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A premodel of HoTT consists of (E ,Φ, I,V) where:
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A model of HoTT is then constructed internally using the
extensional type theory of E (see Orton-Pitts).



QMS from models of HoTT

But one can also start from a model of HoTT and construct a
Quillen model structure (cf. Gambino-Garner, Lumsdaine).

Definition (pace Orton-Pitts)

A premodel of HoTT consists of (E ,Φ, I,V) where:

I E is a topos

I Φ is a representable class of monos Φ� Ω that form a
dominance and ...

I I is an interval 1⇒ I in E that is tiny (−)I a (−)I and ...

I V̇→ V is a universe of small families, closed under Σ,Π and ...

A model of HoTT is then constructed internally using the
extensional type theory of E (see Orton-Pitts).



QMS from models of HoTT

But one can also start from a model of HoTT and construct a
Quillen model structure (cf. Gambino-Garner, Lumsdaine).

Definition (pace Orton-Pitts)

A premodel of HoTT consists of (E ,Φ, I,V) where:

I E is a topos

I Φ is a representable class of monos Φ� Ω that form a
dominance and ...

I I is an interval 1⇒ I in E that is tiny (−)I a (−)I and ...

I V̇→ V is a universe of small families, closed under Σ,Π and ...

A model of HoTT is then constructed internally using the
extensional type theory of E (see Orton-Pitts).



QMS from models of HoTT

Our goal here is to show that from such a set-up for modelling
HoTT one can also construct a QMS:

Construction
From a premodel (E ,Φ, I,V) one can construct a QMS on E .

The resulting QMS is right proper and has descent, so it also
admits a model of HoTT in the pre-Orton-Pitts sense.
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QMS from models of HoTT

The construction of a QMS (C,W,F) from a premodel (E ,Φ, I,V)
is general, but the details depend on the specifics of the premodel.
We consider three special cases of cubical sets.

E = SetC
op

1. Cartesian cubical sets (new)

2. Cartesian cubical sets with equivariance (new jww/CCRS)

3. Dedekind cubical sets (Sattler)



Outline of the construction

Let (E ,Φ, I,V) be a premodel of HoTT where E = cSet.

We construct a Quillen model structure (C,W,F) on E in 3 steps:

1. use Φ to determine an awfs (C,TFib),

2. use I to determine another awfs (TCof,F),

3. let W = TFib ◦ TCof and prove 3-for-2 from FEP (done!)

To prove the Fibration Extension Property:

4. show that (C,W,F) satisfies the EEP,

5. use V and I to construct a universe U of fibrations,

6. use EEP to show that U is fibrant, which implies FEP.

NB: (5) seems to be a detour; maybe one can prove FEP directly?
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1. The cofibration awfs (C,TFib)

The monos classified by Φ� Ω are called cofibrations.
The generic one 1� Φ determines a polynomial endofunctor,

X+ :=
∑
ϕ:Φ

Xϕ ,

which is a (fibered) monad,

+ : cSet/· // cSet/·

Algebras for the pointed endofunctor of this monad,

A

��

// A+uu

~~

X

form the right class of an awfs – they are the trivial fibrations.
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2. The fibration awfs (TCof,F)

For any c : A→ B in cSet2, the Leibniz adjunction

(−)⊗c a c⇒(−)

relates the pushout-product with c and the pullback-hom with c .

These operations satisfy

(f ⊗c) � g ⇔ f � (c⇒g)

with respect to the diagonal filling relation f � g .

Definition
A map f : Y → X is a biased fibration if δε ⇒ f is a +-algebra for
both endpoints δ0, δ1 : 1→ I. Equivalently, f ∈ F if for all
cofibrations c ∈ C and ε = 0, 1,

c ⊗ δε � f .

This notion of fibration is used for the Dedekind cubes.
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2. The fibration awfs (TCof,F)

For the Cartesian cubes, we pass to the slice category cSet/I,
where there is a generic point δ : 1→ I.

Definition
A map f : Y → X is an (unbiased) fibration if δ⇒ f is a
+-algebra. Equivalently, f ∈ F if c⊗δ � f for all c ∈ C.

Proposition

There is an awfs (TCof,F) with these fibrations as F .

Remark
There is also an equivariant version of this awfs, in which the
fibration structure respects the symmetries of the cubes In
(this is explained in Emily’s talk).
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3. The weak equivalences W
Now define

W = TFib ◦ TCof

thus a map is a weak equivalence if it factors as a trivial
cofibration followed by a trivial fibration.

It is easy to show that

TCof =W ∩ C
TFib =W ∩F

so we just need the 3-for-2 property for W.

We will compare W with the following, which does satisfy 3-for-2.

Definition
A map f : Y → X is a weak homotopy equivalence if the map

K f : KX // KY

is a bijection on connected components for all fibrant objects K .
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The QMS (C,W ,F)

Definition (FEP)

The Fibration Extension Property says that fibrations extend along
trivial cofibrations:

A

����

// A′

����

X // ∼
// X ′

Lemma
If the FEP holds, then a map f : Y → X is a weak equivalence iff
it is a weak homotopy equivalence.

Corollary

If the FEP holds, then (C,W,F) is a QMS.

: - )
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4. The equivalence extension property

Definition (EEP)

The EEP says that weak equivalences extend along any cofibration
X ′� X : given a fibration B // // X , and a weak equivalence
A′ ' B ′ over X ′, where A′ // // X ′ and B ′ = X ′ ×X B,

A′

����

∼

  

// A

����

∼

  

B ′

~~~~

// B

~~~~

X ′ // // X .

there is a fibration A // // X , and a weak equivalence A ' B over X
that pulls back to A′ ' B ′.

This is was shown by Voevodsky for modelling univalence in Kan
simplicial sets. A related proof by Sattler works in our setting.
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5. The universe U of fibrations
There is a universal (small) fibration U̇ // // U.
Every small fibration A // // X is a pullback of U̇ // // U along a
canonical classifying map X → U.

A

����

// U̇

����

X // U

Take U→ V to be the object of fibration structures on V̇→ V.

U = Fib(V̇)

Then define U̇→ U by pulling back the universal small family.

U̇

��

// V̇

��

U // V
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Thus U̇ // U is a fibration.
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A fibration structure α on a family A→ X therefore gives rise to a
factorization of the classifying map to V̇→ V.
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A fibration structure α on a family A→ X therefore gives rise to a
factorization of the classifying map to V̇→ V through the fibration
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The construction of Fib uses the root functor (−)I a (−)I.
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FEP and EEP in terms of U

Given a universe U, the EEP and FEP take on new meaning.

The FEP says just that U is fibrant:

A
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X ′
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Voevodsky proved this for Kan simplicial sets.
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FEP and EEP in terms of U

The EEP says that Eq // U is a TFib:

A ' A′

����

%%

// Ũ ' Ũ′

||

��

B ' B ′

��

// U̇

��

X %%

%%

// Eq

{{
Y

44

// U

Shulman gave a neat proof of FEP from EEP, but it uses 3-for-2.

: - (
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6. FEP from EEP

Coquand gave a proof of FEP from EEP using Kan composition.

Definition
An object X has (biased) composition if for every cofibration
C � Z and commutative rectangle as on the outside below,

C��

��

// X I

��

~~

X × X

��

Z //

k
;;

X

there is an arrow k : Z // X × X making the diagram commute.

Lemma
If X has composition, then X is fibrant.
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We can now show:

Proposition

The universe U is fibrant.

By the previous lemma it suffices to show:
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But the projection Eq //U is a trivial fibration by EEP, so there is
a diagonal filler j .

Composing gives the required k .
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Postscript: Frobenius

Definition (Frobenius)

The Frobenius Property says that trivial cofibrations pull back
along fibrations,

A′��

∼
��

// X ′��

∼
��

A // // X .
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This is related to the existence of Π-types. It implies that our
QMS is right proper.
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Proposition

The Frobenius property holds for (TCof,F).
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That’s all Folks!


