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Presentation

What we do is to rewrite math topics using Calculational Logic (CL),

as there is a large community rewriting math in terms of HoTT.

We ended up trying to interpret HoTT in terms of CL.

The result: “Calculational HoTT”(arXiv:1901.08883v2), a joint work with
Bernarda Aldana and Jaime Bohorquez.
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Equational axioms and Leibniz rules

Brief description of CL.

Main feature:

CL axioms are
logical equations

A ≡ B, C ≡ D, . . .

CL is an equational
logical system

CL inference rules
are Leibniz’s rules

E[x/A] A ≡ B

E[x/B]

E[x/B] A ≡ B

E[x/A]
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Calculations

Derivations in CL are deduction trees of the form:

E1 A ≡ B

E2 C ≡ D

E3 E ≡ F

E4

where A through F are subformulas of the corresponding Ei.
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Calculations

Derivations in CL are deduction trees of the form:

E1 A ≡ B

E2 C ≡ D

E3 E ≡ F

E4

where A through F are subformulas of the corresponding Ei.

This deduction tree, written vertically, is what Lifschitz called
‘Calculation’[Lifs]:

E1
⇔ 〈 A ≡ B 〉

E2
⇔ 〈 C ≡ D 〉

E3
⇔ 〈 E ≡ F 〉

E4

which derives E1 ≡ E4

Double arrows stand for the bidi-
rectionality of Leibniz rules
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Calculations

Derivations in CL are deduction trees of the form:

E1 A ≡ B

E2 C ≡ D

E3 E ≡ F

E4

where A through F are subformulas of the corresponding Ei.

This deduction tree, written vertically, is what Lifschitz called
‘Calculation’[Lifs]:

E1
⇔ 〈 A ≡ B 〉

E2
⇔ 〈 C ≡ D 〉

E3
⇔ 〈 E ≡ F 〉

E4

which derives E1 ≡ E4

Double arrows stand for the bidi-
rectionality of Leibniz rules

There are sound and complete calculational versions of both, classical
(CCL) and intuitionistic (ICL) first order logic.
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Embeddings

The problem

Curry-Howard isomorphism embeds intuitionistic predicate logic into
dependent type theory

We pose ourself the following question:

Is it possible to embed ICL into HoTT?

We concentrated in

- establishing a linear calculation format as an instrument to understand
proofs in HoTT book, and

- identify and derive equational judgments in HoTT.

Note: We expected to be more comfortable with a linear calculation format
as an instrument to understand proofs in HoTT book.
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Deductive chains

First: Definition of deductive chains.

A→ B<:

A ❀ B
(read A leads to B)

stands temporarily
for one of the
judgments

A ≡ B

or A ≃ B<:

It is easy to prove the following transitivity rule scheme

A1 ❀ A2 A2 ❀ A3

A1 ❀ A3 where the conclusion corresponds to

A1 → A3<:
if at least one of the premises is a judgment of the
form A→ B<:

A1 ≃ A3<:
if none of the premises is of the form A → B <:
and at least one is of the form A ≃ B<:

A1 ≡ A3 if all the premises are of the form A ≡ B
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Deductive chains

By induction we have the following derivation

...
a : A1

...
A1 ❀ A2 · · ·

...
An−1 ❀ An

An<: .
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Deductive chains

By induction we have the following derivation

...
a : A1

...
A1 ❀ A2 · · ·

...
An−1 ❀ An

An<: .

which may be represented vertically by the following format-scheme

An

⇆ 〈 · · · 〉
An−1

...
A2

⇆ 〈 · · · 〉
A1

∧

: 〈 · · · 〉
a

which we called a deductive chain.
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Deductive chains

The links in this format-scheme are

B
⇆ 〈 〉

A
consequence link

B
← 〈 : ; evidence 〉

A

equivalence link
B

≡ 〈 evidence 〉
A

h-equivalence link
B

≃ 〈 : ; evidence 〉
A

The link at the bottom of the deductive chain is called inhabitation link.
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(Qx :T | range · term)

Examples:
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(Σi :N | 1 ≤ i ≤ 3 · i2) = 12 + 22 + 32

-Logical operationals (universal and existential quantifiers)

(∀x :T | range · term) for conjunction,

(∃x :T | range · term) for disjunction.
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Quantified proposition notation

Unified notation for operationals

(Qx :T | range · term)

Examples:

-Summation:

(Σi :N | 1 ≤ i ≤ 3 · i2) = 12 + 22 + 32

-Logical operationals (universal and existential quantifiers)

(∀x :T | range · term) for conjunction,

(∃x :T | range · term) for disjunction.

[Trade] rules

(∀x :T |P · Q) ≡ (∀x :T · P⇒Q)

(∃x :T |P · Q) ≡ (∃x :T · P∧Q)
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Second: identify and derive equational judgments of HoTT corresponding
to axioms and theorems of ICL:
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Second: identify and derive equational judgments of HoTT corresponding
to axioms and theorems of ICL:

[One-Point]:

(∀x :T | x=a · P ) ≡ P [a/x]

(∃x :T | x=a · P ) ≡ P [a/x]
(ICL)
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Second: identify and derive equational judgments of HoTT corresponding
to axioms and theorems of ICL:

[One-Point]:

(∀x :T | x=a · P ) ≡ P [a/x]

(∃x :T | x=a · P ) ≡ P [a/x]
(ICL)

∏
x:A

∏
p:x=a P (x, p) ≃ P (a, refla)<:

∑
x:A

∑
p:x=a P (x, p) ≃ P (a, refla)<:

(HoTT)

[Equality]:

(∀x, y :T | x=y · P ) ≡ (∀x :T · P [x/y])
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(ICL)
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ICL quantified axioms and theorems

Second: identify and derive equational judgments of HoTT corresponding
to axioms and theorems of ICL:

[One-Point]:

(∀x :T | x=a · P ) ≡ P [a/x]

(∃x :T | x=a · P ) ≡ P [a/x]
(ICL)

∏
x:A

∏
p:x=a P (x, p) ≃ P (a, refla)<:

∑
x:A

∑
p:x=a P (x, p) ≃ P (a, refla)<:

(HoTT)

[Equality]:

(∀x, y :T | x=y · P ) ≡ (∀x :T · P [x/y])

(∃x, y :T | x=y · P ) ≡ (∃x :T · P [x/y])
(ICL)

∏
x,y:A

∏
p:x=y

P (x, y, p) ≃
∏

x:A P (x, x, reflx)<:

∑
x,y:A

∑
p:x=y

P (x, y, p) ≃
∑

x:A P (x, x, reflx)<:
(HoTT)
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ICL quantified axioms and theorems

[Range Split]:

(∀x :T |P ∨Q · R) ≡ (∀x :T |P · R) ∧ (∀x :T |Q · R)

(∃x :T |P ∨Q · R) ≡ (∃x :T |P · R) ∨ (∃x :T |Q · R)
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ICL quantified axioms and theorems

[Range Split]:

(∀x :T |P ∨Q · R) ≡ (∀x :T |P · R) ∧ (∀x :T |Q · R)

(∃x :T |P ∨Q · R) ≡ (∃x :T |P · R) ∨ (∃x :T |Q · R)

∏
x:A+B

P (x) ≃
∏

x:A P (inl(x))×
∏

x:B P (inr(x))<:

∑
x:A+B

P (x) ≃
∑

x:A P (inl(x)) +
∑

x:B P (inr(x))<:
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ICL quantified axioms and theorems

[Range Split]:

(∀x :T |P ∨Q · R) ≡ (∀x :T |P · R) ∧ (∀x :T |Q · R)

(∃x :T |P ∨Q · R) ≡ (∃x :T |P · R) ∨ (∃x :T |Q · R)

∏
x:A+B

P (x) ≃
∏

x:A P (inl(x))×
∏

x:B P (inr(x))<:

∑
x:A+B

P (x) ≃
∑

x:A P (inl(x)) +
∑

x:B P (inr(x))<:

[Term Split]:

(∀x :T |P · Q ∧R) ≡ (∀x :T |P · Q) ∧ (∀x :T |P · R)

(∃x :T |P · Q ∨R) ≡ (∃x :T |P · Q) ∨ (∃x :T |P · R)

∏
x:A(P (x)×Q(x)) ≃

∏
x:A P (x)×

∏
x:A Q(x)<:

∑
x:A(P (x) +Q(x)) ≃

∑
x:A P (x) +

∑
x:A Q(x)<:
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ICL quatified axioms and theorems

[Translation]
(∀x :J |P · Q) ≡ (∀y :K |P [f(y)/x] · Q[f(y)/x])

(∃x :J |P · Q) ≡ (∃y :K |P [f(y)/x] · Q[f(y)/x]),
where f is a bijection that maps values of type K to values of type J .
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ICL quatified axioms and theorems

[Translation]
(∀x :J |P · Q) ≡ (∀y :K |P [f(y)/x] · Q[f(y)/x])

(∃x :J |P · Q) ≡ (∃y :K |P [f(y)/x] · Q[f(y)/x]),
where f is a bijection that maps values of type K to values of type J .

[Congruence]
(∀x :T |P · Q ≡ R)⇒ ((∀x :T |P · Q) ≡ (∀x :T |P · R))

(∀x :T |P · Q ≡ R)⇒ ((∃x :T |P · Q) ≡ (∃x :T |P · R))



A few initial words Brief description of CL The problem Deductive chains Calculational HoTT A deduction Conclusions

ICL quatified axioms and theorems

[Translation]
(∀x :J |P · Q) ≡ (∀y :K |P [f(y)/x] · Q[f(y)/x])

(∃x :J |P · Q) ≡ (∃y :K |P [f(y)/x] · Q[f(y)/x]),
where f is a bijection that maps values of type K to values of type J .

[Congruence]
(∀x :T |P · Q ≡ R)⇒ ((∀x :T |P · Q) ≡ (∀x :T |P · R))

(∀x :T |P · Q ≡ R)⇒ ((∃x :T |P · Q) ≡ (∃x :T |P · R))

[Antecedent]
R⇒ (∀x :T |P · Q) ≡ (∀x :T |P · R⇒ Q)

R⇒ (∃x :T |P · Q) ≡ (∃x :T |P · R⇒ Q)
when there are not free occurrences of x in R.
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ICL quatified axioms and theorems

[Translation]
(∀x :J |P · Q) ≡ (∀y :K |P [f(y)/x] · Q[f(y)/x])

(∃x :J |P · Q) ≡ (∃y :K |P [f(y)/x] · Q[f(y)/x]),
where f is a bijection that maps values of type K to values of type J .

[Congruence]
(∀x :T |P · Q ≡ R)⇒ ((∀x :T |P · Q) ≡ (∀x :T |P · R))

(∀x :T |P · Q ≡ R)⇒ ((∃x :T |P · Q) ≡ (∃x :T |P · R))

[Antecedent]
R⇒ (∀x :T |P · Q) ≡ (∀x :T |P · R⇒ Q)

R⇒ (∃x :T |P · Q) ≡ (∃x :T |P · R⇒ Q)
when there are not free occurrences of x in R.

[Leibniz principles]
(∀x, y :T |x = y · f(x) = f(y))

(∃x, y :T |x = y · P (x) ≡ P (y))
where f is a function that maps values of type T to values of any other
type and P is a predicate.
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Equational judgments in HoTT

[Translation]

∏
x:A P (x) ≃

∏
y:B P (g(y))<:

∑
x:A P (x) ≃

∑
y:B P (g(y))<:

where g is an inhabitant of B ≃ A.
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[Translation]
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x:A(P (x) ≃ Q(x))→ (

∏
x:A P (x) ≃

∏
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∑
x:A P (x) ≃

∑
x:A Q(x))<:
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Equational judgments in HoTT

[Translation]

∏
x:A P (x) ≃

∏
y:B P (g(y))<:

∑
x:A P (x) ≃

∑
y:B P (g(y))<:

where g is an inhabitant of B ≃ A.
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∏
x:A(P (x) ≃ Q(x))→ (

∏
x:A P (x) ≃

∏
x:A Q(x))<:

∏
x:A(P (x) ≃ Q(x))→ (

∑
x:A P (x) ≃

∑
x:A Q(x))<:

[Antecedent]
(R→

∏
x:A Q(x)) ≃

∏
x:A(R→ Q(x))<:

∑
x:A(R→ Q(x))→ (R→

∑
x:A Q(x))<:

when R does not depend on x.
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Equational judgments in HoTT

[Translation]

∏
x:A P (x) ≃

∏
y:B P (g(y))<:

∑
x:A P (x) ≃

∑
y:B P (g(y))<:

where g is an inhabitant of B ≃ A.

[Congruence]

∏
x:A(P (x) ≃ Q(x))→ (

∏
x:A P (x) ≃

∏
x:A Q(x))<:

∏
x:A(P (x) ≃ Q(x))→ (

∑
x:A P (x) ≃

∑
x:A Q(x))<:

[Antecedent]
(R→

∏
x:A Q(x)) ≃

∏
x:A(R→ Q(x))<:

∑
x:A(R→ Q(x))→ (R→

∑
x:A Q(x))<:

when R does not depend on x.

[Leibniz principles]

∏
x,y:A

x=y→ f(x)=f(y)<:

∏
x,y:A

x=y→ P (x)≃P (y)<:

where f :A→ B and P :A→ U is a type family.
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A deduction

I will derive the judgment

(
∏

x:A

∏

y:B(x)

P ((x, y))) ≃
∏

g:
∑

x:A
B(x)

P (g) <: (1)

which corresponds to the homotopic equivalence version of the Σ induction
operator.
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A deduction

I will derive the judgment

(
∏

x:A

∏

y:B(x)

P ((x, y))) ≃
∏

g:
∑

x:A
B(x)

P (g) <: (1)

which corresponds to the homotopic equivalence version of the Σ induction
operator.

Note. The ICL theorem corresponding to (1), when P is a non-dependent
type, is

(∀x :T |B · P ) ≡ (∃x :T ·B)⇒ P

where x does not occur free in P .

This motivate us to call the equivalence Σ-[Consequent] rule.
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Recall that the Σ-induction operator

σ : (
∏

x:A

∏

y:B(x)

P ((x, y)))→
∏

g:
∑

x:A
B(x)

P (g)

is defined by

σ(u)((x, y)) :≡ u(x)(y).

Let

Φ : (
∏

g:
∑

x:A
B(x)

P (g))→
∏

x:A

∏

y:B(x)

P ((x, y))

be defined by

Φ(v)(x)(y) :≡ v((x, y)).
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Let u be an inhabitant of
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Φ(σ(u)) = u

≃ 〈 : ;Function extensionality 〉
∏
x:A

∏
y:B(x)

Φ(σ(u))(x)(y) = u(x)(y)

≡ 〈 Φ(σ(u)) ≡ σ(u)((x, y)) ≡ u(x)(y) 〉
∏
x:A

∏
y:B(x)

u(x)(y) = u(x)(y)

∧

: 〈 hu(x)(y) :≡ reflu(x)(y) 〉

hu

Then Φ ◦ σ is homotopic to the identity function of
∏
x:A

∏
y:B(x)

P ((x, y)).
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A deduction

Conversely, let v be an inhabitant of
∏

g:
∑

x:A
B(x) P (g), then

σ(Φ(v)) = v

≃ 〈 : ;Function extensionality 〉
∏

g:
∑

x:A
B(x)

σ(Φ(v))(g) = v(g)

← 〈 :σ′ 〉
∏
x:A

∏
y:B(x)

σ(Φ(v))(x, y) = v((x, y))

≡ 〈 σ(Φ(v))((x, y)) ≡ Φ(v)(x)(y) ≡ v((x, y)) 〉
∏
x:A

∏
y:B(x)

v((x, y)) = v((x, y))

∧
: 〈 hv(x, y) :≡ reflv(x,y) 〉

hv

So, σ ◦ Φ is homotopic to the identity function of
∏

g:
∑

x:A
B(x) P (g).

This proves the Σ-[Consequent] rule.
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Example

Application of Π-translation rule (to prove isSet(N) <:). We can use
the translation rule to prove isSet(N) <:
In fact, let Φ : m = n→ code(m,n) be defined by Φ :≡ encode(m,n) and
let Ψ : code(m,n)→ m = n be defined by Ψ :≡ decode(m,n). Then,

isSet(N)

≡ 〈 Definition of isSet 〉
∏

m,n:N

∏
p,q:m=n

p = q

≃ 〈 Π-translation rule ;m = n ≃ code(m,n) 〉
∏

m,n:N

∏
s,t:code(m,n)

Ψ(s) = Ψ(t)

∧

: 〈 See definition of h below 〉

h
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Conclusions

Conclusions:

1 Deductive chains are really formal linear tools to prove theorems in
HoTT.

2 There is an embedding of ICL in HOTT. In particular we found that
the Eindhoven quantifiers correspond to the main dependent types in
HoTT.

3 We found strong evidence that it is possible to restate the whole of
HoTT giving equality and homotopic equivalence a preeminent role,
both, axiomatically and proof-theoretically.
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