Calculational HoTT
 International Conference on Homotopy Type Theory (HoTT 2019)
 Carnegie Mellon University August 12 to 17, 2019

Bernarda Aldana, Jaime Bohorquez, Ernesto Acosta Escuela Colombiana de Ingeniería Bogotá, Colombia

Content

(1) A FEW INITIAL WORDS
(2) Brief description of CL
(3) The problem
(4) Deductive chains
(5) Calculational HoTT
(6) A deduction
(7) Conclusions

Presentation

What we do is to rewrite math topics using Calculational Logic (CL),

Presentation

What we do is to rewrite math topics using Calculational Logic (CL), as there is a large community rewriting math in terms of HoTT.

Presentation

What we do is to rewrite math topics using Calculational Logic (CL), as there is a large community rewriting math in terms of HoTT.

We ended up trying to interpret HoTT in terms of CL.

Presentation

What we do is to rewrite math topics using Calculational Logic (CL), as there is a large community rewriting math in terms of HoTT.

We ended up trying to interpret HoTT in terms of CL.
The result: "Calculational HoTT"(arXiv:1901.08883v2), a joint work with Bernarda Aldana and Jaime Bohorquez.

Equational axioms and Leibniz rules

Brief description of CL.

Main feature:

CL axioms are logical equations

$$
A \equiv B, C \equiv D, \ldots
$$

CL is an equational logical system
are Leibniz's rules

$$
\begin{aligned}
& \frac{E[x / A] \quad A \equiv B}{E[x / B]} \\
& \frac{E[x / B] \quad A \equiv B}{E[x / A]}
\end{aligned}
$$

Calculations

Derivations in CL are deduction trees of the form:

where A through F are subformulas of the corresponding E_{i}.

Calculations

Derivations in CL are deduction trees of the form:
where A through F are subformulas of the corresponding E_{i}.

This deduction tree, written vertically, is what Lifschitz called 'Calculation'[Lifs]:

$$
\begin{array}{|ll|l}
& E_{1} \\
\Leftrightarrow & E_{2}\langle A \equiv B\rangle & \text { which derives } E_{1} \equiv E_{4} \\
\Leftrightarrow & E_{2}\langle C \equiv D\rangle \\
\Leftrightarrow & E_{3}\langle E \equiv F\rangle & \begin{array}{l}
\text { Double arrows stand for the bidi- } \\
\\
\\
\\
E_{4}
\end{array} \\
\text { rectionality of Leibniz rules }
\end{array}
$$

Calculations

Derivations in CL are deduction trees of the form:
where A through F are subformulas of the corresponding E_{i}.

This deduction tree, written vertically, is what Lifschitz called 'Calculation'[Lifs]:

$$
\begin{array}{|ll|l}
& E_{1} \\
\Leftrightarrow & E_{2}\langle A \equiv B\rangle \\
\Leftrightarrow & { }^{2}\langle C \equiv D\rangle \\
\Leftrightarrow & E_{3}\langle E \equiv F\rangle
\end{array}\left|\begin{array}{l}
\text { which derives } \quad E_{1} \equiv E_{4} \\
\\
\\
E_{4}
\end{array}\right| \begin{aligned}
& \text { Double arrows stand for the bidi- } \\
& \text { rectionality of Leibniz rules }
\end{aligned}
$$

There are sound and complete calculational versions of both, classical (CCL) and intuitionistic (ICL) first order logic.

Embeddings

The problem

Curry-Howard isomorphism embeds intuitionistic predicate logic into dependent type theory

Embeddings

The problem

Curry-Howard isomorphism embeds intuitionistic predicate logic into dependent type theory

We pose ourself the following question:
Is it possible to embed ICL into HoTT?

Embeddings

The problem
Curry-Howard isomorphism embeds intuitionistic predicate logic into dependent type theory

We pose ourself the following question:
Is it possible to embed ICL into HoTT?

We concentrated in

- establishing a linear calculation format as an instrument to understand proofs in HoTT book, and

Embeddings

The problem
Curry-Howard isomorphism embeds intuitionistic predicate logic into dependent type theory

We pose ourself the following question:
Is it possible to embed ICL into HoTT?

We concentrated in

- establishing a linear calculation format as an instrument to understand proofs in HoTT book, and
- identify and derive equational judgments in HoTT.

Embeddings

The problem

Curry-Howard isomorphism embeds intuitionistic predicate logic into dependent type theory

We pose ourself the following question:
Is it possible to embed ICL into HoTT?

We concentrated in

- establishing a linear calculation format as an instrument to understand proofs in HoTT book, and
- identify and derive equational judgments in HoTT.

Note: We expected to be more comfortable with a linear calculation format as an instrument to understand proofs in HoTT book.

Deductive chains

First: Definition of deductive chains.

Deductive chains

First: Definition of deductive chains.

$$
\begin{array}{cc}
& A \rightarrow B<: \\
A \leadsto B & \begin{array}{c}
\text { stands temporarily } \\
\text { for one of the } \\
\text { judgments }
\end{array}
\end{array} \begin{array}{ll}
& A \equiv B \\
(\text { read } A \text { leads to } B) & \text { or } A \simeq B<:
\end{array}
$$

Deductive chains

First: Definition of deductive chains.

$$
A \rightarrow B<:
$$

$A \leadsto B$	stands temporarily
$(\operatorname{read} A$ leads to $B)$	for one of the judgments

or $A \simeq B<$:

It is easy to prove the following transitivity rule scheme

$$
\frac{A_{1} \leadsto A_{2} \quad A_{2} \leadsto A_{3}}{A_{1} \leadsto A_{3}}
$$

where the conclusion corresponds to

Deductive chains

First: Definition of deductive chains.

$$
A \rightarrow B<:
$$

$A \leadsto B$	stands temporarily for one of the
$(\operatorname{read} A$ leads to $B)$	$A \equiv B$
judgments	

or $A \simeq B<$:

It is easy to prove the following transitivity rule scheme
$\frac{A_{1} \leadsto A_{2} \quad A_{2} \leadsto A_{3}}{A_{1} \leadsto A_{3}}$
where the conclusion corresponds to

$$
\begin{aligned}
& A_{1} \rightarrow A_{3}<: \quad \begin{array}{l}
\text { if at least one of the premises is a judgment of the } \\
\text { form } A \rightarrow B<:
\end{array}
\end{aligned}
$$

Deductive chains

First: Definition of deductive chains.

$$
A \rightarrow B<:
$$

| $A \leadsto B$ | stands temporarily
 for one of the
 judgments |
| :---: | :---: |$\quad A \equiv B$

or $A \simeq B<$:

It is easy to prove the following transitivity rule scheme
$\frac{A_{1} \leadsto A_{2} \quad A_{2} \leadsto A_{3}}{A_{1} \leadsto A_{3}}$
where the conclusion corresponds to
$A_{1} \rightarrow A_{3}<: \quad$ if at least one of the premises is a judgment of the form $A \rightarrow B<$:
$A_{1} \simeq A_{3}<: \quad$ if none of the premises is of the form $A \rightarrow B<$: and at least one is of the form $A \simeq B<$:

Deductive chains

First: Definition of deductive chains.

$$
A \rightarrow B<:
$$

| $A \leadsto B$ | stands temporarily
 for one of the
 judgments |
| :---: | :---: |$\quad A \equiv B$

or $A \simeq B<$:

It is easy to prove the following transitivity rule scheme
$\frac{A_{1} \leadsto A_{2} \quad A_{2} \leadsto A_{3}}{A_{1} \leadsto A_{3}}$
where the conclusion corresponds to
$A_{1} \rightarrow A_{3}<: \quad$ if at least one of the premises is a judgment of the form $A \rightarrow B<$:
$A_{1} \simeq A_{3}<: \quad$ if none of the premises is of the form $A \rightarrow B<$: and at least one is of the form $A \simeq B<$:
$A_{1} \equiv A_{3} \quad$ if all the premises are of the form $A \equiv B$

Deductive chains

By induction we have the following derivation

Deductive chains

By induction we have the following derivation

which may be represented vertically by the following format-scheme

$$
\left.\begin{array}{cl}
\leftrightarrows & A_{n} \\
\leftrightarrows & A_{n-1} \\
\vdots & \\
\leftrightarrows & A_{2}\langle\cdots\rangle \\
& A_{1}\langle\cdots\rangle \\
\vdots & a
\end{array}{ }^{\langle\cdots\rangle}\right\rangle
$$

which we called a deductive chain.

Deductive chains

The links in this format-scheme are

$$
\begin{array}{|l|l|l|}
\hline & & \\
\leftrightarrows \\
A
\end{array}
$$

Deductive chains

The links in this format-scheme are

Deductive chains

The links in this format-scheme are

Deductive chains

The links in this format-scheme are

$\leftrightarrows \begin{aligned} & B \\ & A \end{aligned}\rangle$	consequence link	$\leftarrow{ }_{A}^{B}\langle: ; \text { evidence }\rangle$
	equivalence link	$\equiv{ }_{A}^{B}\langle\text { evidence }\rangle$
	h-equivalence link	$\simeq{ }_{A}^{B}\langle: ; \text { evidence }\rangle$

Deductive chains

The links in this format-scheme are

$\leftrightarrows{ }_{A}^{B}\langle \rangle$	consequence link	$\leftarrow{ }_{A}^{B}\langle: ; \text { evidence }\rangle$
	equivalence link	$\equiv{ }_{A}^{B}\langle\text { evidence }\rangle$
	h-equivalence link	$\simeq{ }_{A}^{B}\langle: ; \text { evidence }\rangle$

The link at the bottom of the deductive chain is called inhabitation link.

Quantified proposition notation

Unified notation for operationals

$$
(\mathcal{Q} x: T \mid \text { range } \cdot \text { term })
$$

Quantified proposition notation

Unified notation for operationals

$$
(\mathcal{Q} x: T \mid \text { range } \cdot \text { term })
$$

Examples:
-Summation:

$$
\left(\Sigma i: \mathbb{N} \mid 1 \leq i \leq 3 \cdot i^{2}\right)=1^{2}+2^{2}+3^{2}
$$

Quantified proposition notation

Unified notation for operationals

$$
(\mathcal{Q} x: T \mid \text { range } \cdot \text { term })
$$

Examples:
-Summation:

$$
\left(\Sigma i: \mathbb{N} \mid 1 \leq i \leq 3 \cdot i^{2}\right)=1^{2}+2^{2}+3^{2}
$$

-Logical operationals (universal and existential quantifiers)
($\forall x: T \mid$ range \cdot term) for conjunction,
$(\exists x: T \mid$ range \cdot term $)$ for disjunction.

Quantified proposition notation

Unified notation for operationals

$$
(\mathcal{Q} x: T \mid \text { range } \cdot \text { term })
$$

Examples:
-Summation:

$$
\left(\Sigma i: \mathbb{N} \mid 1 \leq i \leq 3 \cdot i^{2}\right)=1^{2}+2^{2}+3^{2}
$$

-Logical operationals (universal and existential quantifiers)
($\forall x: T \mid$ range \cdot term) for conjunction,
$(\exists x: T \mid$ range \cdot term $)$ for disjunction.
[Trade] rules

$$
\begin{gathered}
(\forall x: T \mid P \cdot Q) \equiv(\forall x: T \cdot P \Rightarrow Q) \\
(\exists x: T \mid P \cdot Q) \equiv(\exists x: T \cdot P \wedge Q)
\end{gathered}
$$

ICL quantified axioms and theorems

Second: identify and derive equational judgments of HoTT corresponding to axioms and theorems of ICL:

ICL quantified axioms and theorems

Second: identify and derive equational judgments of HoTT corresponding to axioms and theorems of ICL:

$$
\begin{array}{|l}
(\forall x: T \mid x=a \cdot P) \equiv P[a / x] \\
(\exists x: T \mid x=a \cdot P) \equiv P[a / x] \tag{ICL}
\end{array}
$$

[One-Point](%5B):

ICL quantified axioms and theorems

Second: identify and derive equational judgments of HoTT corresponding to axioms and theorems of ICL:

$$
\begin{array}{|c}
(\forall x: T \mid x=a \cdot P) \equiv P[a / x] \\
(\exists x: T \mid x=a \cdot P) \equiv P[a / x] \tag{ICL}\\
\hline
\end{array}
$$

$$
\begin{array}{|c|}
\prod_{x: A} \prod_{p: x=a} P(x, p) \simeq P\left(a, \operatorname{refl}_{a}\right)<: \\
\sum_{x: A} \sum_{p: x=a} P(x, p) \simeq P\left(a, \operatorname{refl}_{a}\right)<: \tag{HoTT}
\end{array}
$$
\]

ICL quantified axioms and theorems

Second: identify and derive equational judgments of HoTT corresponding to axioms and theorems of ICL:

$$
\begin{align*}
& (\forall x: T \mid x=a \cdot P) \equiv P[a / x] \\
& (\exists x: T \mid x=a \cdot P) \equiv P[a / x] \tag{ICL}
\end{align*}
$$

$$
\begin{align*}
& \prod_{x: A} \prod_{p: x=a} P(x, p) \simeq P\left(a, \operatorname{ref}_{a}\right)<: \tag{HoTT}\\
& \sum_{x: A} \sum_{p: x=a} P(x, p) \simeq P\left(a, \operatorname{ref}_{a}\right)<: \\
& (\forall x, y: T \mid x=y \cdot P) \equiv(\forall x: T \cdot P[x / y]) \\
& (\exists x, y: T \mid x=y \cdot P) \equiv(\exists x: T \cdot P[x / y]) \tag{ICL}
\end{align*}
$$
\]

[Equality](%5B):

ICL quantified axioms and theorems

Second: identify and derive equational judgments of HoTT corresponding to axioms and theorems of ICL:

$$
\begin{align*}
& (\forall x: T \mid x=a \cdot P) \equiv P[a / x] \\
& (\exists x: T \mid x=a \cdot P) \equiv P[a / x] \tag{ICL}\\
& \hline
\end{align*}
$$

$$
\begin{align*}
& \begin{array}{l}
\prod_{x: A} \prod_{p: x=a} P(x, p) \simeq P\left(a, \mathrm{ref}_{a}\right)<: \\
\sum_{x: A} \sum_{p: x=a} P(x, p) \simeq P\left(a, \text { refl }_{a}\right)<: \\
(\forall x, y: T \mid x=y \cdot P) \equiv(\forall x: T \cdot P[x / y]) \\
(\exists x, y: T \mid x=y \cdot P) \equiv(\exists x: T \cdot P[x / y])
\end{array} \\
& \tag{HoTT}
\end{align*}
$$
\]

$$
\begin{gather*}
\prod_{x, y: A} \prod_{p: x=y} P(x, y, p) \simeq \prod_{x: A} P\left(x, x, \text { refl }_{x}\right)<: \tag{HoTT}\\
\sum_{x, y: A} \sum_{p: x=y} P(x, y, p) \simeq \sum_{x: A} P\left(x, x, \text { refl }_{x}\right)<:
\end{gather*}
$$
\]

ICL quantified axioms and theorems

$$
\begin{aligned}
& (\forall x: T \mid P \vee Q \cdot R) \equiv(\forall x: T \mid P \cdot R) \wedge(\forall x: T \mid Q \cdot R) \\
& (\exists x: T \mid P \vee Q \cdot R) \equiv(\exists x: T \mid P \cdot R) \vee(\exists x: T \mid Q \cdot R) \\
& \hline
\end{aligned}
$$

[Range Split](%5B):

ICL quantified axioms and theorems

$$
\begin{aligned}
& (\forall x: T \mid P \vee Q \cdot R) \equiv(\forall x: T \mid P \cdot R) \wedge(\forall x: T \mid Q \cdot R) \\
& (\exists x: T \mid P \vee Q \cdot R) \equiv(\exists x: T \mid P \cdot R) \vee(\exists x: T \mid Q \cdot R) \\
& \hline
\end{aligned}
$$

$$
\begin{array}{|c}
\prod_{x: A+B} P(x) \simeq \prod_{x: A} P(\operatorname{inl}(x)) \times \prod_{x: B} P(\operatorname{inr}(x))<: \\
\sum_{x: A+B} P(x) \simeq \sum_{x: A} P(\operatorname{inl}(x))+\sum_{x: B} P(\operatorname{inr}(x))<:
\end{array}
$$
\]

ICL quantified axioms and theorems

$$
\begin{aligned}
& (\forall x: T \mid P \vee Q \cdot R) \equiv(\forall x: T \mid P \cdot R) \wedge(\forall x: T \mid Q \cdot R) \\
& (\exists x: T \mid P \vee Q \cdot R) \equiv(\exists x: T \mid P \cdot R) \vee(\exists x: T \mid Q \cdot R) \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\prod_{x: A+B} P(x) \simeq \prod_{x: A} P(\operatorname{inl}(x)) \times \prod_{x: B} P(\operatorname{inr}(x))<: \\
\sum_{x: A+B} P(x) \simeq \sum_{x: A} P(\operatorname{inl}(x))+\sum_{x: B} P(\operatorname{inr}(x))<: \\
(\forall x: T \mid P \cdot Q \wedge R) \equiv(\forall x: T \mid P \cdot Q) \wedge(\forall x: T \mid P \cdot R) \\
(\exists x: T \mid P \cdot Q \vee R) \equiv(\exists x: T \mid P \cdot Q) \vee(\exists x: T \mid P \cdot R)
\end{array} \\
& \hline
\end{aligned}
$$
\]

[Term Split](%5B):

ICL quantified axioms and theorems

$$
\begin{aligned}
& (\forall x: T \mid P \vee Q \cdot R) \equiv(\forall x: T \mid P \cdot R) \wedge(\forall x: T \mid Q \cdot R) \\
& (\exists x: T \mid P \vee Q \cdot R) \equiv(\exists x: T \mid P \cdot R) \vee(\exists x: T \mid Q \cdot R) \\
& \hline
\end{aligned}
$$

$$
\begin{gathered}
\prod_{x: A+B} P(x) \simeq \prod_{x: A} P(\operatorname{inl}(x)) \times \prod_{x: B} P(\operatorname{inr}(x))<: \\
\sum_{x: A+B} P(x) \simeq \sum_{x: A} P(\operatorname{inl}(x))+\sum_{x: B} P(\operatorname{inr}(x))<:
\end{gathered}
$$
\]

$$
\begin{aligned}
& (\forall x: T \mid P \cdot Q \wedge R) \equiv(\forall x: T \mid P \cdot Q) \wedge(\forall x: T \mid P \cdot R) \\
& (\exists x: T \mid P \cdot Q \vee R) \equiv(\exists x: T \mid P \cdot Q) \vee(\exists x: T \mid P \cdot R) \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
\prod_{x: A}(P(x) \times Q(x)) & \simeq \prod_{x: A} P(x) \times \prod_{x: A} Q(x)<: \\
\sum_{x: A}(P(x)+Q(x)) & \simeq \sum_{x: A} P(x)+\sum_{x: A} Q(x)<:
\end{aligned}
$$
\]

ICL quatified axioms and theorems

[Translation] | $(\forall x: J \mid P \cdot Q) \equiv(\forall y: K \mid P[f(y) / x] \cdot Q[f(y) / x])$ |
| :--- |
| $(\exists x: J \mid P \cdot Q) \equiv(\exists y: K \mid P[f(y) / x] \cdot Q[f(y) / x])$, |

where f is a bijection that maps values of type K to values of type J.

ICL quatified axioms and theorems

[Translation] | $(\forall x: J \mid P \cdot Q) \equiv(\forall y: K \mid P[f(y) / x] \cdot Q[f(y) / x])$ |
| :--- |
| $(\exists x: J \mid P \cdot Q) \equiv(\exists y: K \mid P[f(y) / x] \cdot Q[f(y) / x])$, |

where f is a bijection that maps values of type K to values of type J.

[Congruence] | $(\forall x: T \mid P \cdot Q \equiv R) \Rightarrow((\forall x: T \mid P \cdot Q) \equiv(\forall x: T \mid P \cdot R))$ |
| :--- |
| $(\forall x: T \mid P \cdot Q \equiv R) \Rightarrow((\exists x: T \mid P \cdot Q) \equiv(\exists x: T \mid P \cdot R))$ |

ICL quatified axioms and theorems

[Translation] | $(\forall x: J \mid P \cdot Q) \equiv(\forall y: K \mid P[f(y) / x] \cdot Q[f(y) / x])$ |
| :---: |
| $(\exists x: J \mid P \cdot Q) \equiv(\exists y: K \mid P[f(y) / x] \cdot Q[f(y) / x])$, |

where f is a bijection that maps values of type K to values of type J.

[Congruence] | $(\forall x: T \mid P \cdot Q \equiv R) \Rightarrow((\forall x: T \mid P \cdot Q) \equiv(\forall x: T \mid P \cdot R))$ |
| :--- |
| $(\forall x: T \mid P \cdot Q \equiv R) \Rightarrow((\exists x: T \mid P \cdot Q) \equiv(\exists x: T \mid P \cdot R))$ |

[Antecedent] | $R \Rightarrow(\forall x: T \mid P \cdot Q) \equiv(\forall x: T \mid P \cdot R \Rightarrow Q)$ |
| :--- |
| $R \Rightarrow(\exists x: T \mid P \cdot Q) \equiv(\exists x: T \mid P \cdot R \Rightarrow Q)$ |

when there are not free occurrences of x in R.

ICL quatified axioms and theorems

$$
\begin{aligned}
& (\forall x: J \mid P \cdot Q) \equiv(\forall y: K \mid P[f(y) / x] \cdot Q[f(y) / x]) \\
& (\exists x: J \mid P \cdot Q) \equiv(\exists y: K \mid P[f(y) / x] \cdot Q[f(y) / x]),
\end{aligned}
$$

where f is a bijection that maps values of type K to values of type J.
[Congruence]

$$
(\forall x: T \mid P \cdot Q \equiv R) \Rightarrow((\forall x: T \mid P \cdot Q) \equiv(\forall x: T \mid P \cdot R))
$$

$$
(\forall x: T \mid P \cdot Q \equiv R) \Rightarrow((\exists x: T \mid P \cdot Q) \equiv(\exists x: T \mid P \cdot R))
$$

$$
\begin{array}{|l}
R \Rightarrow(\forall x: T \mid P \cdot Q) \equiv(\forall x: T \mid P \cdot R \Rightarrow Q) \\
R \Rightarrow(\exists x: T \mid P \cdot Q) \equiv(\exists x: T \mid P \cdot R \Rightarrow Q)
\end{array}
$$

when there are not free occurrences of x in R.
[Leibniz principles]

$$
(\forall x, y: T \mid x=y \cdot f(x)=f(y))
$$

$$
(\exists x, y: T \mid x=y \cdot P(x) \equiv P(y))
$$

where f is a function that maps values of type T to values of any other type and P is a predicate.

Equational judgments in HoTT

[Translation] | $\prod_{x: A} P(x) \simeq \prod_{y: B} P(g(y))<:$ |
| :--- |
| $\sum_{x: A} P(x) \simeq \sum_{y: B} P(g(y))<:$ |

where g is an inhabitant of $B \simeq A$.

Equational judgments in HoTT

[Translation] | $\prod_{x: A} P(x) \simeq \prod_{y: B} P(g(y))<:$ |
| :--- |
| $\sum_{x: A} P(x) \simeq \sum_{y: B} P(g(y))<:$ |

where g is an inhabitant of $B \simeq A$.
[Congruence] $\quad \begin{aligned} & \prod_{x: A}(P(x) \simeq Q(x)) \rightarrow\left(\prod_{x: A} P(x) \simeq \prod_{x: A} Q(x)\right)<: \\ & \prod_{x: A}(P(x) \simeq Q(x)) \rightarrow\left(\sum_{x: A} P(x) \simeq \sum_{x: A} Q(x)\right)<:\end{aligned}$

Equational judgments in HoTT

[Translation] | $\prod_{x: A} P(x) \simeq \prod_{y: B} P(g(y))<:$ |
| :--- |
| $\sum_{x: A} P(x) \simeq \sum_{y: B} P(g(y))<:$ |

where g is an inhabitant of $B \simeq A$.

[Antecedent]
when R does not depend on x.

Equational judgments in HoTT

[Translation]

$$
\begin{aligned}
& \prod_{x: A} P(x) \simeq \prod_{y: B} P(g(y))<: \\
& \sum_{x: A} P(x) \simeq \sum_{y: B} P(g(y))<:
\end{aligned}
$$

where g is an inhabitant of $B \simeq A$.
[Congruence]

$$
\prod_{x: A}(P(x) \simeq Q(x)) \rightarrow\left(\prod_{x: A} P(x) \simeq \prod_{x: A} Q(x)\right)<:
$$

$$
\prod_{x: A}(P(x) \simeq Q(x)) \rightarrow\left(\sum_{x: A} P(x) \simeq \sum_{x: A} Q(x)\right)<:
$$

[Antecedent]

$$
\begin{aligned}
&\left(R \rightarrow \prod_{x: A} Q(x)\right) \simeq \prod_{x: A}(R \rightarrow Q(x))<: \\
& \sum_{x: A}(R \rightarrow Q(x)) \rightarrow\left(R \rightarrow \sum_{x: A} Q(x)\right)<:
\end{aligned}
$$

when R does not depend on x.
[Leibniz principles]

$$
\prod_{x, y: A} x=y \rightarrow f(x)=f(y)<:
$$

$\prod_{x, y: A} x=y \rightarrow P(x) \simeq P(y)<:$
where $f: A \rightarrow B$ and $P: A \rightarrow \mathcal{U}$ is a type family.

A deduction

I will derive the judgment

$$
\begin{equation*}
\left(\prod_{x: A} \prod_{y: B(x)} P((x, y))\right) \simeq \prod_{g: \sum_{x: A} B(x)} P(g)<: \tag{1}
\end{equation*}
$$

which corresponds to the homotopic equivalence version of the Σ induction operator.

A deduction

I will derive the judgment

$$
\begin{equation*}
\left(\prod_{x: A} \prod_{y: B(x)} P((x, y))\right) \simeq \prod_{g: \sum_{x: A} B(x)} P(g)<: \tag{1}
\end{equation*}
$$

which corresponds to the homotopic equivalence version of the Σ induction operator.

Note. The ICL theorem corresponding to (1), when P is a non-dependent type, is

$$
(\forall x: T \mid B \cdot P) \equiv(\exists x: T \cdot B) \Rightarrow P
$$

where x does not occur free in P.
This motivate us to call the equivalence Σ-[Consequent] rule.

A deduction

Recall that the Σ-induction operator

$$
\boldsymbol{\sigma}:\left(\prod_{x: A} \prod_{y: B(x)} P((x, y))\right) \rightarrow \prod_{g: \sum_{x: A} B(x)} P(g)
$$

is defined by

$$
\boldsymbol{\sigma}(u)((x, y)): \equiv u(x)(y)
$$

A deduction

Recall that the Σ-induction operator

$$
\begin{gathered}
\boldsymbol{\sigma}:\left(\prod_{x: A} \prod_{y: B(x)} P((x, y))\right) \rightarrow \prod_{g: \sum_{x: A} B(x)} P(g) \\
\text { is defined by } \\
\boldsymbol{\sigma}(u)((x, y)): \equiv u(x)(y)
\end{gathered}
$$

Let

$$
\Phi:\left(\prod_{g: \sum_{x: A} B(x)} P(g)\right) \rightarrow \prod_{x: A} \prod_{y: B(x)} P((x, y))
$$

be defined by

$$
\Phi(v)(x)(y): \equiv v((x, y))
$$

A deduction

Let u be an inhabitant of $\prod_{x: A} \prod_{y: B(x)} P((x, y))$,

A deduction

Let u be an inhabitant of $\prod_{x: A} \prod_{y: B(x)} P((x, y))$, then

$$
\Phi(\boldsymbol{\sigma}(u))=u
$$

A deduction

Let u be an inhabitant of $\prod_{x: A} \prod_{y: B(x)} P((x, y))$, then

$$
\begin{array}{ll}
& \Phi(\boldsymbol{\sigma}(u))=u \\
\simeq \quad & \langle: ; \text { Function extensionality }\rangle \\
& \prod_{x: A} \prod_{y: B(x)} \Phi(\boldsymbol{\sigma}(u))(x)(y)=u(x)(y)
\end{array}
$$

A deduction

Let u be an inhabitant of $\prod_{x: A} \prod_{y: B(x)} P((x, y))$, then

$$
\begin{array}{ll}
& \Phi(\boldsymbol{\sigma}(u))=u \\
\simeq \quad & \langle: ; \text { Function extensionality }\rangle \\
& \prod_{x: A} \prod_{y: B(x)} \Phi(\boldsymbol{\sigma}(u))(x)(y)=u(x)(y) \\
\equiv \quad & \langle\Phi(\boldsymbol{\sigma}(u)) \equiv \boldsymbol{\sigma}(u)((x, y)) \equiv u(x)(y)\rangle \\
& \prod_{x: A} \prod_{y: B(x)} u(x)(y)=u(x)(y)
\end{array}
$$

A deduction

Let u be an inhabitant of $\prod_{x: A} \prod_{y: B(x)} P((x, y))$, then

$$
\begin{array}{ll}
& \Phi(\boldsymbol{\sigma}(u))=u \\
\simeq \quad & \langle: ; \text { Function extensionality }\rangle \\
& \prod_{x: A} \prod_{y: B(x)} \Phi(\boldsymbol{\sigma}(u))(x)(y)=u(x)(y) \\
\equiv & \langle\Phi(\boldsymbol{\sigma}(u)) \equiv \boldsymbol{\sigma}(u)((x, y)) \equiv u(x)(y)\rangle \\
& \prod_{x: A} \prod_{y: B(x)} u(x)(y)=u(x)(y) \\
\hat{} \quad & \left\langle h_{u}(x)(y): \equiv \operatorname{refl}_{u(x)(y)}\right\rangle \\
& h_{u}
\end{array}
$$

A deduction

Let u be an inhabitant of $\prod_{x: A} \prod_{y: B(x)} P((x, y))$, then

$$
\begin{array}{ll}
& \Phi(\boldsymbol{\sigma}(u))=u \\
\simeq \quad & \langle: ; \text { Function extensionality }\rangle \\
& \prod_{x: A} \prod_{y: B(x)} \Phi(\boldsymbol{\sigma}(u))(x)(y)=u(x)(y) \\
\equiv & \langle\Phi(\boldsymbol{\sigma}(u)) \equiv \boldsymbol{\sigma}(u)((x, y)) \equiv u(x)(y)\rangle \\
& \prod_{x: A} \prod_{y: B(x)} u(x)(y)=u(x)(y) \\
\hat{\vdots} & \left\langle h_{u}(x)(y): \equiv \operatorname{refl}_{u(x)(y)}\right\rangle \\
& h_{u}
\end{array}
$$

Then $\Phi \circ \boldsymbol{\sigma}$ is homotopic to the identity function of $\prod_{x: A} \prod_{y: B(x)} P((x, y))$.

A deduction

Conversely, let v be an inhabitant of $\prod_{g: \sum_{x: A} B(x)} P(g)$,

A deduction

Conversely, let v be an inhabitant of $\prod_{g: \sum_{x: A} B(x)} P(g)$, then

$$
\boldsymbol{\sigma}(\Phi(v))=v
$$

A deduction

Conversely, let v be an inhabitant of $\prod_{g: \sum_{x: A} B(x)} P(g)$, then

$$
\simeq \quad \begin{gathered}
\boldsymbol{\sigma}(\Phi(v))=v \\
\simeq: ; \text { Function extensionality }\rangle \\
\prod_{g: \sum_{x: A} B(x)} \boldsymbol{\sigma}(\Phi(v))(g)=v(g)
\end{gathered}
$$

A deduction

Conversely, let v be an inhabitant of $\prod_{g: \sum_{x: A} B(x)} P(g)$, then

$$
\begin{array}{cc}
& \boldsymbol{\sigma}(\Phi(v))=v \\
\simeq \quad & \langle: ; \text { Function extensionality }\rangle \\
& \prod_{g: \sum_{x: A} B(x)} \boldsymbol{\sigma}(\Phi(v))(g)=v(g) \\
\leftarrow & \left\langle: \boldsymbol{\sigma}^{\prime}\right\rangle \\
& \prod_{x: A} \prod_{y: B(x)} \boldsymbol{\sigma}(\Phi(v))(x, y)=v((x, y))
\end{array}
$$

A deduction

Conversely, let v be an inhabitant of $\prod_{g: \sum_{x: A} B(x)} P(g)$, then

$$
\begin{array}{ll}
& \boldsymbol{\sigma}(\Phi(v))=v \\
\simeq \quad & \langle: ; \text { Function extensionality }\rangle \\
& \prod_{g: \sum_{x: A} B(x)} \boldsymbol{\sigma}(\Phi(v))(g)=v(g) \\
\leftarrow \quad & \left\langle: \boldsymbol{\sigma}^{\prime}\right\rangle
\end{array} \quad \begin{aligned}
& \prod_{x: A} \prod_{y: B(x)} \boldsymbol{\sigma}(\Phi(v))(x, y)=v((x, y)) \\
& \equiv \quad \\
& \quad\langle\boldsymbol{\sigma}(\Phi(v))((x, y)) \equiv \Phi(v)(x)(y) \equiv v((x, y))\rangle \\
& \\
& \prod_{x: A} \prod_{y: B(x)} v((x, y))=v((x, y))
\end{aligned}
$$

A deduction

Conversely, let v be an inhabitant of $\prod_{g: \sum_{x: A} B(x)} P(g)$, then

$$
\begin{array}{ll}
& \boldsymbol{\sigma}(\Phi(v))=v \\
\simeq \quad & \langle: ; \text { Function extensionality }\rangle \\
& \prod_{g: \sum_{x: A} B(x)} \boldsymbol{\sigma}(\Phi(v))(g)=v(g) \\
\leftarrow & \left\langle: \boldsymbol{\sigma}^{\prime}\right\rangle \\
& \prod_{x: A} \prod_{y: B(x)} \boldsymbol{\sigma}(\Phi(v))(x, y)=v((x, y)) \\
\equiv & \langle\boldsymbol{\sigma}(\Phi(v))((x, y)) \equiv \Phi(v)(x)(y) \equiv v((x, y))\rangle \\
& \prod_{x: A} \prod_{y: B(x)} v((x, y))=v((x, y)) \\
\hat{\vdots} \quad \begin{array}{l}
\left\langle h_{v}(x, y): \equiv \operatorname{ref}_{v(x, y)}\right\rangle
\end{array} & h_{v}
\end{array}
$$

A deduction

Conversely, let v be an inhabitant of $\prod_{g: \sum_{x: A} B(x)} P(g)$, then

$$
\begin{array}{ll}
& \boldsymbol{\sigma}(\Phi(v))=v \\
\simeq & \langle: ; \text { Function extensionality }\rangle \\
& \prod_{g: \sum_{x: A} B(x)} \boldsymbol{\sigma}(\Phi(v))(g)=v(g) \\
\leftarrow & \left\langle: \boldsymbol{\sigma}^{\prime}\right\rangle \\
& \prod_{x: A} \prod_{y: B(x)} \boldsymbol{\sigma}(\Phi(v))(x, y)=v((x, y)) \\
\equiv & \langle\boldsymbol{\sigma}(\Phi(v))((x, y)) \equiv \Phi(v)(x)(y) \equiv v((x, y))\rangle \\
& \prod_{x: A} \prod_{y: B(x)} v((x, y))=v((x, y)) \\
\hat{\vdots} & \left\langle h_{v}(x, y): \equiv \operatorname{refl}_{v(x, y)}\right\rangle \\
& h_{v}
\end{array}
$$

So, $\boldsymbol{\sigma} \circ \Phi$ is homotopic to the identity function of $\prod_{g: \sum_{x: A} B(x)} P(g)$.
This proves the Σ-[Consequent] rule.

Example

Application of Π-translation rule (to prove isSet $(\mathbb{N})<$:). We can use the translation rule to prove isSet $(\mathbb{N})<$:
In fact, let $\Phi: m=n \rightarrow \operatorname{code}(m, n)$ be defined by $\Phi: \equiv \operatorname{encode}(m, n)$ and let $\Psi: \operatorname{code}(m, n) \rightarrow m=n$ be defined by $\Psi: \equiv \operatorname{decode}(m, n)$. Then, isSet (\mathbb{N})
$\equiv \quad\langle$ Definition of isSet \rangle

$$
\prod_{m, n: \mathbb{N} p, q: m=n} \prod_{n} p=q
$$

$\simeq \quad\langle\Pi$-translation rule $; m=n \simeq \operatorname{code}(m, n)\rangle$

$$
\prod_{m, n: \mathbb{N} s, t: \operatorname{code}(m, n)} \prod_{(s)=\Psi(t)} \Psi(
$$

$\hat{\vdots} \quad\langle$ See definition of h below \rangle h

Conclusions

Conclusions:

Conclusions

Conclusions:

(1) Deductive chains are really formal linear tools to prove theorems in HoTT.

Conclusions

Conclusions:

(1) Deductive chains are really formal linear tools to prove theorems in HoTT.
(2) There is an embedding of ICL in HOTT. In particular we found that the Eindhoven quantifiers correspond to the main dependent types in HoTT.

Conclusions

Conclusions:

(1) Deductive chains are really formal linear tools to prove theorems in HoTT.
(2) There is an embedding of ICL in HOTT. In particular we found that the Eindhoven quantifiers correspond to the main dependent types in HoTT.
(3) We found strong evidence that it is possible to restate the whole of HoTT giving equality and homotopic equivalence a preeminent role, both, axiomatically and proof-theoretically.
T. Univalent Foundations Program.

Homotopy Type Theory: Univalent Foundations of Mathematics URL https://homotopytypetheory.org/book. Institute for Advanced Study, 2013.

