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Lawvere's hyperdoctrines

An hyperdoctrine is a pseudofunctor P : C°P — Cat such that:
* (© has finite products,
* each P(f) has both a left adjoint Ir and a right adjoint Vs

* each P(c) is a cartesian closed category.



Lawvere's hyperdoctrines

An hyperdoctrine is a pseudofunctor P : C°P — Cat such that:
* (© has finite products,
* each P(f) has both a left adjoint Ir and a right adjoint Vs

* each P(c) is a cartesian closed category.

(What does it have to do with Iogic?J
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Seely’s semantics is an hyperdoctrine

In particular for f =84 : A— Ax A,
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Subsets form an hyperdoctrine

U —— f(U)

Ur—— f(U) ={beB:vVa€cA, f(a)=b=ac U}
u u
fl) «—— v

In particular for f =84 : A — Ax A,

35, A {(a,a)EAxA:a=a"}
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Predicates form an hyperdoctrine

p(®) — 3% (A 6 = ¥i) A 0(R)
o(X) — VE (A () = 31) = o)

YE) < ¥G)

In particular for £(X) = (X, %) @ (xq, ..., x,) — (x1, ..., o),

dzn T /\xi = Xpei
i



Elementary existential doctrines

An hyperdoctrine is a pseudofunctor P : C°P — Cat
such that:

* ( has finite products,
* each P(f) has both a left adjoint 3pand a right adjoint V
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Elementary existential doctrines

An elementary existential doctrine is a pseudofunctor P : C°P — Cat
such that:

* ( has finite products,
* each P(f) has both a left adjoint 3,

* each P(c) is a category with final object 1.

Define the equality predicate over ¢ € C as the direct image of 1, along the
diagonal

1c '3% E’A(lc)

A
c——> cxc
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Grothendieck bifibrations

A Grothendieck bifibration is a functor p : € — B such that

cart.

Y ; /N Y
= h
X//\_/ cocart. ;3!
XLt g X

and

A—"% B B
AV
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Grothendieck construction

Froman€eep P : C°P — Cat, construct a Grothendieck bifibration:

* objects: pairs (X, A) for X € P(A)
Je P | |

* morphisms (X, A) — (Y, B): pairs (u, f)
\L whereu : A — Band f : X — P(u)(Y).
e



Grothendieck construction

Froman€eep P : C°P — Cat, construct a Grothendieck bifibration:

* objects: pairs (X, A) for X € P(A)
Je P | |

* morphisms (X, A) — (Y, B): pairs (u, )
\L whereu : A — Band f : X — P(u)(Y).
e

From a Grothendieck bifibration p : €& — B, construct:
o p
BOP —> Cat
Ar——> &y

u\l/ u*/]\l— EM

B+—— &5



EEDs are extensional
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EEDs are extensional

[Equality in EEDS is intrinsically extensional.]
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Primer on tribes

Atribe is a category € with terminal object 1 and a class of maps § such that:
* A — 1lisin g forevery object A,
* § contains every isomorphism,
e §is stable under change of base,
» §is stable under composition,
§ o LLP(F) = €,

* LLP(F) is stable under change of base along elements of §



Primer on tribes

Atribe is a category € with terminal object 1 and a class of maps § such that:
* A — 1lisin g forevery object A,
* § contains every isomorphism,
e §is stable under change of base,
» §is stable under composition,
§ o LLP(3) = €,

* LLP(F) is stable under change of base along elements of §

[Bare minimum to interpret a type theory with 3, Id—types.J




Towards hypertribes

Goal

Provide a generalization of EEDs with
cod : §— C

as an instance.
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The previous rules induces:

z
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r

A r—2— 1dy

qz

q
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Relative lifting property

Given a functor p : &€ — B, say thatamap fin € has the strong left lifting
property relatively to p against g when:

X4Z>Z

N AN

VT

NN

B—— D
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Relative factorization systems

Define a right strong factorization system relative to p : & — B to consist of
* two classes £¢, Re of morphisms of €,
* and two classes £5, R of morphisms of B,
such that
* p(Le) < £3 and p(Re) < Ry,
* L¢ = LLP;(Re)
* forevery fin &:

X - ?lY
C
EV ﬁg
A S B



Cocartesian morphism as lifting problems

Y
3~

cocart. /
X—3,X

A—B
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Cocartesian morphism as lifting problems

fis cocartesian if and only if f € LLP;;(Mor (&)

/N T

X cocart. 3u)(

pis a Grothendieck opfibration if and only if there is a strong RFS relative to p
with Re = Mor (€) and £5 = Mor (B)



Anodyne maps as lifting problems

3 X—2 %z
8
NN
Cod Y%T
e A— —S3¢



Anodyne maps as lifting problems

3 X4Z>Z ]

NN

cod Y—N;{
e A—CHC)<



Anodyne maps as lifting problems

3 X—=2 37z
oW
cod Y@(
e A—CHCK



Anodyne maps as lifting problems

is anodyne if and only if (f, u) € LLP,4q(Reedy fibrations)
cod

X4Z>Z

N

Y T
cod W
K

NN

B—— D

@)
S
O



Anodyne maps as lifting problems

fis anodyne if and only if (f, u) € LLP,4(Reedy fibrations)

cod Y

@)
S
O

C is a tribe if and only if there is a weak RFS relative to cod with
Rz = {Reedy fibrations} and £¢ = Mor (C)



Reconcile Lawvere's equality and identity types

14 : > Z A z A
cocart.
Ian(14) —> T Idy ——> T
A ENYs A > C




Reconcile Lawvere's equality and identity types

14 z > Z A z S 7

BN N N

W) —— T ldy ————— T




Reconcile Lawvere's equality and identity types

1 z S 7 A z S 7
A e 2
\ 3k \ rA\/‘ U3k \
cocart. ¢ -
Ny — T ldy ———




Thank you.

http://www.normalesup.org/~cagne/

This document is licensed under CC-BY-SA 4.0 International


http://www.normalesup.org/~cagne/

Lawvere's insight

Consider the groupoid hyperdoctrine:

Grpd°P — CAT
G +— Psh(9)



Lawvere's insight

Consider the groupoid hyperdoctrine:

«

Grpd°P? — CAT
S — Psh(9)

This should not to be taken as indicative of a lack of vitality of [the
groupoid] hyperdoctrine, or even of a lack of a satisfactory theory
of equality for it. Rather, it indicates that we have probably been
too naive in defining equality in a manner too closely suggested
by the classical conception.
»
— Lawvere



What is it good for?

A model M of a first-order theory T can be interpreted as:

ctx0p —) Cat

w2
Setop Sub( )

where M : % — M and pz o @(X) = {m | Mk o(m)}



What is it good for?

A P-model M of a first-order theory T can be defined as:

ctx®P i) Cat
o A
©op P

where 91 and i have good properties.



Type-theoretic equality predicates

x:CHZ(x)type x,y:AFc(x,y):C x: At z(x): Z(c(x,x))
x,y: A p:Eqa(x, y) = jo(x, y,p): Z(c(x, y)

x:CHZ(x)type x,y:AFc(x,y):C x:At z(x): Z(c(x,x))
x: A j(x, x,refl,) = z(x)

ChHZtype x,y:Atc(x,y):C x,y: A p:Eqalx,y) - k(x,y,p): Z(c(x, y)

x,y: A pEQA(6 ¥) F icxren (%5 ¥, P) = k(x, v, p)
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