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Motivation for localization

Localization of spaces was developed by Adams, Bousfield, Dror,
Mimura, Nishida, Quillen, Sullivan, Toda, etc., starting in the 1970s.

It is now a fundamental and pervasive tool in algebraic topology.

There are many important theorems whose statement does not
involve localization but which can be proved using localization. E.g.

Theorem (Serre). If Y is a simply connected, finite CW complex
then either:

Y is contractible, or

πiY is non-zero for infinitely many i.
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Motivation for localization II

On the other hand, some theorems can only be stated using
localization.

For example, there are patterns in the homotopy groups of spheres
for which the periodicity in the pattern is different for summands
whose torsion involves different primes.

Image credit: Hatcher.
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On the other hand, some theorems can only be stated using
localization.

For example, there are patterns in the homotopy groups of spheres
for which the periodicity in the pattern is different for summands
whose torsion involves different primes. Image credit: Hatcher.

To study such phenonmena, it’s useful to replace the sphere with a
“p-localized” version which only contains the p-primary part of the
homotopy groups.

Many papers in algebraic topology start with the phrase “In this
paper, we are working localized at a prime p” and then implicitly
invoke localization technology throughout.
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Motivation for localization III

A special case of localization is rationalization, which has the effect
of tensoring all homotopy groups with Q.

It turns out that the homotopy theory of rational spaces can be
described completely algebraically (Quillen, Sullivan).
The algebraic description is very practical for computations.

Using rationalization, one can prove:

Theorem (Serre). The groups πi(S
n) are all finite, except

πn(Sn) ∼= Z and π4n−1(S
2n) ∼= Z⊕ finite.

Localization is also a powerful tool for constructing counterexamples.

The work I’ll describe brings localization into type theory, which is
a necessary first step towards the results mentioned above.
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p-Local types

I’m working in Book HoTT for the rest of the talk.
Fix a prime p : N.

Def. A type X is p-local if for every prime q 6= p and every x0 : X,
the map

q : Ω(X,x0) −→ Ω(X,x0) sending ` 7−→ `q

is an equivalence.

Prop. The p-local types are closed under products, pullbacks,
identity types and dependent products indexed by any type.
The unit type is p-local.

Def. A p-localization of X is a p-local type X(p) and
a map η : X → X(p) such that for every p-local type Z,
every map X → Z factors uniquely through X → X(p).

Theorem (Rijke, Shulman, Spitters). Every type X has a
p-localization, unique up to equivalence, and functorial.

5 / 14



p-Local types

I’m working in Book HoTT for the rest of the talk.
Fix a prime p : N.

Def. A type X is p-local if for every prime q 6= p and every x0 : X,
the map

q : Ω(X,x0) −→ Ω(X,x0) sending ` 7−→ `q

is an equivalence.

Prop. The p-local types are closed under products, pullbacks,
identity types and dependent products indexed by any type.
The unit type is p-local.

Def. A p-localization of X is a p-local type X(p) and
a map η : X → X(p) such that for every p-local type Z,
every map X → Z factors uniquely through X → X(p).

Theorem (Rijke, Shulman, Spitters). Every type X has a
p-localization, unique up to equivalence, and functorial.

5 / 14



p-Local types

I’m working in Book HoTT for the rest of the talk.
Fix a prime p : N.

Def. A type X is p-local if for every prime q 6= p and every x0 : X,
the map

q : Ω(X,x0) −→ Ω(X,x0) sending ` 7−→ `q

is an equivalence.

Prop. The p-local types are closed under products, pullbacks,
identity types and dependent products indexed by any type.
The unit type is p-local.

Def. A p-localization of X is a p-local type X(p) and
a map η : X → X(p) such that for every p-local type Z,
every map X → Z factors uniquely through X → X(p).

Theorem (Rijke, Shulman, Spitters). Every type X has a
p-localization, unique up to equivalence, and functorial.

5 / 14



p-Local types

I’m working in Book HoTT for the rest of the talk.
Fix a prime p : N.

Def. A type X is p-local if for every prime q 6= p and every x0 : X,
the map

q : Ω(X,x0) −→ Ω(X,x0) sending ` 7−→ `q

is an equivalence.

Prop. The p-local types are closed under products, pullbacks,
identity types and dependent products indexed by any type.
The unit type is p-local.

Def. A p-localization of X is a p-local type X(p) and
a map η : X → X(p) such that for every p-local type Z,
every map X → Z factors uniquely through X → X(p).

Theorem (Rijke, Shulman, Spitters). Every type X has a
p-localization, unique up to equivalence, and functorial.

5 / 14



p-Local types

I’m working in Book HoTT for the rest of the talk.
Fix a prime p : N.

Def. A type X is p-local if for every prime q 6= p and every x0 : X,
the map

q : Ω(X,x0) −→ Ω(X,x0) sending ` 7−→ `q

is an equivalence.

Prop. The p-local types are closed under products, pullbacks,
identity types and dependent products indexed by any type.
The unit type is p-local.

Def. A p-localization of X is a p-local type X(p) and
a map η : X → X(p) such that for every p-local type Z,
every map X → Z factors uniquely through X → X(p).

Theorem (Rijke, Shulman, Spitters). Every type X has a
p-localization, unique up to equivalence, and functorial.

5 / 14



Main results

Theorem (CORS). For X simply connected, the natural map
πn(X,x0)→ πn(X(p), η(x0)) is p-localization of abelian groups
for every n : N and every x0 : X.

The converse holds when X is truncated.

Theorem (Scoccola). Let R and S be denumerable sets of primes
such that R ∪ S = all primes. Then, for X simply connected,

X X(R)

X(S) X(R∩S)

is a pullback square.

Scoccola has also developed the theory of nilpotent types, which can
have non-trivial fundamental group, and has generalized the above
results to such types. (For the second theorem, he needs to assume
that X is truncated in this case.)
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Proof outline

Goal. πn(X)→ πn(X(p)) is p-localization.

Prop 1 (CORS). For simply connected types, p-localization and
n-truncation commute. [Proof later.]

In particular, if X is simply connected, then so is X(p).
The case n = 1 follows.

Case n > 1: Consider the fiber sequence

K(πn+1(X), n+ 1) −→
∥∥X∥∥

n+1
−→

∥∥X∥∥
n
.

Applying p-localization gives

K(πn+1(X), n+ 1)(p) −→
∥∥X(p)

∥∥
n+1
−→

∥∥X(p)

∥∥
n
,

where we have used Prop 1 again.

We’ll show that this is again a fibre sequence and that the fibre is
K(πn+1(X)(p), n+ 1), which will complete the proof.
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p-Separated types

p-localization is not lex, i.e., it does not preserve all fibre sequences.
To work around this, we introduce:

Def. A type X is p-separated if for every x, y : X, the type x = y is
p-local.

Theorem (RSS). Every type X has a universal map η′ : X → X ′(p)
to a p-separated type.

We prove:

Theorem (CORS). Any fibre sequence fits into a diagram

F E X

F ′ E′(p) X ′(p),

p-equiv η′ η′

where F ′ is the fibre of the bottom row and is therefore p-separated.
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Proof, continued

Then we use:

Prop 2 (CORS). For X simply connected, X(p) ' X ′(p).

Since the types in

K(πn+1(X), n+ 1) −→
∥∥X∥∥

n+1
−→

∥∥X∥∥
n

are all simply connected, we get a fibre sequence

F ′ −→
∥∥X(p)

∥∥
n+1
−→

∥∥X(p)

∥∥
n
,

and a p-equivalence K(πn+1(X), n+ 1)→ F ′.

Since F ′ is p-local, this map must be p-localization.

(More generally, p-localization preserves fibre sequences of simply
connected types. So, for X pointed and simply connected,
Ω(X(p)) ' (ΩX)(p).)

It remains to understand the p-localization of an Eilenberg-
Mac Lane space.
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Localizations of Eilenberg-Mac Lane spaces

Prop (CORS). For X pointed and simply connected, the natural
map

ΩX −→ colim(ΩX
k1−→ ΩX

k2−→ · · · )

is the p-localization of ΩX, where ki is the product of the first i
primes, excluding p.

Proof. It’s not too hard to see that the map is a p-equivalence.

To see that it is p-local uses the compactness of S1, which uses the
work of van Doorn, Rijke and Sojakova on the identity types of
sequential colimits.

Cor (CORS). For G abelian and n ≥ 1, the p-localization of
K(G,n) is K(G(p), n), where G(p) is the p-localization of G as an
abelian group.

It follows that πn(X)→ πn(X(p)) is p-localization.
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Localization and truncation commute

We used:

Prop 1. For simply connected types, p-localization and
n-truncation commute.

This follows from:

Lemma 1. The n-truncation of a p-local type is p-local.

Lemma 2. The p-localization of a simply connected n-truncated
type is n-truncated.

Indeed, the natural maps

X → X(p) →
∥∥X(p)

∥∥
n

and
X →

∥∥X∥∥
n
→ (

∥∥X∥∥
n
)(p)

are both universal maps to types that are both n-truncated and
p-local.
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Proof of Lemma 1

Lemma 1. The n-truncation of a p-local type X is p-local.
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n−1

Ω
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∥∥ΩX
∥∥
n−1.
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∼
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n−1∼

∼

where q is a prime different from p.
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Proof of Lemma 2

Lemma 2. The p-localization of a simply connected n-truncated
type X is n-truncated.

Proof. By induction on n.

Trivial when n ≤ 1, so assume X is simply connected and
(n+ 1)-truncated for n > 0. Consider the fibre sequence

K(πn+1(X), n+ 1) −→ X −→
∥∥X∥∥

n
.

These are all simply connected, so by an earlier Theorem and
Prop 2, we get another fibre sequence

K(πn+1(X), n+ 1)(p) −→ X(p) −→ (
∥∥X∥∥

n
)(p).

The fibre and base are (n+ 1)-truncated (using the Cor about EM
spaces), and so X(p) is (n+ 1)-truncated as well.
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