list" predicate *)
Fixpoint InList@{i|} {A : Type@{i}} (a : A) (l : list A) : Type@{i} :=
match l with
| nil => Empty
| b :: m => (b = a) + InList a m
end.
(** ** Forall *)
(** Apply a predicate to all elements of a list and take their conjunction. *)
Fixpoint for_all@{i j|} {A : Type@{i}} (P : A -> Type@{j}) l : Type@{j} :=
match l with
| nil => Unit
| x :: l => P x /\ for_all P l
end.
(** ** Exists *)
(** Apply a predicate to all elements of a list and take their disjunction. *)
Fixpoint list_exists@{i j|} {A : Type@{i}} (P : A -> Type@{j}) l : Type@{j} :=
match l with
| nil => Empty
| x :: l => P x + list_exists P l
end.