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CwF-semantics of Type Theory

Semantics of type theories based on categories with families (CwF)
(Dybjer 1996).

m Martin-Lof type theory

m Homotopy type theory

m Homotopy type system (Voevodsky 2013) and two-level type
theory (Annenkov, Capriotti, and Kraus 2017)

m Cubical type theory (Cohen et al. 2018)

To define a general notion of a “type theory” to unify the
CwF-semantics of various type theories.
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Natural Models



Natural Models

An alternative definition of CwF.

Definition (Awodey 2018)

A natural model consists of...

m a category 8 (with a terminal object);
m a map p: E — U of presheaves over §

such that p is representable: for any object I' € § and element
A € U(T"), the presheaf A*E defined by the pullback

A*E —— E
L7 b
J:FT>u

is representable, where X is the Yoneda embedding.



Interpreting Type Theory

Natural model

Type theory
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Representable Maps

The representable map p : E — U models context comprehension:

LA AL E

ﬂAl - lp X{A} = A'E

J:FT>U

Natural model

Type theory
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Variable Binding

Variable binding is modeled by the pushforward
P« : [8°P, Set]/E — [8°P, Set]/U, that is, the right adjoint to the
pullback p*.

Example

P« (E x U) is the presheaf of type families: for I' € 8 and
A: KT — U, we have

p«(E x U)

T l ;{ X{A} » U }

Mfu

so a section of p..(E x U) over A is a type family I', x : A = B type.



Modeling Type Constructors

Consider dependent function types (TT-types).

' A type I''x:AF B type

I H B type
X:A

It is modeled by an operation TT such that
m (A, B)e Ul forT €8, A e U(l') and B € U({A});
m T commutes with substitution.

Thus TT is a map p.(E x U) — U of presheaves.



Cubical Type Theory

To model (cartesian) cubical type theory, we need more
representable maps.

Example

Contexts can be extended by an interval:

' ctx
i:IF ctx

This is modeled by a presheaf I such that the map I — 1 is
representable.



Summary on Natural Models

An (extended) natural model consists of...
m a category 8 (with a terminal object);
m some presheaves U, E, ... over S;
m some representable maps p: E— U, .. ;

m some maps X — Y of presheaves over § where X and Y are
built up from W, E,...,p,... using finite limits and
pushforwards along the representable maps p, .. ..



Type Theories



Representable Map Categories
| Definition |

Definition

A representable map category is a category A equipped with a

class of arrows called representable arrows satisfying the following:
m A has finite limits;

m identity arrows are representable and representable arrows are
closed under composition;

m representable arrows are stable under pullbacks;

m representable arrows are exponentiable: the pushforward
fe: A/X — A/Y along a representable arrow f: X — Y exists.

[8°P, Set] with representable maps of presheaves.




Representable Map Categories

Proposition (Weber 2015)

Exponentiable arrows are stable under pullbacks.

Example
A category A with finite limits has structures of a representable
map category:
Smallest one only isomorphisms are representable;
Largest one all exponentiable arrows are representable.

Also, given a class R of exponentiable arrows, we have the smallest
structure of a representable map category containing R.



Type Theories

A type theory is a (small) representable map category T.

A model of a type theory T consists of...

m a category 8 with a terminal object;

m a morphism (—)® : T — [8°P, Set] of representable map
categories, i.e. a functor preserving everything.

Cf. Functorial semantics of algebraic theories (Lawvere 1963),
first-order categorical logic (Makkai and Reyes 1977)



Generalised Algebraic Theories

We give an example G of a type theory whose models are precisely
the natural models.

Definition

We denote by G the opposite of the category of finitely presentable
generalised algebraic theories (GATs) (Cartmell 1978).

From the general theory of locally presentable categories (Adamek
and Rosicky 1994), we get:

Proposition

G is essentially small and has finite limits, and Fung,im (G, Set) is
equivalent to the category of generalised algebraic theories.



An Exponentiable Map of GATs

Definition

m Up € G is the GAT consisting of a type constant Ag.

m Ey € G is the GAT consisting of a type constant A and a
term constant ag : Ap.

m Jg: Eg — Ug is the arrow in G represented by the inclusion
UQ — E().

Proposition

0o : Eg — Ug in G is exponentiable.

So G has the smallest structure of a representable map category
containing 0o.



An Exponentiable Map of GATs

Let X denote the finite GAT

F B type
x1:B,x2: BF C(x1,x2) type
x:BFc(x): C(x,x).

Then (0g)«(Eg x X) is the finite GAT

F Ag type
Xo:Ag bk B(Xo) type
X0 : Ag, X1 : B(x0), x2 : B(x0) F C(x0, X1, X2) type
X0 : Ag, x : B(xg) F ¢(xg,x) : C(xg, %, %).



Representable Map Category of Finite GATs

Theorem

G is “freely generated by 0o0" as a representable map category: for
a representable map category A and a representable arrow

f: X =Y in A, there exists a unique, up to isomorphism,
morphism F : G — A of representable map categories equipped
with an isomorphism Fog = f.

Corollary

Models of G ~ Natural models (~ CwFs)



Semantics of Type Theories



Bi-initial Models

Let T be a type theory.

The 2-category Modt of models of T has a bi-initial object.




Theory-model Correspondence

A T-theory is a functor T — Set preserving finite limits. Put
Th’[r = Fllllﬁn“m (T, Set).

A G-theory is a generalised algebraic theory.




Theory-model Correspondence

| Definition |

We define the internal language 2-functor Lt : Modp — Thry as

_\S
Lp(8) = < T 20 (5o, Set] 225 Set >

Lt has a left bi-adjoint with invertible unit.




Theory-model Correspondence

When T = G, we get a bi-adjunction

S

CwFs L GATs

\_/



Conclusion

A type theory is a (small) representable map category T.

Further results and future directions:
m Logical framework for representable map categories

m Application: canonicity by gluing representable map categories
(instead of gluing models)?

What can we say about the 2-categoty Modr?

What can we say about the category Thry?

Variations: internal type theories? (oo, 1)-type theories?
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The Bi-initial Model

For a type theory T, we define a model J(T) of T:

m the base category is the full subcategory of T consisting of
those I' € T such that the arrow I' — 1 is representable;

m we define (—)?(T) to be the composite
T —%5 [T°P, Set] — [J(T)°P, Set].

Given a model 8 of T, we have a functor

Ty - F.»8
[ o= b

T ﬁ Sop Set

and F can be extended to a morphism of models of T.
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