Quillen model structures on cubical sets

Steve Awodey

HoTT 2019

Acknowledgements

- Parts are joint work with Coquand and Riehl.
- Parts are also joint with Cavallo and Sattler.
- Ideas are also borrowed from Joyal and Orton-Pitts.

Models of HoTT from QMS

The first models of HoTT were built from Quillen model categories.

- A-Warren: general Quillen model structures and weak factorization systems
- van den Berg-Garner: special weak factorization systems on spaces and simplicial sets
- Voevodsky: the Kan-Quillen model structure on simplicial sets

Models of HoTT from QMS

The first models of HoTT were built from Quillen model categories.

- A-Warren: general Quillen model structures and weak factorization systems
- van den Berg-Garner: special weak factorization systems on spaces and simplicial sets
- Voevodsky: the Kan-Quillen model structure on simplicial sets

In each case, more specific QMS led to "better" models of type theory, with coherent Id, Σ, Π and eventually univalent U.

QMS from models of HoTT

But one can also start from a model of HoTT and construct a Quillen model structure (cf. Gambino-Garner, Lumsdaine).

QMS from models of HoTT

But one can also start from a model of HoTT and construct a Quillen model structure (cf. Gambino-Garner, Lumsdaine).
Definition (pace Orton-Pitts)
A premodel of $\mathrm{Ho} T T$ consists of $(\mathcal{E}, \Phi, \mathbb{I}, \mathrm{V})$ where:

- \mathcal{E} is a topos
- Φ is a representable class of monos $\Phi \mapsto \Omega$ that form a dominance and ...
- \mathbb{I} is an interval $1 \rightrightarrows \mathbb{I}$ in \mathcal{E} that is tiny $(-)^{\mathbb{I}} \dashv(-)_{\mathbb{I}}$ and \ldots
- $\dot{\mathrm{V}} \rightarrow \mathrm{V}$ is a universe of small families, closed under Σ, Π and \ldots

QMS from models of HoTT

But one can also start from a model of HoTT and construct a Quillen model structure (cf. Gambino-Garner, Lumsdaine).
Definition (pace Orton-Pitts)
A premodel of $\mathrm{Ho} T T$ consists of $(\mathcal{E}, \Phi, \mathbb{I}, \mathrm{V})$ where:

- \mathcal{E} is a topos
- Φ is a representable class of monos $\Phi \longmapsto \Omega$ that form a dominance and ...
- \mathbb{I} is an interval $1 \rightrightarrows \mathbb{I}$ in \mathcal{E} that is tiny $(-)^{\mathbb{I}} \dashv(-)_{\mathbb{I}}$ and \ldots
- $\dot{\mathrm{V}} \rightarrow \mathrm{V}$ is a universe of small families, closed under Σ, Π and \ldots

A model of HoTT is then constructed internally using the extensional type theory of \mathcal{E} (see Orton-Pitts).

QMS from models of HoTT

Our goal here is to show that from such a set-up for modelling HoTT one can also construct a QMS:

Construction
From a premodel $(\mathcal{E}, \Phi, \mathbb{I}, \mathrm{V})$ one can construct a $Q M S$ on \mathcal{E}.

QMS from models of HoTT

Our goal here is to show that from such a set-up for modelling HoTT one can also construct a QMS:

Construction
From a premodel $(\mathcal{E}, \Phi, \mathbb{I}, \mathrm{V})$ one can construct a $Q M S$ on \mathcal{E}.
The resulting QMS is right proper and has descent, so it also admits a model of HoTT in the pre-Orton-Pitts sense.

QMS from models of HoTT

The construction of a $\operatorname{QMS}(\mathcal{C}, \mathcal{W}, \mathcal{F})$ from a premodel $(\mathcal{E}, \Phi, \mathbb{I}, \mathrm{V})$ is general, but the details depend on the specifics of the premodel.

QMS from models of HoTT

The construction of a $\mathrm{QMS}(\mathcal{C}, \mathcal{W}, \mathcal{F})$ from a premodel $(\mathcal{E}, \Phi, I, \mathrm{~V})$ is general, but the details depend on the specifics of the premodel.

We consider three special cases of cubical sets.

$$
\mathcal{E}=\operatorname{Set}^{\mathbb{C}^{o p}}
$$

1. Cartesian cubical sets
2. Cartesian cubical sets with equivariance
3. Dedekind cubical sets

QMS from models of HoTT

The construction of a $\operatorname{QMS}(\mathcal{C}, \mathcal{W}, \mathcal{F})$ from a premodel $(\mathcal{E}, \Phi, \mathbb{I}, \mathrm{V})$ is general, but the details depend on the specifics of the premodel. We consider three special cases of cubical sets.

$$
\mathcal{E}=\operatorname{Set}^{\mathbb{C}^{o p}}
$$

1. Cartesian cubical sets (new)
2. Cartesian cubical sets with equivariance (new jww/CCRS)
3. Dedekind cubical sets (Sattler)

Outline of the construction

Let $(\mathcal{E}, \Phi, \mathbb{I}, \mathrm{V})$ be a premodel of HoTT where $\mathcal{E}=\mathrm{cSet}$.

Outline of the construction

Let $(\mathcal{E}, \Phi, \mathbb{I}, \mathrm{V})$ be a premodel of HoTT where $\mathcal{E}=\mathrm{cSet}$.
We construct a Quillen model structure $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ on \mathcal{E} in 3 steps:

1. use Φ to determine an awfs $(\mathcal{C}, \mathrm{TFib})$,
2. use \mathbb{I} to determine another awfs (TCof, \mathcal{F}),
3. let $\mathcal{W}=\mathrm{TFib} \circ \mathrm{TCof}$ and prove 3-for-2 from FEP

Outline of the construction

Let $(\mathcal{E}, \Phi, \mathbb{I}, \mathrm{V})$ be a premodel of HoTT where $\mathcal{E}=\mathrm{cSet}$.
We construct a Quillen model structure $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ on \mathcal{E} in 3 steps:

1. use Φ to determine an awfs $(\mathcal{C}, \mathrm{TFib})$,
2. use \mathbb{I} to determine another awfs (TCof, \mathcal{F}),
3. let $\mathcal{W}=\mathrm{TFib} \circ \mathrm{TCof}$ and prove 3 -for- 2 from FEP (done!)

Outline of the construction

Let $(\mathcal{E}, \Phi, \mathbb{I}, \mathrm{V})$ be a premodel of HoTT where $\mathcal{E}=\mathrm{cSet}$.
We construct a Quillen model structure $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ on \mathcal{E} in 3 steps:

1. use Φ to determine an awfs ($\mathcal{C}, \mathrm{TFib}$),
2. use \mathbb{I} to determine another awfs (TCof, \mathcal{F}),
3. let $\mathcal{W}=\mathrm{TFib} \circ \mathrm{TCof}$ and prove 3 -for- 2 from FEP (done!)

To prove the Fibration Extension Property:
4. show that $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ satisfies the EEP,
5. use V and \mathbb{I} to construct a universe U of fibrations,
6. use EEP to show that U is fibrant, which implies FEP.

Outline of the construction

Let $(\mathcal{E}, \Phi, \mathbb{I}, \mathrm{V})$ be a premodel of HoTT where $\mathcal{E}=\mathrm{cSet}$.
We construct a Quillen model structure $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ on \mathcal{E} in 3 steps:

1. use Φ to determine an awfs ($\mathcal{C}, \mathrm{TFib}$),
2. use \mathbb{I} to determine another awfs (TCof, \mathcal{F}),
3. let $\mathcal{W}=\mathrm{TFib} \circ \mathrm{TCof}$ and prove 3 -for- 2 from FEP (done!)

To prove the Fibration Extension Property:
4. show that $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ satisfies the EEP,
5. use V and \mathbb{I} to construct a universe U of fibrations,
6. use EEP to show that U is fibrant, which implies FEP.

NB: (5) seems to be a detour; maybe one can prove FEP directly?

1. The cofibration awfs (\mathcal{C}, TFib)

The monos classified by $\Phi \longmapsto \Omega$ are called cofibrations. The generic one $1 \hookrightarrow \Phi$ determines a polynomial endofunctor,

$$
X^{+}:=\sum_{\varphi: \Phi} X^{\varphi}
$$

which is a (fibered) monad,
$+:$ cSet $/ \cdot \longrightarrow$ cSet/.

1. The cofibration awfs (\mathcal{C}, TFib)

The monos classified by $\Phi \hookrightarrow \Omega$ are called cofibrations. The generic one $1 \hookrightarrow \Phi$ determines a polynomial endofunctor,

$$
X^{+}:=\sum_{\varphi: \Phi} X^{\varphi}
$$

which is a (fibered) monad,

$$
+: \mathrm{cSet} / \cdot \longrightarrow \mathrm{cSet} / \cdot
$$

Algebras for the pointed endofunctor of this monad,

form the right class of an awfs - they are the trivial fibrations.

2. The fibration awfs (TCof, $\mathcal{F})$

For any $c: A \rightarrow B$ in cSet^{2}, the Leibniz adjunction

$$
(-) \otimes c \dashv c \Rightarrow(-)
$$

relates the pushout-product with c and the pullback-hom with c.

2. The fibration awfs (TCof, $\mathcal{F})$

For any $c: A \rightarrow B$ in cSet^{2}, the Leibniz adjunction

$$
(-) \otimes c \dashv c \Rightarrow(-)
$$

relates the pushout-product with c and the pullback-hom with c. These operations satisfy

$$
(f \otimes c) \boxtimes g \Leftrightarrow f \boxtimes(c \Rightarrow g)
$$

with respect to the diagonal filling relation $f \boxtimes g$.

2. The fibration awfs (TCof, $\mathcal{F})$

For any $c: A \rightarrow B$ in cSet^{2}, the Leibniz adjunction

$$
(-) \otimes c \dashv c \Rightarrow(-)
$$

relates the pushout-product with c and the pullback-hom with c. These operations satisfy

$$
(f \otimes c) \nabla g \Leftrightarrow f \boxtimes(c \Rightarrow g)
$$

with respect to the diagonal filling relation $f \square g$.
Definition
A map $f: Y \rightarrow X$ is a biased fibration if $\delta_{\varepsilon} \Rightarrow f$ is a + -algebra for both endpoints $\delta_{0}, \delta_{1}: 1 \rightarrow \mathbb{I}$.

2. The fibration awfs (TCof, $\mathcal{F})$

For any $c: A \rightarrow B$ in cSet^{2}, the Leibniz adjunction

$$
(-) \otimes c \dashv c \Rightarrow(-)
$$

relates the pushout-product with c and the pullback-hom with c. These operations satisfy

$$
(f \otimes c) \boxtimes g \Leftrightarrow f \boxtimes(c \Rightarrow g)
$$

with respect to the diagonal filling relation $f \square g$.
Definition
A map $f: Y \rightarrow X$ is a biased fibration if $\delta_{\varepsilon} \Rightarrow f$ is a + -algebra for both endpoints $\delta_{0}, \delta_{1}: 1 \rightarrow \mathbb{I}$. Equivalently, $f \in \mathcal{F}$ if for all cofibrations $c \in \mathcal{C}$ and $\varepsilon=0,1$,

$$
c \otimes \delta_{\varepsilon} \boxtimes f .
$$

2. The fibration awfs (TCof, $\mathcal{F})$

For any $c: A \rightarrow B$ in cSet^{2}, the Leibniz adjunction

$$
(-) \otimes c \dashv c \Rightarrow(-)
$$

relates the pushout-product with c and the pullback-hom with c. These operations satisfy

$$
(f \otimes c) \nabla g \Leftrightarrow f \boxtimes(c \Rightarrow g)
$$

with respect to the diagonal filling relation $f \square g$.
Definition
A map $f: Y \rightarrow X$ is a biased fibration if $\delta_{\varepsilon} \Rightarrow f$ is a + -algebra for both endpoints $\delta_{0}, \delta_{1}: 1 \rightarrow \mathbb{I}$. Equivalently, $f \in \mathcal{F}$ if for all cofibrations $c \in \mathcal{C}$ and $\varepsilon=0,1$,

$$
c \otimes \delta_{\varepsilon} \boxtimes f .
$$

This notion of fibration is used for the Dedekind cubes.

2. The fibration awfs $(\mathrm{TCof}, \mathcal{F})$

For the Cartesian cubes, we pass to the slice category cSet/ \mathbb{I}, where there is a generic point $\delta: 1 \rightarrow \mathbb{I}$.

2. The fibration awfs (TCof, $\mathcal{F})$

For the Cartesian cubes, we pass to the slice category cSet/I, where there is a generic point $\delta: 1 \rightarrow \mathbb{I}$.

Definition
A map $f: Y \rightarrow X$ is an (unbiased) fibration if $\delta \Rightarrow f$ is a +-algebra. Equivalently, $f \in \mathcal{F}$ if $c \otimes \delta \square f$ for all $c \in \mathcal{C}$.

2. The fibration awfs (TCof, $\mathcal{F})$

For the Cartesian cubes, we pass to the slice category cSet/ \mathbb{I}, where there is a generic point $\delta: 1 \rightarrow \mathbb{I}$.

Definition
A map $f: Y \rightarrow X$ is an (unbiased) fibration if $\delta \Rightarrow f$ is a +-algebra. Equivalently, $f \in \mathcal{F}$ if $c \otimes \delta \square f$ for all $c \in \mathcal{C}$.

Proposition

There is an awfs (TCof, \mathcal{F}) with these fibrations as \mathcal{F}.

2. The fibration awfs (TCof, \mathcal{F})

For the Cartesian cubes, we pass to the slice category cSet/ \mathbb{I}, where there is a generic point $\delta: 1 \rightarrow \mathbb{I}$.

Definition
A map $f: Y \rightarrow X$ is an (unbiased) fibration if $\delta \Rightarrow f$ is a + -algebra. Equivalently, $f \in \mathcal{F}$ if $c \otimes \delta \square f$ for all $c \in \mathcal{C}$.

Proposition

There is an awfs (TCof, \mathcal{F}) with these fibrations as \mathcal{F}.

Remark

There is also an equivariant version of this awfs, in which the fibration structure respects the symmetries of the cubes \mathbb{I}^{n} (this is explained in Emily's talk).
3. The weak equivalences \mathcal{W}

Now define

$$
\mathcal{W}=\mathrm{TFib} \circ \mathrm{TCof}
$$

thus a map is a weak equivalence if it factors as a trivial cofibration followed by a trivial fibration.

3. The weak equivalences \mathcal{W}

Now define

$$
\mathcal{W}=\mathrm{TFib} \circ \mathrm{TCof}
$$

thus a map is a weak equivalence if it factors as a trivial cofibration followed by a trivial fibration.

It is easy to show that

$$
\begin{aligned}
\text { TCof } & =\mathcal{W} \cap \mathcal{C} \\
\text { TFib } & =\mathcal{W} \cap \mathcal{F}
\end{aligned}
$$

so we just need the 3 -for- 2 property for \mathcal{W}.

3. The weak equivalences \mathcal{W}

Now define

$$
\mathcal{W}=\text { TFib } \circ \text { TCof }
$$

thus a map is a weak equivalence if it factors as a trivial cofibration followed by a trivial fibration.

It is easy to show that

$$
\begin{aligned}
\text { TCof } & =\mathcal{W} \cap \mathcal{C} \\
\text { TFib } & =\mathcal{W} \cap \mathcal{F}
\end{aligned}
$$

so we just need the 3 -for- 2 property for \mathcal{W}.
We will compare \mathcal{W} with the following, which does satisfy 3 -for- 2 .
Definition
A map $f: Y \rightarrow X$ is a weak homotopy equivalence if the map

$$
K^{f}: K^{X} \longrightarrow K^{Y}
$$

is a bijection on connected components for all fibrant objects K.

Definition (FEP)

The Fibration Extension Property says that fibrations extend along trivial cofibrations:

The QMS $(\mathcal{C}, \mathcal{W}, \mathcal{F})$

Definition (FEP)

The Fibration Extension Property says that fibrations extend along trivial cofibrations:

Lemma
If the FEP holds, then a map $f: Y \rightarrow X$ is a weak equivalence iff it is a weak homotopy equivalence.

The QMS $(\mathcal{C}, \mathcal{W}, \mathcal{F})$

Definition (FEP)

The Fibration Extension Property says that fibrations extend along trivial cofibrations:

Lemma
If the FEP holds, then a map $f: Y \rightarrow X$ is a weak equivalence iff it is a weak homotopy equivalence.

Corollary
If the FEP holds, then $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ is a $Q M S$.

The QMS $(\mathcal{C}, \mathcal{W}, \mathcal{F})$

Definition (FEP)

The Fibration Extension Property says that fibrations extend along trivial cofibrations:

Lemma
If the FEP holds, then a map $f: Y \rightarrow X$ is a weak equivalence iff it is a weak homotopy equivalence.

Corollary
If the FEP holds, then $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ is a $Q M S$.

4. The equivalence extension property

Definition (EEP)

The EEP says that weak equivalences extend along any cofibration $X^{\prime} \longmapsto X$: given a fibration $B \longrightarrow X$, and a weak equivalence $A^{\prime} \simeq B^{\prime}$ over X^{\prime}, where $A^{\prime} \longrightarrow X^{\prime}$ and $B^{\prime}=X^{\prime} \times_{X} B$,

there is a fibration $A \longrightarrow X$, and a weak equivalence $A \simeq B$ over X that pulls back to $A^{\prime} \simeq B^{\prime}$.

4. The equivalence extension property

Definition (EEP)

The EEP says that weak equivalences extend along any cofibration $X^{\prime} \mapsto X$: given a fibration $B \longrightarrow X$, and a weak equivalence $A^{\prime} \simeq B^{\prime}$ over X^{\prime}, where $A^{\prime} \longrightarrow X^{\prime}$ and $B^{\prime}=X^{\prime} \times_{X} B$,

there is a fibration $A \longrightarrow X$, and a weak equivalence $A \simeq B$ over X that pulls back to $A^{\prime} \simeq B^{\prime}$.
This is was shown by Voevodsky for modelling univalence in Kan simplicial sets. A related proof by Sattler works in our setting.

5. The universe U of fibrations

There is a universal (small) fibration $\dot{U} \longrightarrow U$. Every small fibration $A \longrightarrow X$ is a pullback of $\dot{U} \longrightarrow U$ along a canonical classifying map $X \rightarrow \mathrm{U}$.

5. The universe U of fibrations

There is a universal (small) fibration $\dot{U} \longrightarrow U$.
Every small fibration $A \longrightarrow X$ is a pullback of $\dot{U} \longrightarrow U$ along a canonical classifying map $X \rightarrow \mathrm{U}$.

Take $\mathrm{U} \rightarrow \mathrm{V}$ to be the object of fibration structures on $\dot{\mathrm{V}} \rightarrow \mathrm{V}$.

$$
\mathrm{U}=\mathrm{Fib}(\dot{\mathrm{~V}})
$$

5. The universe U of fibrations

There is a universal (small) fibration $\dot{U} \longrightarrow U$.
Every small fibration $A \longrightarrow X$ is a pullback of $\dot{U} \longrightarrow U$ along a canonical classifying map $X \rightarrow \mathrm{U}$.

Take $\mathrm{U} \rightarrow \mathrm{V}$ to be the object of fibration structures on $\dot{\mathrm{V}} \rightarrow \mathrm{V}$.

$$
\mathrm{U}=\mathrm{Fib}(\dot{\mathrm{~V}})
$$

Then define $\dot{U} \rightarrow U$ by pulling back the universal small family.

5. The universe U of fibrations

We said $U=\operatorname{Fib}(\dot{\mathrm{V}})$, and we defined $\dot{U} \rightarrow \mathrm{U}$ by:

5. The universe U of fibrations

We said $U=\operatorname{Fib}(\dot{\mathrm{V}})$, and we defined $\dot{U} \rightarrow \mathrm{U}$ by:

But $\mathrm{Fib}(-)$ is stable under pullback, so there is a section

Thus $\dot{U} \longrightarrow U$ is a fibration.

5. The universe U of fibrations

A fibration structure α on a family $A \rightarrow X$ therefore gives rise to a factorization of the classifying map to $\mathrm{V} \rightarrow \mathrm{V}$.

5. The universe U of fibrations

A fibration structure α on a family $A \rightarrow X$ therefore gives rise to a factorization of the classifying map to $\dot{\mathrm{V}} \rightarrow \mathrm{V}$.

5. The universe U of fibrations

A fibration structure α on a family $A \rightarrow X$ therefore gives rise to a factorization of the classifying map to $\dot{V} \rightarrow \mathrm{~V}$ through the fibration classifier $\dot{U} \longrightarrow \mathrm{U}$.

5. The universe U of fibrations

A fibration structure α on a family $A \rightarrow X$ therefore gives rise to a factorization of the classifying map to $\mathrm{V} \rightarrow \mathrm{V}$ through the fibration classifier $\dot{U} \longrightarrow U$.

The construction of Fib uses the root functor $(-)^{\mathbb{I}} \dashv(-)_{\mathbb{I}}$.

FEP and EEP in terms of U

Given a universe U, the EEP and FEP take on new meaning.

FEP and EEP in terms of U

Given a universe U, the EEP and FEP take on new meaning.
The FEP says just that U is fibrant:

FEP and EEP in terms of U

Given a universe U, the EEP and FEP take on new meaning.
The FEP says just that U is fibrant:

Voevodsky proved this for Kan simplicial sets.

FEP and EEP in terms of U
The EEP says that $\mathrm{Eq} \longrightarrow \mathrm{U}$ is a TFib :

FEP and EEP in terms of U

The EEP says that $\mathrm{Eq} \longrightarrow \mathrm{U}$ is a TFib :

Shulman gave a neat proof of FEP from EEP, but it uses 3-for-2.

FEP and EEP in terms of U

The EEP says that $\mathrm{Eq} \longrightarrow \mathrm{U}$ is a TFib :

Shulman gave a neat proof of FEP from EEP, but it uses 3-for-2.

6. FEP from EEP

Coquand gave a proof of FEP from EEP using Kan composition.
Definition
An object X has (biased) composition if for every cofibration $C \longmapsto Z$ and commutative rectangle as on the outside below,

there is an arrow $k: Z \longrightarrow X \times X$ making the diagram commute.

6. FEP from EEP

Coquand gave a proof of FEP from EEP using Kan composition.
Definition
An object X has (biased) composition if for every cofibration $C \longmapsto Z$ and commutative rectangle as on the outside below,

there is an arrow $k: Z \longrightarrow X \times X$ making the diagram commute.
Lemma
If X has composition, then X is fibrant.

6. FEP from EEP

We can now show:
Proposition
The universe U is fibrant.

6. FEP from EEP

We can now show:

Proposition

The universe U is fibrant.
By the previous lemma it suffices to show:
Lemma
The universe U has composition.
Proof.
Consider a composition problem

6. FEP from EEP

The canonical map $U^{\mathbb{I}} \longrightarrow U \times U$ factors (over $U \times U$) through the object Eq of equivalences via $i=I d t o E q$,

6. FEP from EEP

The canonical map $U^{\mathbb{I}} \longrightarrow \mathrm{U} \times \mathrm{U}$ factors (over $\mathrm{U} \times \mathrm{U}$) through the object Eq of equivalences via $i:=I d t o E q$,

But the projection $\mathrm{Eq} \longrightarrow \mathrm{U}$ is a trivial fibration by EEP, so there is a diagonal filler j.

6. FEP from EEP

The canonical map $U^{\mathbb{I}} \longrightarrow \mathrm{U} \times \mathrm{U}$ factors (over $\mathrm{U} \times \mathrm{U}$) through the object Eq of equivalences via $i:=I d t o E q$,

But the projection $\mathrm{Eq} \longrightarrow \mathrm{U}$ is a trivial fibration by EEP, so there is a diagonal filler j. Composing gives the required k.

Done!

Done!

But is our QMS right proper?

Postscript: Frobenius

Definition (Frobenius)

The Frobenius Property says that trivial cofibrations pull back along fibrations,

Postscript: Frobenius

Definition (Frobenius)
The Frobenius Property says that trivial cofibrations pull back along fibrations,

It is equivalent to the condition that fibrations "push forward" along fibrations,

Postscript: Frobenius

Definition (Frobenius)

The Frobenius Property says that trivial cofibrations pull back along fibrations,

It is equivalent to the condition that fibrations "push forward" along fibrations,

This is related to the existence of Π-types. It implies that our QMS is right proper.

Frobenius

Proposition

The Frobenius property holds for (TCof, \mathcal{F}).
Proof.

Frobenius

Proposition

The Frobenius property holds for (TCof, \mathcal{F}).
Proof.

Frobenius

Proposition

The Frobenius property holds for (TCof, \mathcal{F}).
Proof.

That's all Folks!

