Pierre Cagne joint work with Paul-André Melliès

Université Paris Diderot - Paris 7

Identity types as equality predicates Reconciling hyperdoctrines with MLTT

1. Lawvere's hyperdoctrines
2. Reconcile hyperdoctrines with intensional equalities
3. Lawvere's hyperdoctrines

Lawvere's hyperdoctrines

An hyperdoctrine is a pseudofunctor $P: \complement^{\text {op }} \longrightarrow$ Cat such that:

- \mathcal{C} has finite products,
- each $P(f)$ has both a left adjoint \exists_{f} and a right adjoint \forall_{f},
- each $P(c)$ is a cartesian closed category.

Lawvere's hyperdoctrines

An hyperdoctrine is a pseudofunctor $P: \complement^{\text {op }} \longrightarrow$ Cat such that:

- \mathcal{C} has finite products,
- each $P(f)$ has both a left adjoint \exists_{f} and a right adjoint \forall_{f},
- each $P(c)$ is a cartesian closed category.

> What does it have to do with logic?

Seely's semantics is an hyperdoctrine

In particular for $f=\delta_{A}: A \rightarrow A \times A$,

$$
\exists_{\delta_{A}}: \operatorname{id}_{A} \mapsto \delta_{A}
$$

Subsets form an hyperdoctrine

Subsets form an hyperdoctrine

Subsets form an hyperdoctrine

U

Subsets form an hyperdoctrine

$$
U \longmapsto \exists_{f} U
$$

$$
f^{-1}(V) \longleftarrow V
$$

Subsets form an hyperdoctrine

$$
U \longmapsto f(U)=\{b \in B: \exists a \in A, f(a)=b \wedge a \in U\}
$$

Subsets form an hyperdoctrine

$$
U \longmapsto f(U)=\{b \in B: \exists a \in A, f(a)=b \wedge a \in U\}
$$

in in

$$
f^{-1}(V) \longleftarrow V
$$

Subsets form an hyperdoctrine

$$
\begin{gathered}
U \longmapsto f(U) \\
U \longmapsto \forall_{f} U \\
f^{-1}(V) \longleftrightarrow V \\
A \longrightarrow B
\end{gathered}
$$

Subsets form an hyperdoctrine

$$
\begin{array}{rl}
U & \longmapsto f(U) \\
U & \longmapsto f_{*}(U)=\{b \in B: \forall a \in A, f(a)=b \Rightarrow a \in U\} \\
f^{-1}(V) \longleftrightarrow V \\
A & f \\
\\
\\
\end{array}
$$

Subsets form an hyperdoctrine

$$
\begin{aligned}
& U \longmapsto f(U) \\
& U \longmapsto f_{*}(U)=\{b \in B: \forall a \in A, f(a)=b \Rightarrow a \in U\} \\
& f^{-1}(V) \longleftarrow V
\end{aligned}
$$

Subsets form an hyperdoctrine

$$
\begin{aligned}
& U \longmapsto f(U) \\
& U \longmapsto f_{*}(U)=\{b \in B: \forall a \in A, f(a)=b \Rightarrow a \in U\} \\
& \text { U U } \\
& f^{-1}(V) \longleftarrow V \\
& \xrightarrow{ } \xrightarrow{ }
\end{aligned}
$$

In particular for $f=\delta_{A}: A \rightarrow A \times A$,

$$
\exists_{\delta_{A}}: A \mapsto\left\{\left(a, a^{\prime}\right) \in A \times A: a=a^{\prime}\right\}
$$

Predicates form an hyperdoctrine

$$
\begin{aligned}
& \psi(\vec{y}) \\
& \vec{x} \xrightarrow{\vec{t}(\vec{x})} \vec{y}
\end{aligned}
$$

Predicates form an hyperdoctrine

$$
\psi(\vec{t}(\vec{x})) \longleftarrow \psi(\vec{y})
$$

$$
\vec{x} \xrightarrow{\vec{t}(\vec{x})} \vec{y}
$$

Predicates form an hyperdoctrine

$$
\begin{gathered}
\varphi(\vec{x}) \\
\psi(\vec{t}(\vec{x})) \longleftrightarrow \psi(\vec{y}) \\
\vec{x} \xrightarrow{\vec{t}(\vec{x})} \vec{y}
\end{gathered}
$$

Predicates form an hyperdoctrine

$$
\begin{aligned}
& \varphi(\vec{x}) \longmapsto \exists \vec{x},\left(\bigwedge_{i} t_{i}(\vec{x})=y_{i}\right) \wedge \varphi(\vec{x}) \\
& \psi(\vec{t}(\vec{x})) \longleftrightarrow \psi(\vec{y}) \\
& \vec{x} \xrightarrow{\vec{t}(\vec{x})} \vec{y}
\end{aligned}
$$

Predicates form an hyperdoctrine

$$
\begin{gathered}
\varphi(\vec{x}) \longmapsto \exists \vec{x},\left(\bigwedge_{i} t_{i}(\vec{x})=y_{i}\right) \wedge \varphi(\vec{x}) \\
\pi \\
\psi(\vec{t}(\vec{x})) \longleftrightarrow \psi(\vec{y}) \\
\pi \\
\vec{x} \xrightarrow{\vec{t}(\vec{x})} \vec{y}
\end{gathered}
$$

Predicates form an hyperdoctrine

$$
\begin{aligned}
& \varphi(\vec{x}) \longmapsto \exists \vec{x},\left(\bigwedge_{i} t_{i}(\vec{x})=y_{i}\right) \wedge \varphi(\vec{x}) \\
& \varphi(\vec{x}) \longmapsto \forall \vec{x},\left(\bigwedge_{i} t_{i}(\vec{x})=y_{i}\right) \Rightarrow \varphi(\vec{x}) \\
& \psi(\vec{t}(\vec{x})) \longleftrightarrow \psi(\vec{y}) \\
& \vec{x} \xrightarrow{\vec{t}(\vec{x})} \vec{y}
\end{aligned}
$$

Predicates form an hyperdoctrine

$$
\begin{array}{rll}
\varphi(\vec{x}) & \longmapsto & \exists \vec{x},\left(\bigwedge_{i} t_{i}(\vec{x})=y_{i}\right) \wedge \varphi(\vec{x}) \\
\varphi(\vec{x}) & \longmapsto & \forall \vec{x},\left(\bigwedge_{i} t_{i}(\vec{x})=y_{i}\right) \Longrightarrow \varphi(\vec{x}) \\
\begin{array}{l}
\\
\psi(\vec{t}(\vec{x})) \\
\\
\\
\\
\\
\\
\\
\\
\vec{x} \xrightarrow{\vec{t}(\vec{y})} \xrightarrow{ } \xrightarrow{\vec{x})} \vec{y}
\end{array}
\end{array}
$$

Predicates form an hyperdoctrine

$$
\begin{aligned}
& \varphi(\vec{x}) \longmapsto \exists \vec{x},\left(\bigwedge_{i} t_{i}(\vec{x})=y_{i}\right) \wedge \varphi(\vec{x}) \\
& \varphi(\vec{x}) \longmapsto \forall \vec{x},\left(\bigwedge_{i} t_{i}(\vec{x})=y_{i}\right) \Rightarrow \varphi(\vec{x}) \\
& \Perp \Perp \\
& \psi(\vec{t}(\vec{x})) \longleftrightarrow \psi(\vec{y}) \\
& \\
& \vec{x} \xrightarrow{\vec{t}(\vec{x})} \vec{y}
\end{aligned}
$$

In particular for $\vec{t}(\vec{x})=(\vec{x}, \vec{x}):\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{1}, \ldots, x_{2 n}\right)$,

$$
\exists_{(\vec{x}, \vec{x})}: \top \mapsto \bigwedge_{i} x_{i}=x_{n+i}
$$

Elementary existential doctrines

An hyperdoctrine is a pseudofunctor $P: \mathcal{C}^{\text {op }} \rightarrow$ Cat
such that:

- \mathcal{C} has finite products,
- each $P(f)$ has both a left adjoint \exists_{f} and a right adjoint \forall_{f},
- each $P(c)$ is a cartesian closed category.

Elementary existential doctrines

An hyperdoctrine is a pseudofunctor $P: \mathcal{C}^{\text {op }} \rightarrow$ Cat
such that:

- \mathcal{C} has finite products,
- each $P(f)$ has both a left adjoint \exists_{f} and a right adjoint \forall_{f},
- each $P(c)$ is a Heyting algebra.

Elementary existential doctrines

An hyperdoctrine is a pseudofunctor $P: \mathcal{C}^{\text {op }} \rightarrow$ Cat
such that:

- \mathcal{C} has finite products,
- each $P(f)$ has both a left adjoint \exists_{f} and a right adjoint \forall_{f},
- each $P(c)$ is a Boolean algebra.

Elementary existential doctrines

An elementary existential doctrine is a pseudofunctor $P: \complement^{\text {op }} \longrightarrow$ Cat such that:

- \mathcal{C} has finite products,
- each $P(f)$ has both a left adjoint \exists_{f},
- each $P(c)$ is a category with final object $\mathbf{1}_{c}$.

Elementary existential doctrines

An elementary existential doctrine is a pseudofunctor $P: \complement^{\text {op }} \longrightarrow$ Cat such that:

- \mathcal{C} has finite products,
- each $P(f)$ has both a left adjoint \exists_{f},
- each $P(c)$ is a category with final object $\mathbf{1}_{c}$.

Define the equality predicate over $c \in \mathcal{C}$ as the direct image of $\mathbf{1}_{c}$ along the diagonal

$$
\begin{gathered}
\mathbf{1}_{c} \stackrel{\exists_{\Delta}}{\longmapsto} \exists_{\Delta}\left(\mathbf{1}_{c}\right) \\
c \stackrel{\Delta}{\longrightarrow} c \times c
\end{gathered}
$$

Grothendieck bifibrations

A Grothendieck fibration is a functor $p: \mathcal{E} \rightarrow \mathcal{B}$ such that

Grothendieck bifibrations

A Grothendieck fibration is a functor $p: \mathcal{E} \rightarrow \mathcal{B}$ such that

Grothendieck bifibrations

A Grothendieck fibration is a functor $p: \mathcal{E} \rightarrow \mathcal{B}$ such that

Grothendieck bifibrations

A Grothendieck fibration is a functor $p: \mathcal{E} \rightarrow \mathcal{B}$ such that

Grothendieck bifibrations

A Grothendieck fibration is a functor $p: \mathcal{E} \rightarrow \mathcal{B}$ such that

Grothendieck bifibrations

A Grothendieck fibration is a functor $p: \mathcal{E} \rightarrow \mathcal{B}$ such that

Grothendieck bifibrations

A Grothendieck opfibration is a functor $p: \mathcal{E} \rightarrow \mathcal{B}$ such that

Grothendieck bifibrations

A Grothendieck opfibration is a functor $p: \mathcal{E} \rightarrow \mathcal{B}$ such that

Grothendieck bifibrations

A Grothendieck opfibration is a functor $p: \mathcal{E} \rightarrow \mathcal{B}$ such that

Grothendieck bifibrations

A Grothendieck opfibration is a functor $p: \mathcal{E} \rightarrow \mathcal{B}$ such that

Grothendieck bifibrations

A Grothendieck opfibration is a functor $p: \mathcal{E} \rightarrow \mathcal{B}$ such that

Grothendieck bifibrations

A Grothendieck bifibration is a functor $p: \mathcal{E} \rightarrow \mathcal{B}$ such that

Grothendieck construction

From an EED $P: \mathcal{C}^{\text {op }} \rightarrow$ Cat, construct a Grothendieck bifibration:

$$
\begin{array}{ll}
\int_{\mathfrak{C}} P & \text { - objects: pairs }(X, A) \text { for } X \in P(A) \\
\downarrow & \text { - morphisms }(X, A) \rightarrow(Y, B): \text { pairs }(u, f) \\
\mathcal{C} & \text { where } u: A \rightarrow B \text { and } f: X \rightarrow P(u)(Y)
\end{array}
$$

Grothendieck construction

From an EED $P:$ ep $^{\text {op }} \rightarrow$ Cat, construct a Grothendieck bifibration:

$$
\begin{array}{cl}
\int_{\mathbb{C}} P & \text { • objects: pairs }(X, A) \text { for } X \in P(A) \\
\downarrow & \text { • morphisms }(X, A) \rightarrow(Y, B): \text { pairs }(u, f) \\
\mathcal{C} & \text { where } u: A \rightarrow B \text { and } f: X \rightarrow P(u)(Y) .
\end{array}
$$

From a Grothendieck bifibration $p: \mathcal{E} \rightarrow \mathcal{B}$, construct:

$$
\mathcal{B}^{\mathrm{op}} \xrightarrow{\tilde{p}} \mathrm{Cat}
$$

$$
\begin{gathered}
1_{A} \xrightarrow{\lambda} \exists_{\Delta}\left(1_{A}\right) \\
\\
A \xrightarrow{\Delta} A \times A
\end{gathered}
$$

EEDs are extensional

Equality in EEDS is intrinsically extensional.

2. Reconcile hyperdoctrines with intensional equalities

Primer on tribes

A tribe is a category \mathcal{C} with terminal object 1 and a class of maps \mathfrak{F} such that:

- $A \rightarrow 1$ is in \mathfrak{F} for every object A,
- \mathfrak{F} contains every isomorphism,
- \mathfrak{F} is stable under change of base,
- \mathfrak{F} is stable under composition,
- $\mathfrak{F} \circ \operatorname{LLP}(\mathfrak{F})=\mathcal{C}$,
- $\operatorname{LLP}(\mathfrak{F})$ is stable under change of base along elements of \mathfrak{F}

Primer on tribes

A tribe is a category \mathcal{C} with terminal object 1 and a class of maps \mathfrak{F} such that:

- $A \rightarrow 1$ is in \mathfrak{F} for every object A,
- \mathfrak{F} contains every isomorphism,
- \mathfrak{F} is stable under change of base,
- \mathfrak{F} is stable under composition,
- $\mathfrak{F} \circ \operatorname{LLP}(\mathfrak{F})=\mathcal{C}$,
- $\operatorname{LLP}(\mathfrak{F})$ is stable under change of base along elements of \mathfrak{F}

$$
\text { Bare minimum to interpret a type theory with } \Sigma \text {, Id-types. }
$$

Towards hypertribes

Goal
Provide a generalization of EEDS with

$$
\operatorname{cod}: \mathfrak{F} \rightarrow \mathcal{C}
$$

as an instance.

Identity types in a tribe

Interpret Id_{A} by factorizing:

Identity types in a tribe

Interpret Id_{A} by factorizing:

The j-rule is satisfied:

Identity types in a tribe

Interpret Id_{A} by factorizing:

The j-rule is satisfied:

Identity types as an equality predicates?

The previous rules induces:

Identity types as an equality predicates?

The previous rules induces:

Identity types as an equality predicates?

The previous rules induces:

Identity types as an equality predicates?

The previous rules induces:

Identity types as an equality predicates?

The previous rules induces:

Relative lifting property

Given a functor $p: \mathcal{E} \longrightarrow \mathcal{B}$, say that a map f in \mathcal{E} has the weak left lifting property relatively to p against g when:

Relative lifting property

Given a functor $p: \mathcal{E} \longrightarrow \mathcal{B}$, say that a map f in \mathcal{E} has the weak left lifting property relatively to p against g when:

Relative lifting property

Given a functor $p: \mathcal{E} \longrightarrow \mathcal{B}$, say that a map f in \mathcal{E} has the weak left lifting property relatively to p against g when:

Relative lifting property

Given a functor $p: \mathcal{E} \longrightarrow \mathcal{B}$, say that a map f in \mathcal{E} has the strong left lifting property relatively to p against g when:

Relative factorization systems

Define a right weak factorization system relative to $p: \mathcal{E} \rightarrow \mathcal{B}$ to consist of

- two classes $\mathfrak{L}_{\mathcal{E}}, \mathfrak{R}_{\mathcal{E}}$ of morphisms of \mathcal{E},
- and two classes $\mathfrak{L}_{\mathcal{B}}, \mathfrak{R}_{\mathcal{B}}$ of morphisms of \mathcal{B},
such that

Relative factorization systems

Define a right weak factorization system relative to $p: \mathcal{E} \longrightarrow \mathcal{B}$ to consist of

- two classes $\mathfrak{L}_{\mathcal{E}}, \mathfrak{R}_{\mathcal{E}}$ of morphisms of \mathcal{E},
- and two classes $\mathfrak{L}_{\mathcal{B}}, \Re_{\mathcal{B}}$ of morphisms of \mathcal{B},
such that
- $p\left(\mathfrak{L}_{\mathcal{E}}\right) \subseteq \mathfrak{L}_{\mathcal{B}}$ and $p\left(\mathfrak{R}_{\mathcal{E}}\right) \subseteq \mathfrak{R}_{\mathcal{B}}$,

Relative factorization systems

Define a right weak factorization system relative to $p: \mathcal{E} \longrightarrow \mathcal{B}$ to consist of

- two classes $\mathfrak{L}_{\mathcal{E}}, \mathfrak{R}_{\mathcal{E}}$ of morphisms of \mathcal{E},
- and two classes $\mathfrak{L}_{\mathcal{B}}, \mathfrak{R}_{\mathcal{B}}$ of morphisms of \mathcal{B},
such that
- $p\left(\mathfrak{L}_{\mathcal{E}}\right) \subseteq \mathfrak{L}_{\mathcal{B}}$ and $p\left(\mathfrak{R}_{\mathcal{E}}\right) \subseteq \mathfrak{R}_{\mathcal{B}}$,
- $\mathfrak{L}_{\mathcal{E}}=\operatorname{LLP}_{p}\left(\Re_{\mathcal{E}}\right)$

Relative factorization systems

Define a right weak factorization system relative to $p: \mathcal{E} \longrightarrow \mathcal{B}$ to consist of

- two classes $\mathfrak{L}_{\mathcal{E}}, \Re_{\mathcal{E}}$ of morphisms of \mathcal{E},
- and two classes $\mathfrak{L}_{\mathcal{B}}, \mathfrak{R}_{\mathcal{B}}$ of morphisms of \mathcal{B},
such that
- $p\left(\mathfrak{L}_{\mathcal{E}}\right) \subseteq \mathfrak{L}_{\mathcal{B}}$ and $p\left(\mathfrak{R}_{\mathcal{E}}\right) \subseteq \mathfrak{R}_{\mathcal{B}}$,
- $\mathfrak{L}_{\mathcal{E}}=\operatorname{LLP}_{p}\left(\mathfrak{R}_{\mathcal{E}}\right)$
- for every f in \mathcal{E} :

Relative factorization systems

Define a right weak factorization system relative to $p: \mathcal{E} \longrightarrow \mathcal{B}$ to consist of

- two classes $\mathfrak{L}_{\mathcal{E}}, \mathfrak{R}_{\mathcal{E}}$ of morphisms of \mathcal{E},
- and two classes $\mathfrak{L}_{\mathcal{B}}, \mathfrak{R}_{\mathcal{B}}$ of morphisms of \mathcal{B},
such that
- $p\left(\mathfrak{L}_{\mathcal{E}}\right) \subseteq \mathfrak{L}_{\mathcal{B}}$ and $p\left(\mathfrak{R}_{\mathcal{E}}\right) \subseteq \mathfrak{R}_{\mathcal{B}}$,
- $\mathfrak{L}_{\mathcal{E}}=\operatorname{LLP}_{p}\left(\mathfrak{R}_{\mathcal{E}}\right)$
- for every f in \mathcal{E} :

Relative factorization systems

Define a right weak factorization system relative to $p: \mathcal{E} \longrightarrow \mathcal{B}$ to consist of

- two classes $\mathfrak{L}_{\mathcal{E}}, \mathfrak{R}_{\mathcal{E}}$ of morphisms of \mathcal{E},
- and two classes $\mathfrak{L}_{\mathcal{B}}, \mathfrak{R}_{\mathcal{B}}$ of morphisms of \mathcal{B},
such that
- $p\left(\mathfrak{L}_{\mathcal{E}}\right) \subseteq \mathfrak{L}_{\mathcal{B}}$ and $p\left(\mathfrak{R}_{\mathcal{E}}\right) \subseteq \mathfrak{R}_{\mathcal{B}}$,
- $\mathfrak{L}_{\mathcal{E}}=\operatorname{LLP}_{p}\left(\mathfrak{R}_{\mathcal{E}}\right)$
- for every f in \mathcal{E} :

Relative factorization systems

Define a right strong factorization system relative to $p: \mathcal{E} \longrightarrow \mathcal{B}$ to consist of

- two classes $\mathfrak{L}_{\mathcal{E}}, \Re_{\mathcal{E}}$ of morphisms of \mathcal{E},
- and two classes $\mathfrak{L}_{\mathcal{B}}, \mathfrak{R}_{\mathcal{B}}$ of morphisms of \mathcal{B},
such that
- $p\left(\mathfrak{L}_{\mathcal{E}}\right) \subseteq \mathfrak{L}_{\mathcal{B}}$ and $p\left(\mathfrak{R}_{\mathcal{E}}\right) \subseteq \mathfrak{R}_{\mathcal{B}}$,
- $\mathfrak{L}_{\mathcal{E}}=\operatorname{LLP}{ }_{p}^{\perp}\left(\Re_{\mathcal{E}}\right)$
- for every f in \mathcal{E} :

Cocartesian morphism as lifting problems

Cocartesian morphism as lifting problems

Cocartesian morphism as lifting problems

f is cocartesian if and only if $f \in \operatorname{LLP}{ }_{p}^{\perp}($ any $\rightarrow 1)$

Cocartesian morphism as lifting problems

f is cocartesian if and only if $f \in \operatorname{LLP} \underset{p}{\perp}(\operatorname{Mor}(\mathcal{E}))$

Cocartesian morphism as lifting problems

f is cocartesian if and only if $f \in \operatorname{LLP}_{p}^{\perp}(\operatorname{Mor}(\varepsilon))$

p is a Grothendieck opfibration if and only if there is a strong RFS relative to p with $\mathfrak{R}_{\mathcal{E}}=\operatorname{Mor}(\mathcal{E})$ and $\mathfrak{L}_{\mathcal{B}}=\operatorname{Mor}(\mathcal{B})$

Anodyne maps as lifting problems

Anodyne maps as lifting problems

Anodyne maps as lifting problems

f is anodyne if and only if $(f, u) \in \operatorname{LLP}_{\text {cod }}$ (Reedy fibrations)

Anodyne maps as lifting problems

f is anodyne if and only if $(f, u) \in \operatorname{LLP}_{\text {cod }}$ (Reedy fibrations)

\mathcal{C} is a tribe if and only if there is a weak RFS relative to cod with $\mathfrak{R}_{\mathfrak{F}}=\{$ Reedy fibrations $\}$ and $\mathfrak{L}^{\mathrm{C}}=\operatorname{Mor}(\mathcal{C})$

Reconcile Lawvere's equality and identity types

Reconcile Lawvere's equality and identity types

Reconcile Lawvere's equality and identity types

Thank you.

http://www.normalesup.org/~cagne/

Lawvere's insight

Consider the groupoid hyperdoctrine:

$$
\begin{aligned}
\mathrm{Grpd}^{\mathrm{op}} & \rightarrow \text { CAT } \\
\mathcal{G} & \mapsto \operatorname{Psh}(\mathcal{G})
\end{aligned}
$$

Lawvere's insight

Consider the groupoid hyperdoctrine:

$$
\begin{aligned}
\text { Grpd }^{\mathrm{op}} & \rightarrow \text { CAT } \\
\mathcal{G} & \mapsto \operatorname{Psh}(\mathcal{G})
\end{aligned}
$$

This should not to be taken as indicative of a lack of vitality of [the groupoid] hyperdoctrine, or even of a lack of a satisfactory theory of equality for it. Rather, it indicates that we have probably been too naive in defining equality in a manner too closely suggested by the classical conception.

What is it good for?

A model M of a first-order theory T can be interpreted as:

where $\mathfrak{M}: \vec{x} \mapsto M^{|\vec{x}|}$, and $\mu_{\vec{x}}: \varphi(\vec{x}) \mapsto\{\vec{m} \mid M \vDash \varphi(\vec{m})\}$

What is it good for?

A P-model M of a first-order theory T can be defined as:

where \mathfrak{M} and μ have good properties.

Type-theoretic equality predicates

$$
\begin{gathered}
\frac{x: C \vdash Z(x) \text { type } \quad x, y: A \vdash c(x, y): C \quad x: A \vdash z(x): Z(c(x, x))}{x, y: A, p: \mathrm{Eq}_{A}(x, y) \vdash j_{z}(x, y, p): Z(c(x, y))} \\
\frac{x: C \vdash Z(x) \text { type } \quad x, y: A \vdash c(x, y): C \quad x: A \vdash z(x): Z(c(x, x))}{x: A \vdash j_{z}\left(x, x, \operatorname{refl}_{x}\right) \equiv z(x)} \\
\frac{C \vdash Z \text { type } \quad x, y: A \vdash c(x, y): C \quad x, y: A, p: \mathrm{Eq}_{A}(x, y) \vdash k(x, y, p): Z(c(x, y)}{x, y: A, p: \mathrm{Eq}_{A}(x, y) \vdash j_{k\left(x, x, \text { refl }_{x}\right)}(x, y, p) \equiv k(x, y, p)}
\end{gathered}
$$

