
Outline
Informal type theory
Cubical type theory

Proofs

Informal cubical type theory

Bruno Bentzen

Carnegie Mellon University, USA
bbentzen@andrew.cmu.edu

August 16, 2019

Bruno Bentzen Informal cubical type theory 1 / 58

mailto:bbentzen@andrew.cmu.edu


Outline
Informal type theory
Cubical type theory

Proofs

1 Informal type theory
Motivation

2 Cubical type theory
Higher cubes
The path type
Kan operations

3 Proofs
Groupoid operations
Weak connections
Groupoid laws
Path induction

Bruno Bentzen Informal cubical type theory 2 / 58



Outline
Informal type theory
Cubical type theory

Proofs

Motivation

1 Informal type theory
Motivation

2 Cubical type theory
Higher cubes
The path type
Kan operations

3 Proofs
Groupoid operations
Weak connections
Groupoid laws
Path induction

Bruno Bentzen Informal cubical type theory 3 / 58



Outline
Informal type theory
Cubical type theory

Proofs

Motivation

1 Informal type theory
Motivation

2 Cubical type theory
Higher cubes
The path type
Kan operations

3 Proofs
Groupoid operations
Weak connections
Groupoid laws
Path induction

Bruno Bentzen Informal cubical type theory 4 / 58



Outline
Informal type theory
Cubical type theory

Proofs

Motivation

What is informal type theory?

the study of conventions for doing everyday mathematics in natural
language assuming type theory as the underlying foundation.

For homotopy type theory:

the project was carried out in the HoTT book.

Cubical type theory is more amenable to constructive interpretations, but
it can be a challenge to understand for the uninitiated.

the informal type theory project is a nice way to remedy the situation.
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In this talk,

“cubical type theory” means “cartesian cubical type theory” [ABC+17]

Cubical type theory is based on the same basic homotopical perspective as
homotopy type theory [AW09, Voe06] in which we regard

a type A as a space;

a term a : A as a point of the space A;

a function f : A→ B as a continuous map;

a path p : pathA(a, b) as a path from point a to b in the space A;

a type family P : A→ U as a fibration;

p : pathU (A,B) as a homotopy equivalence between spaces A and B

Bruno Bentzen Informal cubical type theory 7 / 58
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By the homotopy hypothesis, homotopy types can be modelled by higher
groupoids.

Higher groupoids can in turn be defined in terms of simplicial sets, or, as
an alternative presentation, cubical sets.

The main view that we take in this talk can be stated as:

types in cubical type theory are cubical ∞-groupoids
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We start by considering an abstraction of the unit interval in the real line,
a space consisting of two points, 0 and 1, the interval type, I.

We visualize a closed term a : A as a point (0-cell).

· a

We think of an open term p : A depending on i : I as a path (1-cell)

p[0/i ] p[1/i ]
p

i

with initial point p[0/i ] and terminal point p[1/i ].
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An open term h : A depending on i , j : I is a “homotopy of paths” (2-cell)

h[1, 0/j , i ] h[1, 1/j , i ]

h[0, 0/j , i ] h[0, 1/j , i ]

h[1/j ]

h i

j

h[0/j ]

h[0/i ] h[1/i ]

where paths are allowed to have free (but path-connected) endpoints.

Bruno Bentzen Informal cubical type theory 11 / 58
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An open term α : A depending on i , j , k : I is a path over a path homotopy
with free endpoints (3-cell)

· ·

· ·

· ·

· ·

α[0, 0/j , i ]

α[1, 0/k, j ]

α[1, 0/k, i ]
α[1, 1/k, i ]

α[1, 1/k, j ]

i
k

j

α[0, 0/k, j ]
α[0, 0/k, i ]

α[0, 1/j , i ]

α[0, 1/k, i ]

α[1, 0/j , i ]

α[0, 1/k, j ]

α[1, 1/j , i ]

It is hard enough to visualize higher dimensions of space, but, most
certainly, you can guess what comes next:

we think of higher-order open terms as higher-dimensional free path
homotopies, and we picture them as hypercubes.
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It is useful to have a type that internalizes higher cubes.

Obvious choice: the type of functions from the interval, I→ A (line type).

Given any type A : U and terms a, b : A we can construct the type of
paths from a to b in A, which we call their path type, denoted pathA(a, b).
We explain the path type by prescribing:

how to construct paths: abstraction (〈i〉p)

how can we use paths: application (p@i)

what equalities they induce: α, β, η and, for p : pathA(a, b),

p@0 ≡ a : A p@1 ≡ b : A

(This is sometimes called the non-dependent path type)
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Coercion. This is a generalization of transport [The13, Lem 2.3.1].
Given i , j : I, a path between types A : I→ U and a term a : A(i), there
exists term of type A(j), called the coercion of a from i to j over A, and
denoted by ai j

A : A(j).

a0 1
A : A(1)

:

a : A(0)

j
a0 j
A

A

We also require that static coercions have no effect, i.e. ai i
A ≡ a.

Bruno Bentzen Informal cubical type theory 16 / 58
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Composition. This ensures that any open box can be filled.

q(1) r(1)

q(0) ≡ p(0) p(1) ≡ r(0)

i

j
q(j)

p(i)

r(j)

This square is the filler of the composition and, for i , j : I, it is denoted by

p(i)0 j
A [(i = 0) 7→ j .q(j), (i = 1) 7→ j .r(j)] : A

we insist that static compositions be ineffective, i.e.

p(i)k k
A [(i = 0) 7→ j .q(j), (i = 1) 7→ j .r(j)] ≡ p(i)

Bruno Bentzen Informal cubical type theory 17 / 58
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What is a proof? Without being too philosophical about it:

a proof is a sufficient argument for the truth of a proposition.

Just as in category theory, we consider diagram chasing as a sufficient
argument in (informal) cubical type theory.

a b

c d

f

H i
j

g

f ′

g ′

Except that we understand commutative diagrams homotopically!
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Let us start with identity, composition and inversion of morphisms:

Lemma (Reflexivity)

For every type A and every a : A, there exists a path

pathA(a, a)

called the reflexivity path of a and denoted refla.

Proof.

Suppose that i : I is a fresh interval point. Since a does not depend on i ,
meaning that a[ε/i ] ≡ a, for ε = 0, 1, we have a degenerate line in the i
“direction” from a to a in A, and 〈i〉a gives us the required path.

Bruno Bentzen Informal cubical type theory 22 / 58
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Lemma (Path inversion)

For every type A and every a, b : A, there is a function

pathA(a, b)→ pathA(b, a)

called the inverse function and denoted p 7→ p−1.

Bruno Bentzen Informal cubical type theory 23 / 58
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Proof.

Note that p : pathA(a, b) gives a “j-line” p@j from a to b in A. We have
an open box (where degeneracy is indicated using double bars):

b a

a a

a0 1
A [(i = 0) 7→ j .p@j , (i = 1) 7→ j .a]

i
j

a

p@j a

By composition, it must have a lid, so, by path abstraction on the
resulting (dotted) i-line, we have a path from b to a in A.

Bruno Bentzen Informal cubical type theory 24 / 58
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Lemma (Path concatenation)

For every type A and every a, b, c : A, there is a function

pathA(a, b)→ pathA(b, c)→ pathA(a, c)

denoted p 7→ q 7→ p q. We call p q the concatenation of p and q.

Bruno Bentzen Informal cubical type theory 25 / 58
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Proof.

Given paths p : pathA(a, b) and q : pathA(b, c), we can construct an i-line
p@i from a to b and a j-line q@j from b to c . We have an open square:

a c

a b

p@i0 1
A [(i = 0) 7→ j .a, (i = 1) 7→ j .q@j ]

i
j

p@i

a q@j

We obtain the required path from a to c in A by path abstraction on the
line obtained by composition.

Bruno Bentzen Informal cubical type theory 26 / 58
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The basic intuition:

a d

b c

p−1 (p q)@i

i
j

q@i

p−1@j r@j

Composition generalizes path inversion and concatenation!

Bruno Bentzen Informal cubical type theory 27 / 58
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Lemma (Meet)

Suppose A : U , a, b : A and p : pathA(a, b). There is an operation

p(− ∧−) : I→ I→ A

such that, for any i , j : I, the following holds:

a b

a a

p@i

p(i ∧ j) i
j

p@j

Bruno Bentzen Informal cubical type theory 29 / 58
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Proof.

Given p : pathA(a, b), we are to find a (i , j)-square whose top face is p@i ,
right face is p@j , left and bottom faces are a. First, by composition, we
obtain a “halfway” connection

a b

a a

p∗ :≡ a0 1
A [(i = 0) 7→ j .a, (i = 1) 7→ j .p@j ]

p(i ∧∗ j) i
j

p@j

and we use it to perform a two-extent composition

Bruno Bentzen Informal cubical type theory 30 / 58
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Proof.

attaching it to the back and right faces of open cube
a a

a b

a a

a a

p∗
p@i

i

k
j

p@k

Moral of the story: two wrongs make a right!
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Note that we could also have written out this proof in a full formal style:

λA.λa.λb.λp.λi .λk .

a0 1
A

[(i = 0) 7→ j .a,

(i = 1) 7→ j .a0 k
A [(j = 0) 7→ k .a, (j = 1) 7→ k .p@k],

(k = 0) 7→ j .a0 i
A [(j = 0) 7→ i .a, (j = 1) 7→ i .p@i ],

(k = 1) 7→ j .a] :∏
(A:U)

∏
(a,b:A)

∏
(p:pathA(a,b))

I→ I→ A

Bruno Bentzen Informal cubical type theory 32 / 58
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Also, note that the proof could can be slightly improved

a b

a a

p@i

i
j

p@j
p@i

by making the diagonal definitionally equal to p!
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Lemma (Join)

Given a, b : A, for any p : pathA(a, b), there is a function

p(− ∨−) : I→ I→ A

such that, for i , j : I, we have:

b b

a b

p(i ∨ j) i
j

p@i

p@j

Bruno Bentzen Informal cubical type theory 34 / 58
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Proof.

By composition using p(− ∧∗ −):

a a

b b

a b

a a

p∗@j p∗@j

i

k
j

p@i

p@k

p∗@j

Bruno Bentzen Informal cubical type theory 35 / 58
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Lemma (Right unit law)

For every A and every a, b : A we have a path

rup : pathpathA(a,b)(p, p reflb)

for any p : pathA(a, b).
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Proof.

We need to construct a square:

a b

a b

p reflb@i

i
j

p@i

a b

but the filler of path concatenation already gives us this!
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Lemma (Left unit law)

For every A and every a, b : A we have a path

lup : pathpathA(a,b)(p, refla p)

for any p : pathA(a, b).

Bruno Bentzen Informal cubical type theory 39 / 58
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Proof.

By composition, we define a helper (i , j)-square that goes from p−1@i to b
in the i-direction and from b to p@j in the j-direction.

a a

b b

b a

a a

p@j
p@j

γ (p(¬i ∨ k))
i

k
j

p−1@i

p@k

p@j

We use the filler of the path inversion of p (bottom), meet (right),
degenerate lines (back) and points (left and bottom).
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Proof.

Forming a new open cube, we set γ at the right, the filler of refla p at the
back, the filler of p−1 at the bottom, and degenerate squares at the other
faces.

a a

a b

a b

a b

p@j
refla p@i

i

k
j

p@i

p@i

p−1@k

Bruno Bentzen Informal cubical type theory 41 / 58
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Lemma (Right cancellation)

For every A and every a, b : A we have a path

rcp : pathpathA(a,b)(refla, p p−1)

for any p : pathA(a, b).
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Proof.

We fill the following open (i , j , k)-cube

a b

a a

a a

a b

p@i

p−1@j

i
k

j

p p−1@i

p@i

p−1@j

whose back and front squares are respectively the fillers for path inversion
and concatenation.
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Lemma (Left cancellation)

For every A and every a, b : A we have a path

lcp : pathpathA(b,b)(reflb, p
−1 p)

for any p : pathA(a, b).
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Proof.

By composition on the following open cube, whose back face is the γ
square from the proof of Left Unit lemma.

b b

a a

a a

a b

p−1@i

p@j

i
k

j

p−1 p@i

p@i

p@j
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Lemma (Inversion involution)

For every A and every a, b : A, we have a path

invp : pathpathA(a,b)(p, p−1−1
)

for any p : pathA(a, b).
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Proof.

The proof follows by the use of meets, joins and γ to form the composite:

a a

a b

a b

b b

p@j
p@i

i

k
j

p−1−1
@i

p−1@j

p−1@k p−1@k
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Lemma (Associativity)

For every A and every a, b, c , d : A, we have a path

assocp,q,r : pathpathA(a,d)((p q) r , p (q r))

for any p : pathA(a, b), q : pathA(a, b), pathA(c , d).
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Proof.

The proof idea is that any two squares with definitionally equal bottom,
right and left faces must have the same top up to a path.

a d a d

a b a b

p (q r)@i

α

(p q) r@i

β i
j

p@i

q r@j

p@i

q r@j

where leftmost square is just the filler of path concatenation
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Proof.

The identification can be derived by a simple composition:

a c

a d

a d

a b

p@i

q r@j
p (q r)@i

i

k
j

(p q) r@i

p@i

q r@j

Now we just have to construct the rightmost square.
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Proof.

It can be obtained by composition on the filler of path concatenation.

a c

a d

a b

a b

p q@i

r@j
(p q) r@i

i

k
j

p@i

q r@k

p@i

q@j
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Theorem (Based path induction)

Given A : U , a : A, and a type family C :
∏

(x :A) pathA(a, x)→ U , we have
a function

pathrec :
∏

(x :A)

∏
(p:pathA(a,x))

∏
(u:C(a,refla))

C (x , p).
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Proof.

We want to construct, for every x : A, p : pathA(a, x), and u : C (a, refla),
a term of C (x , p). We shall use coercion on u over a type line C ′ : I→ U
between C ′(0) :≡ C (a, refla) and C ′(1) :≡ C (x , p).

We use the meet square of p:

a b

a a

p@i

p(i ∧ j) i
j

p@j

This square induces the desired type line

C ′ :≡ λi .C (p@i , 〈j〉p(i ∧ j)) : I→ U
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Proof.

Because C ′ goes from

C ′(0) ≡ C (p@0, 〈j〉p(0 ∧ j))

≡ C (a, 〈j〉a)

to

C ′(1) ≡ C (p@1, 〈j〉p(1 ∧ j))

≡ C (x , 〈j〉(p@j))

≡ C (x , p) (via η-rule)

Now we complete the proof by coercing u : C ′(0) from 0 to 1.
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Thank you!
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