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Lawvere’s hyperdoctrines

An hyperdoctrine is a pseudofunctor 𝑃 ∶ Cop → Cat such that:

• C has finite products,

• each 𝑃(𝑓 ) has both a left adjoint ∃𝑓 and a right adjoint ∀𝑓,
• each 𝑃(𝑐) is a cartesian closed category.

What does it have to do with logic?
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Seely’s semantics is an hyperdoctrine

𝐴 𝐵
𝑓

𝑋𝐴 𝑓 ×𝑝 𝑋

𝑌

𝑞

𝑌

𝑞

𝑌

∃𝑓𝑞𝑓 𝑞

•

∀𝑓𝑞Π𝑓𝑞⌟
𝑝

In particular for 𝑓 = 𝛿𝐴 ∶ 𝐴 → 𝐴 × 𝐴,

∃𝛿𝐴 ∶ id𝐴 ↦ 𝛿𝐴
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⊧⊧

In particular for 𝑡(𝑥) = (𝑥, 𝑥) ∶ (𝑥1, … , 𝑥𝑛) → (𝑥1, … , 𝑥2𝑛),

∃(𝑥,𝑥) ∶ ⊤ ↦ ⋀
𝑖
𝑥𝑖 = 𝑥𝑛+𝑖
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∃(𝑥,𝑥) ∶ ⊤ ↦ ⋀
𝑖
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𝑥 𝑦
𝑡(𝑥)

𝜓(𝑦)𝜓(𝑡(𝑥))

𝜑(𝑥)

𝜑(𝑥)

∃𝑥, (⋀𝑖 𝑡𝑖(𝑥) = 𝑦𝑖) ∧ 𝜑(𝑥)

∀𝑥, (⋀𝑖 𝑡𝑖(𝑥) = 𝑦𝑖) ⇒ 𝜑(𝑥)⊧⊧

⊧⊧

In particular for 𝑡(𝑥) = (𝑥, 𝑥) ∶ (𝑥1, … , 𝑥𝑛) → (𝑥1, … , 𝑥2𝑛),

∃(𝑥,𝑥) ∶ ⊤ ↦ ⋀
𝑖
𝑥𝑖 = 𝑥𝑛+𝑖



Elementary existential doctrines

An hyperdoctrine is a pseudofunctor 𝑃 ∶ Cop → Cat

such that:

• C has finite products,

• each 𝑃(𝑓 ) has both a left adjoint ∃𝑓 and a right adjoint ∀𝑓,
• each 𝑃(𝑐) is a cartesian closed category.

Define the equality predicate over 𝑐 ∈ C as the direct image of 1𝑐 along the

diagonal

1𝑐 ∃Δ(1𝑐)

𝑐 𝑐 × 𝑐

∃Δ

Δ
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Grothendieck bifibrations

A Grothendieck fibration is a functor 𝑝 ∶ E → B such that

𝐴 𝐵𝑢
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𝑋

𝐴′

∃!

and

𝐴 𝐵𝑢
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cocart.

𝑌

𝐵′

∃!
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Grothendieck construction

From an EED 𝑃 ∶ Cop → Cat, construct a Grothendieck bifibration:

∫
C
𝑃

C

• objects: pairs (𝑋 , 𝐴) for 𝑋 ∈ 𝑃(𝐴)
• morphisms (𝑋 , 𝐴) → (𝑌 , 𝐵): pairs (𝑢, 𝑓 )
where 𝑢 ∶ 𝐴 → 𝐵 and 𝑓 ∶ 𝑋 → 𝑃(𝑢)(𝑌 ).

From a Grothendieck bifibration 𝑝 ∶ E → B, construct:

Bop Cat

𝐴 E𝐴

𝐵 E𝐵

̃𝑝

𝑢 ∃𝑢𝑢∗ ⊢
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EEDs are extensional

Equality in EEDs is intrinsically extensional.

𝑍

1𝐴 ∃Δ(1𝐴)

𝐶

𝐴 𝐴 × 𝐴

𝜆

𝑧

∃!

Δ

𝑐

ℎ
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2. Reconcile hyperdoctrines with intensional equalities



Primer on tribes

A tribe is a category C with terminal object 1 and a class of maps 𝔉 such that:

• 𝐴 → 1 is in 𝔉 for every object𝐴,

• 𝔉 contains every isomorphism,

• 𝔉 is stable under change of base,

• 𝔉 is stable under composition,

• 𝔉 ∘ LLP(𝔉) = C,

• LLP(𝔉) is stable under change of base along elements of 𝔉

Bare minimum to interpret a type theory with Σ, Id-types.
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Bare minimum to interpret a type theory with Σ, Id-types.



Towards hypertribes

Provide a generalization of EEDs with

cod ∶ 𝔉 → C

as an instance.

Goal



Identity types in a tribe

Interpret Id𝐴 by factorizing:

Id𝐴

𝐴 𝐴 × 𝐴

𝑝𝐴

Δ

𝑟𝐴
• •

• •
∈𝔉 LLP(𝔉)

The j-rule is satisfied:

𝐴 𝐶

Id𝐴 Id𝐴

𝑟𝐴

𝑐

𝑗
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Identity types as an equality predicates?

The previous rules induces:

𝑍

1𝐴 ∃Δ(1𝐴)
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Relative lifting property

Given a functor 𝑝 ∶ E → B, say that a map 𝑓 in E has the weak left lifting

property relatively to 𝑝 against 𝑔 when:

𝑋 𝑍

𝑌 𝑇

𝐴 𝐶

𝐵 𝐷

𝑓

𝑧

𝑡
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𝑢

𝑐

𝑣

𝑑
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Relative lifting property

Given a functor 𝑝 ∶ E → B, say that a map 𝑓 in E has the strong left lifting

property relatively to 𝑝 against 𝑔 when:
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Relative factorization systems

Define a right weak factorization system relative to 𝑝 ∶ E → B to consist of

• two classes 𝔏E,ℜE of morphisms of E,

• and two classes 𝔏B,ℜB of morphisms ofB,

such that

• 𝑝(𝔏E) ⊆ 𝔏B and 𝑝(ℜE) ⊆ ℜB,

• 𝔏E = LLP𝑝(ℜE)
• for every 𝑓 in E:

𝑍

𝑋 𝑌

𝐶

𝐴 𝐵

∈ℜE

𝑓

∈𝔏E

∈ℜB∈𝔏B

𝑢
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Relative factorization systems
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Cocartesian morphism as lifting problems

𝑓 is cocartesian if and only if 𝑓 ∈ LLP⟂𝑝 (Mor (E))

𝐴 𝐵𝑢

𝑋

𝑝

∃𝑢𝑋
cocart.

𝑌

𝐵′

∃!

𝐶1

𝑍1

𝑝 is a Grothendieck opfibration if and only if there is a strong RFS relative to 𝑝
with ℜE = Mor (E) and 𝔏B = Mor (B)
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Cocartesian morphism as lifting problems
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Anodyne maps as lifting problems

𝑓 is anodyne if and only if (𝑓 , 𝑢) ∈ LLPcod(Reedy fibrations)

𝑋 𝑍

𝑌 𝑇
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𝑧
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𝑢

𝑐

𝑣

𝑑

𝑞

ℎ

𝔉

cod

C

C is a tribe if and only if there is a weak RFS relative to cod with

ℜ𝔉 = {Reedy fibrations} and 𝔏C = Mor (C)
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Reconcile Lawvere’s equality and identity types

1𝐴 𝑍

∃Δ(1𝐴) 𝑇

𝐴 𝐶

𝐴 × 𝐴 𝐷

cocart.

𝑧

∃!𝑘

Δ

𝑐

ℎ

𝐴 𝑍

Id𝐴 𝑇

𝐴 𝐶

𝐴 × 𝐴 𝐷

𝑟𝐴

𝑧

𝑞∃𝑘

Δ

𝑐
𝑝𝐴

ℎ



Reconcile Lawvere’s equality and identity types
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Reconcile Lawvere’s equality and identity types

1𝐴 𝑍

∃Δ(1𝐴) 𝑇

𝐴 𝐶

𝐴 × 𝐴 𝐷

cocart.

𝑧

∃!𝑘

Δ

𝑐

ℎ

𝐴 𝑍

Id𝐴 𝑇

𝐴 𝐶

𝐴 × 𝐴 𝐷

𝑟𝐴

𝑧

𝑞∃𝑘

Δ

𝑐
𝑝𝐴

ℎ



Thank you.

http://www.normalesup.org/~cagne/
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Lawvere’s insight

Consider the groupoid hyperdoctrine:

Grpd
op → CAT

G ↦ Psh(G)

This should not to be taken as indicative of a lack of vitality of [the

groupoid] hyperdoctrine, or even of a lack of a satisfactory theory

of equality for it. Rather, it indicates that we have probably been

too naive in defining equality in a manner too closely suggested

by the classical conception.

— Lawvere

«

»
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What is it good for?

A model𝑀 of a first-order theory𝕋 can be interpreted as:

ctxop Cat

Set
op

𝔐

𝕋

Sub(−)

𝜇

Cop

where 𝔐 ∶ 𝑥 ↦ 𝑀 |𝑥|, and 𝜇𝑥 ∶ 𝜑(𝑥) ↦ {�⃗� ∣ 𝑀 ⊧ 𝜑(�⃗�)}



What is it good for?

A 𝑃-model𝑀 of a first-order theory𝕋 can be defined as:

ctxop Cat

Set
op

𝔐

𝕋

𝑃

𝜇

Cop

where 𝔐 and 𝜇 have good properties.



Type-theoretic equality predicates

𝑥∶𝐶 ⊢ 𝑍(𝑥) type 𝑥, 𝑦∶𝐴 ⊢ 𝑐(𝑥, 𝑦)∶𝐶 𝑥∶𝐴 ⊢ 𝑧(𝑥)∶𝑍(𝑐(𝑥, 𝑥))
𝑥, 𝑦∶𝐴, 𝑝∶Eq𝐴(𝑥, 𝑦) ⊢ 𝑗𝑧(𝑥, 𝑦, 𝑝)∶𝑍(𝑐(𝑥, 𝑦))

𝑥∶𝐶 ⊢ 𝑍(𝑥) type 𝑥, 𝑦∶𝐴 ⊢ 𝑐(𝑥, 𝑦)∶𝐶 𝑥∶𝐴 ⊢ 𝑧(𝑥)∶𝑍(𝑐(𝑥, 𝑥))
𝑥∶𝐴 ⊢ 𝑗𝑧(𝑥, 𝑥, refl𝑥) ≡ 𝑧(𝑥)

𝐶 ⊢ 𝑍 type 𝑥, 𝑦∶𝐴 ⊢ 𝑐(𝑥, 𝑦)∶𝐶 𝑥, 𝑦∶𝐴, 𝑝∶Eq𝐴(𝑥, 𝑦) ⊢ 𝑘(𝑥, 𝑦, 𝑝)∶𝑍(𝑐(𝑥, 𝑦))
𝑥, 𝑦∶𝐴, 𝑝∶Eq𝐴(𝑥, 𝑦) ⊢ 𝑗𝑘(𝑥,𝑥,refl𝑥)(𝑥, 𝑦, 𝑝) ≡ 𝑘(𝑥, 𝑦, 𝑝)
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