INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

r I F

Pierre Cagne

joint work with Paul-André Melliès

Université Paris Diderot - Paris 7

Identity types as equality predicates Reconciling hyperdoctrines with MLTT

HoTT 2019 – Carnegie Mellon University August 12, 2019

1. Lawvere's hyperdoctrines

2. Reconcile hyperdoctrines with intensional equalities

1. Lawvere's hyperdoctrines

An hyperdoctrine is a pseudofunctor $P : \mathcal{C}^{op} \rightarrow Cat$ such that:

- $\mathcal C$ has finite products,
- each P(f) has both a left adjoint \exists_f and a right adjoint \forall_f .
- each P(c) is a cartesian closed category.

An hyperdoctrine is a pseudofunctor $P : \mathcal{C}^{op} \rightarrow Cat$ such that:

- $\mathcal C$ has finite products,
- each P(f) has both a left adjoint \exists_f and a right adjoint \forall_f .
- each P(c) is a cartesian closed category.

What does it have to do with logic?

In particular for $f = \delta_A : A \longrightarrow A \times A$,

$$\exists_{\delta_A} : \mathrm{id}_A \mapsto \delta_A$$

$$U \longmapsto \exists_f U$$

$$U \longmapsto f(U) = \{b \in B : \exists a \in A, f(a) = b \land a \in U\}$$

In particular for $f = \delta_A : A \longrightarrow A \times A$,

$$\exists_{\delta_A} : A \mapsto \{(a, a') \in A \times A : a = a'\}$$

$$\psi(ec{t}(ec{x})) \longleftrightarrow \psi(ec{y})$$
 $ec{x} \stackrel{ec{t}(ec{x})}{\longrightarrow} ec{y}$

$$\varphi(\vec{x}) \longmapsto \exists \vec{x}, \left(\bigwedge_i t_i(\vec{x}) = y_i \right) \land \varphi(\vec{x})$$

$$\psi(\vec{t}(\vec{x})) \longleftrightarrow \psi(\vec{y})$$

 $\vec{x} \xrightarrow{\vec{t}(\vec{x})} \vec{y}$

In particular for $\vec{t}(\vec{x}) = (\vec{x}, \vec{x}) : (x_1, \dots, x_n) \rightarrow (x_1, \dots, x_{2n})$,

$$\exists_{(\vec{x},\vec{x})} : \top \mapsto \bigwedge_{i} x_{i} = x_{n+i}$$

An hyperdoctrine is a pseudofunctor P : $\mathbb{C}^{\mathrm{op}} \to \mathbf{Cat}$ such that:

- $\mathcal C$ has finite products,
- each P(f) has both a left adjoint \exists_f and a right adjoint \forall_f .
- each P(c) is a cartesian closed category.

An hyperdoctrine is a pseudofunctor P : $\mathbb{C}^{\mathrm{op}} \to \mathbf{Cat}$ such that:

- $\mathcal C$ has finite products,
- each P(f) has both a left adjoint \exists_f and a right adjoint \forall_f .
- each P(c) is a Heyting algebra.

An hyperdoctrine is a pseudofunctor P : $\mathbb{C}^{\mathrm{op}} \to \mathbf{Cat}$ such that:

- $\mathcal C$ has finite products,
- each P(f) has both a left adjoint \exists_f and a right adjoint \forall_f .
- each P(c) is a Boolean algebra.

An elementary existential doctrine is a pseudofunctor $P: \mathbb{C}^{\mathrm{op}} \to \mathsf{Cat}$ such that:

- C has finite products,
- each P(f) has both a left adjoint \exists_{f}
- each P(c) is a category with final object $\mathbf{1}_{c}$.

An elementary existential doctrine is a pseudofunctor P : $\mathcal{C}^{op} \rightarrow Cat$ such that:

- C has finite products,
- each P(f) has both a left adjoint \exists_{f}
- each P(c) is a category with final object $\mathbf{1}_{c}$.

Define the equality predicate over $c \in \mathcal{C}$ as the direct image of $\mathbf{1}_c$ along the diagonal

$$\mathbf{1}_{c} \xrightarrow{\mathsf{A}_{\Delta}} \mathtt{A}_{\Delta}(\mathbf{1}_{c})$$
$$c \xrightarrow{\Delta} c \times c$$

Grothendieck construction

 $\int_{\mathcal{C}} P$

C

From an EED P : $\mathcal{C}^{op} \rightarrow Cat$, construct a Grothendieck bifibration:

- objects: pairs (X, A) for $X \in P(A)$
 - morphisms $(X, A) \rightarrow (Y, B)$: pairs (u, f)where $u : A \rightarrow B$ and $f : X \rightarrow P(u)(Y)$.

Grothendieck construction

From an EED P : $\mathbb{C}^{op} \rightarrow Cat$, construct a Grothendieck bifibration:

From a Grothendieck bifibration $p: \mathcal{E} \rightarrow \mathcal{B}$, construct:

 $\mathbb{B}^{\mathrm{op}} \xrightarrow{\tilde{p}} \mathsf{Cat}$

EEDs are extensional

EEDs are extensional

EEDs are extensional

Equality in EEDs is intrinsically extensional.

2. Reconcile hyperdoctrines with intensional equalities

A tribe is a category ${\mathcal C}$ with terminal object 1 and a class of maps ${\mathfrak F}$ such that:

- $A \rightarrow 1$ is in \mathfrak{F} for every object A,
- \mathfrak{F} contains every isomorphism,
- \mathfrak{F} is stable under change of base,
- \mathfrak{F} is stable under composition,
- $\mathfrak{F} \circ LLP(\mathfrak{F}) = \mathfrak{C}$,
- $\mathsf{LLP}(\mathfrak{F})$ is stable under change of base along elements of \mathfrak{F}

A tribe is a category ${\mathcal C}$ with terminal object 1 and a class of maps ${\mathfrak F}$ such that:

- $A \rightarrow 1$ is in \mathfrak{F} for every object A,
- \mathfrak{F} contains every isomorphism,
- \mathfrak{F} is stable under change of base,
- \mathfrak{F} is stable under composition,
- $\mathfrak{F} \circ LLP(\mathfrak{F}) = \mathfrak{C}$,
- $\mathsf{LLP}(\mathfrak{F})$ is stable under change of base along elements of \mathfrak{F}

Bare minimum to interpret a type theory with Σ , Id-types.

Goal

Provide a generalization of EEDs with

 $\mathrm{cod}\,:\,\mathfrak{F}\to \mathbb{C}$

as an instance.

Interpret Id_A by factorizing:

Interpret Id_A by factorizing:

The j-rule is satisfied:

Interpret Id_A by factorizing:

The j-rule is satisfied:

Given a functor $p : \mathcal{E} \to \mathcal{B}$, say that a map f in \mathcal{E} has the weak left lifting property relatively to p against g when:

Given a functor $p : \mathcal{E} \to \mathcal{B}$, say that a map f in \mathcal{E} has the weak left lifting property relatively to p against g when:

Given a functor $p : \mathcal{E} \to \mathcal{B}$, say that a map f in \mathcal{E} has the weak left lifting property relatively to p against g when:

Given a functor $p : \mathcal{E} \to \mathcal{B}$, say that a map f in \mathcal{E} has the strong left lifting property relatively to p against g when:

Define a right weak factorization system relative to $p\,:\,\mathcal{E} o\mathcal{B}$ to consist of

- two classes $\mathfrak{L}_{\mathcal{E}}, \mathfrak{R}_{\mathcal{E}}$ of morphisms of \mathcal{E} ,
- and two classes $\mathfrak{L}_{\mathfrak{B}}, \mathfrak{R}_{\mathfrak{B}}$ of morphisms of \mathfrak{B} ,

Define a right weak factorization system relative to $p\,:\,\mathcal{E} o\mathcal{B}$ to consist of

- two classes $\mathfrak{L}_{\mathcal{E}}, \mathfrak{R}_{\mathcal{E}}$ of morphisms of \mathcal{E} ,
- and two classes $\mathfrak{L}_{\mathfrak{B}}, \mathfrak{R}_{\mathfrak{B}}$ of morphisms of \mathfrak{B} ,

such that

• $p(\mathfrak{L}_{\mathcal{E}}) \subseteq \mathfrak{L}_{\mathcal{B}} \text{ and } p(\mathfrak{R}_{\mathcal{E}}) \subseteq \mathfrak{R}_{\mathcal{B}}$,

Define a right weak factorization system relative to $p\,:\,\mathcal{E} o\mathcal{B}$ to consist of

- two classes $\mathfrak{L}_{\mathcal{E}}, \mathfrak{R}_{\mathcal{E}}$ of morphisms of \mathcal{E} ,
- and two classes $\mathfrak{L}_{\mathfrak{B}}, \mathfrak{R}_{\mathfrak{B}}$ of morphisms of \mathfrak{B} ,

- $p(\mathfrak{L}_{\mathcal{E}}) \subseteq \mathfrak{L}_{\mathcal{B}} \text{ and } p(\mathfrak{R}_{\mathcal{E}}) \subseteq \mathfrak{R}_{\mathcal{B}}$,
- $\mathfrak{L}_{\mathcal{E}} = \mathsf{LLP}_p(\mathfrak{R}_{\mathcal{E}})$

Define a right weak factorization system relative to $p\,:\,\mathcal{E} o\mathcal{B}$ to consist of

- two classes $\mathfrak{L}_{\mathcal{E}}, \mathfrak{R}_{\mathcal{E}}$ of morphisms of \mathcal{E} ,
- and two classes $\mathfrak{L}_{\mathfrak{B}},\mathfrak{R}_{\mathfrak{B}}$ of morphisms of \mathfrak{B} ,

- $p(\mathfrak{L}_{\mathcal{E}}) \subseteq \mathfrak{L}_{\mathcal{B}} \text{ and } p(\mathfrak{R}_{\mathcal{E}}) \subseteq \mathfrak{R}_{\mathcal{B}}$,
- $\mathfrak{L}_{\mathcal{E}} = \mathsf{LLP}_p(\mathfrak{R}_{\mathcal{E}})$
- for every f in \mathcal{E} :

Define a right weak factorization system relative to $p\,:\,\mathcal{E} o\mathcal{B}$ to consist of

- two classes $\mathfrak{L}_{\mathcal{E}}, \mathfrak{R}_{\mathcal{E}}$ of morphisms of \mathcal{E} ,
- and two classes $\mathfrak{L}_{\mathfrak{B}},\mathfrak{R}_{\mathfrak{B}}$ of morphisms of \mathfrak{B} ,

- $p(\mathfrak{L}_{\mathcal{E}}) \subseteq \mathfrak{L}_{\mathcal{B}} \text{ and } p(\mathfrak{R}_{\mathcal{E}}) \subseteq \mathfrak{R}_{\mathcal{B}}$,
- $\mathfrak{L}_{\mathcal{E}} = \mathsf{LLP}_p(\mathfrak{R}_{\mathcal{E}})$
- for every f in \mathcal{E} :

Define a right weak factorization system relative to $p\,:\,\mathcal{E} o\mathcal{B}$ to consist of

- two classes $\mathfrak{L}_{\mathcal{E}}, \mathfrak{R}_{\mathcal{E}}$ of morphisms of \mathcal{E} ,
- and two classes $\mathfrak{L}_{\mathfrak{B}}, \mathfrak{R}_{\mathfrak{B}}$ of morphisms of \mathfrak{B} ,

- $p(\mathfrak{L}_{\mathcal{E}}) \subseteq \mathfrak{L}_{\mathcal{B}} \text{ and } p(\mathfrak{R}_{\mathcal{E}}) \subseteq \mathfrak{R}_{\mathcal{B}}$
- $\mathfrak{L}_{\mathcal{E}} = \mathsf{LLP}_p(\mathfrak{R}_{\mathcal{E}})$
- for every f in \mathcal{E} :

Define a right strong factorization system relative to $p: \mathcal{E}
ightarrow \mathcal{B}$ to consist of

- two classes $\mathfrak{L}_{\mathcal{E}}, \mathfrak{R}_{\mathcal{E}}$ of morphisms of \mathcal{E} ,
- and two classes $\mathfrak{L}_{\mathfrak{B}}, \mathfrak{R}_{\mathfrak{B}}$ of morphisms of \mathfrak{B} ,

- $p(\mathfrak{L}_{\mathcal{E}}) \subseteq \mathfrak{L}_{\mathcal{B}}$ and $p(\mathfrak{R}_{\mathcal{E}}) \subseteq \mathfrak{R}_{\mathcal{B}}$,
- $\mathfrak{L}_{\mathcal{E}} = \mathsf{LLP}_p^{\perp}(\mathfrak{R}_{\mathcal{E}})$
- for every f in \mathcal{E} :

f is cocartesian if and only if $f \in \text{LLP}_p^{\perp}(any \to 1)$

f is cocartesian if and only if $f \in \text{LLP}_p^{\perp}(\text{Mor}(\mathcal{E}))$

f is cocartesian if and only if $f \in \text{LLP}_p^{\perp}(\text{Mor}(\mathcal{E}))$

p is a Grothendieck opfibration if and only if there is a strong RFS relative to p with $\Re_{\mathcal{E}} = Mor(\mathcal{E})$ and $\mathfrak{L}_{\mathcal{B}} = Mor(\mathcal{B})$

f is anodyne if and only if $(f, u) \in LLP_{cod}(Reedy fibrations)$

f is anodyne if and only if $(f, u) \in \text{LLP}_{cod}(\text{Reedy fibrations})$

 $\begin{array}{l} \mathcal{C} \text{ is a tribe if and only if there is a weak RFS relative to <math>cod \text{ with } \\ \mathfrak{R}_{\mathfrak{F}} = \{ \text{Reedy fibrations} \} \text{ and } \mathfrak{L}_{\mathcal{C}} = Mor \left(\mathcal{C} \right) \end{array}$

Reconcile Lawvere's equality and identity types

Reconcile Lawvere's equality and identity types

Reconcile Lawvere's equality and identity types

Thank you.

http://www.normalesup.org/~cagne/

This document is licensed under CC-BY-SA 4.0 International.

Consider the groupoid hyperdoctrine:

 $\begin{array}{c} \mathsf{Grpd}^{op} \to \mathsf{CAT} \\ \mathfrak{G} \mapsto \mathsf{Psh}(\mathfrak{G}) \end{array}$

«

Consider the groupoid hyperdoctrine:

$$\begin{aligned} \mathsf{Grpd}^{\mathrm{op}} &\to \mathsf{CAT} \\ \mathcal{G} &\mapsto \mathsf{Psh}(\mathcal{G}) \end{aligned}$$

This should not to be taken as indicative of a lack of vitality of [the groupoid] hyperdoctrine, or even of a lack of a satisfactory theory of equality for it. Rather, it indicates that we have probably been too naive in defining equality in a manner too closely suggested by the classical conception.

- Lawvere

>>

A model M of a first-order theory $\mathbb T$ can be interpreted as:

where \mathfrak{M} : $\vec{x} \mapsto M^{|\vec{x}|}$, and $\mu_{\vec{x}}$: $\varphi(\vec{x}) \mapsto \{\vec{m} \mid M \models \varphi(\vec{m})\}$

A P-model M of a first-order theory $\mathbb T$ can be defined as:

where \mathfrak{M} and μ have good properties.

$$\frac{x: C \vdash Z(x) \text{ type } x, y: A \vdash c(x, y): C \quad x: A \vdash z(x): Z(c(x, x))}{x, y: A, p: \text{Eq}_A(x, y) \vdash j_z(x, y, p): Z(c(x, y))}$$

$$\frac{x: C \vdash Z(x) \text{ type } x, y: A \vdash c(x, y): C \quad x: A \vdash z(x): Z(c(x, x))}{x: A \vdash j_z(x, x, \text{refl}_x) = z(x)}$$

$$\frac{C \vdash Z \text{ type } x, y: A \vdash c(x, y): C \quad x, y: A, p: \text{Eq}_A(x, y) \vdash k(x, y, p): Z(c(x, y))}{x, y: A, p: \text{Eq}_A(x, y) \vdash j_{k(x, x, \text{refl}_x)}(x, y, p) \equiv k(x, y, p)}$$