Borsuk-Ulam in real-cohesive homotopy type theory

Daniel Cicala, University of New Haven
Amelia Tebbe, Indiana University Kokomo
Chandrika Sadanand, University of Illinois Urbana Champaign

Thanks to

- 2017 MRC in HoTT program
- Mike Shulman for his guidance and patience with three non-experts
- Univalence, which I'll be recklessly using without mentioning I'm doing so

What's this talk about?

Borsuk-Ulam is a result in
classical algebraic topology.
We want to import it into
HoTT.

Outline of this talk

1. real-cohesive homotopy type theory
2. Borsuk-Ulam: algebraic topology vs. HoTT
3. proof sketch
real-cohesive homotopy type theory

Algebraic topology has many proofs that involve discontinuous constructions

For instance, Brouwer fixed-pt theorem

$$
\left\|_{f: D^{2} \rightarrow D^{2} x: D^{2}} \sum_{0} f(x)=x\right\|_{0}
$$

No continuous way to pick x

discontinuous constructions

However, we don't merely have HoTT...
we have real-cohesive HoTT

discontinuous constructions

For spaces X and Y, how can we make a discontinuous map

$$
X \rightarrow Y
$$

into a continuous map?
Retopologize!
$\operatorname{discrete}(X) \rightarrow Y \quad$ or $\quad X \rightarrow \operatorname{codiscrete}(Y)$

There's a ready-made theory for this...Lawvere's cohesive topoi

For spaces X and Y, how can we make a discontinuous map

$$
X \rightarrow Y
$$

into a continuous map?
Retopologize!

$$
\operatorname{discrete}(X) \rightarrow Y \quad \text { or } \quad X \rightarrow \operatorname{codiscrete}(Y)
$$

There's a ready-made theory for this...Lawvere's cohesive topoi

For spaces X and Y, how can we make a discontinuous map

$$
X \rightarrow Y
$$

into a continuous map?
Retopologize!

$$
\operatorname{discrete}(X) \rightarrow Y \quad \text { or } \quad X \rightarrow \operatorname{codiscrete}(Y)
$$

There's a ready-made theory for this...Lawvere's cohesive topoi

Discontinuity via cohesive topoi

[^0]
Discontinuity via cohesive topoi

$$
\begin{aligned}
& \text { SPACES }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SPACES }
\end{aligned}
$$

$$
b X \rightarrow X \rightarrow \sharp X
$$

Interpret $b X \rightarrow Y$ or $X \rightarrow \sharp Y$ as not necessarily continuous maps from $X \rightarrow Y$.

Two concerns importing this to HoTT:

1) Algebraic topology trades in spaces not higher inductive types.
2) How can we retopologize when HoTT doesn't have topologies (open sets)?
higher inductive types vs. spaces in HoTT

Lawvere's theory of cohesive topoi has more to offer!

SPACES

gives modality \int : SPACES \rightarrow SPACES

- Cohesive topos: \int is connected components
- HoTT: \int is fundamental ∞-groupoid

- Cohesive topos: \int is connected components
- HoTT: \int is fundamental ∞-groupoid

$$
\int \dashv b \dashv \sharp
$$

HoTT
$+\quad \int \dashv b \dashv \sharp$ (suitably defined)
cohesive homotopy type theory

Notation

- $\mathbb{S}^{1}:=\left\{(x, y): x^{2}+y^{2}=1\right\}$
- $S^{1}:=$ higher inductive type

We want $\int \mathbb{S}^{1}=S^{1}$, but we're not there yet.

$$
\begin{array}{ll}
& \text { HoTT } \\
+ & \int \dashv b \dashv \sharp \text { (suitably defined) } \\
\hline & \text { cohesive homotopy type theory }
\end{array}
$$

Notation

- $\mathbb{S}^{1}:=\left\{(x, y): x^{2}+y^{2}=1\right\}$
- $S^{1}:=$ higher inductive type

> | | HoTT |
| ---: | :--- |
| + | $\int \dashv b \dashv \sharp$ (suitably defined) |
| | cohesive homotopy type theory |

Notation

- $\mathbb{S}^{1}:=\left\{(x, y): x^{2}+y^{2}=1\right\}$
- $S^{1}:=$ higher inductive type

We want $\int \mathbb{S}^{1}=S^{1}$, but we're not there yet.
incorporating topology into HoTT

The topology of a type X is encoded in the type of "continuous paths" $\mathbb{R} \rightarrow \mathrm{X}$.

```
Needed to define }\int\mathrm{ :
An axiom ensuring that }J\mathrm{ is constructed from continuous paths
indexed by intervals in \mathbb{R}.
```


Axiom $R b$:

A type X is discrete iff const : $\mathrm{X} \rightarrow(\mathbb{R} \rightarrow \mathrm{X})$ is an equivalence.

The topology of a type X is encoded in the type of "continuous paths" $\mathbb{R} \rightarrow \mathrm{X}$.

Needed to define \int :

An axiom ensuring that \int is constructed from continuous paths indexed by intervals in \mathbb{R}.

Axiom $R b$:
A type X is discrete iff const : $\mathrm{X} \rightarrow(\mathbb{R} \rightarrow \mathrm{X})$ is an equivalence.

The topology of a type X is encoded in the type of "continuous paths" $\mathbb{R} \rightarrow \mathrm{X}$.

Needed to define \int :

An axiom ensuring that \int is constructed from continuous paths indexed by intervals in \mathbb{R}.

Axiom $R b$:
A type X is discrete iff const: $\mathrm{X} \rightarrow(\mathbb{R} \rightarrow \mathrm{X})$ is an equivalence.

-equals-
real-cohesive homotopy type theory, a place where $\int \mathbb{S}^{1}=S^{1}$.

Borsuk-Ulam

Three related statements in classical algebraic topology:

BU-classic	For any continuous map $f: S^{n} \rightarrow \mathbb{R}^{n}$, there exists an $x \in S^{n}$ such that $f(x)=f(-x)$.
BU-odd	For any continuous map $f: S^{n} \rightarrow \mathbb{R}^{n}$ with the property that $f(-x)=-f(x)$, there is an $x \in S^{n}$ such that $f(x)=0$
BU-retract	There is no continuous map $f: S^{n} \rightarrow S^{n-1}$ with the property that there exists an $x \in S^{n}$ such that $f(-x)=-f(x)$.

Proof of BU-classic involves proving that
\square
\square
3. hence (BU-retract) \Rightarrow (BU-classic).
4. prove (BU-retract)
5. conclude (BU-classic)

Three related statements in classical algebraic topology:

BU-classic	For any continuous map $f: S^{n} \rightarrow \mathbb{R}^{n}$, there exists an $x \in S^{n}$ such that $f(x)=f(-x)$.
BU-odd	For any continuous map $f: S^{n} \rightarrow \mathbb{R}^{n}$ with the property that $f(-x)=-f(x)$, there is an $x \in S^{n}$ such that $f(x)=0$
BU-retract	There is no continuous map $f: S^{n} \rightarrow S^{n-1}$ with the property that there exists an $x \in S^{n}$ such that $f(-x)=-f(x)$.

Proof of BU-classic involves proving that

1. show $(B U-$ classic $) \simeq(B U-$ odd $)$
2. hence (BU-retract) \Rightarrow (BU-classic).

Three related statements in classical algebraic topology:

BU-classic	For any continuous map $f: S^{n} \rightarrow \mathbb{R}^{n}$, there exists an $x \in S^{n}$ such that $f(x)=f(-x)$.
BU-odd	For any continuous map $f: S^{n} \rightarrow \mathbb{R}^{n}$ with the property that $f(-x)=-f(x)$, there is an $x \in S^{n}$ such that $f(x)=0$
BU-retract	There is no continuous map $f: S^{n} \rightarrow S^{n-1}$ with the property that there exists an $x \in S^{n}$ such that $f(-x)=-f(x)$.

Proof of BU-classic involves proving that

1. show $(B U-$ classic $) \simeq(B U-$ odd $)$
2. show $\neg(B U$-odd $) \Rightarrow \neg$ (BU-retract)

Three related statements in classical algebraic topology:

BU-classic	For any continuous map $f: S^{n} \rightarrow \mathbb{R}^{n}$, there exists an $x \in S^{n}$ such that $f(x)=f(-x)$.
BU-odd	For any continuous map $f: S^{n} \rightarrow \mathbb{R}^{n}$ with the property that $f(-x)=-f(x)$, there is an $x \in S^{n}$ such that $f(x)=0$
BU-retract	There is no continuous map $f: S^{n} \rightarrow S^{n-1}$ with the property that there exists an $x \in S^{n}$ such that $f(-x)=-f(x)$.

Proof of BU-classic involves proving that

1. show $(B U-c l a s s i c) \simeq(B U-$ odd $)$
2. show $\neg(B U$-odd $) \Rightarrow \neg$ (BU-retract)
3. hence (BU-retract) \Rightarrow (BU-classic).

Three related statements in classical algebraic topology:

BU-classic	For any continuous map $f: S^{n} \rightarrow \mathbb{R}^{n}$, there exists an $x \in S^{n}$ such that $f(x)=f(-x)$.
BU-odd	For any continuous map $f: S^{n} \rightarrow \mathbb{R}^{n}$ with the property that $f(-x)=-f(x)$, there is an $x \in S^{n}$ such that $f(x)=0$
BU-retract	There is no continuous map $f: S^{n} \rightarrow S^{n-1}$ with the property that there exists an $x \in S^{n}$ such that $f(-x)=-f(x)$.

Proof of BU-classic involves proving that

1. show $(B U-c l a s s i c) \simeq(B U-$ odd $)$
2. show $\neg(B U$-odd $) \Rightarrow \neg$ (BU-retract)
3. hence (BU-retract) \Rightarrow (BU-classic).
4. prove (BU-retract)
5. conclude (BU-classic)

BU-* in real-cohesive homotopy type theory:

BU-classic	$\left\\|\prod_{f:} \mathbb{S}^{n} \rightarrow \mathbb{R}^{n} \sum_{x: \mathbb{S}^{n}} f(-x)=f(x)\right\\|$
BU-odd	$\left\\|\prod_{f: \mathbb{S}^{n} \rightarrow \mathbb{R}^{n}} \prod_{x}: \mathbb{S}^{n}(-x)=-f(x) \rightarrow \sum_{x: \mathbb{S}^{n}} f(x)=0\right\\|$
BU-retract	$\left\\|\prod_{f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n-1}} \sum_{x: \mathbb{S}^{n}} f(-x)=-f(x) \rightarrow 0\right\\|$

Proof of BU-classic, strategy:

1. show $(B U-$ classic $) \simeq(B U-$ odd $)$
2. show $\neg(B U-$ odd $) \Rightarrow \neg$ (BU-retract $)$
3. hence (BU-retract) $\Rightarrow \neg \neg$ (BU-odd)

4 nrove (BII-retract)
5. conclude $\neg \neg$ (BU-classic)
(BU-classic) \neq (BU-classic) continuously
$\neg \neg(B U-c l a s s i c)=(B U$-classic $)$ discontinuously
Lemma: (S'iulman) For P a proposition, $\because P=\neg \square$

Proof of BU-classic, strategy:

1. show $(B U-$ classic $) \simeq(B U-$ odd $)$
2. show $\neg(B U-$ odd $) \Rightarrow \neg$ (BU-retract)
3. hence $(B U-$ retract $) \Rightarrow \neg \neg$ (BU-odd)
4. prove (BU-retract)
5. conclude $\neg \neg$ (BII-classic)
(BU-classic) \neq (BU-classic) continuously

Lemma: (S'iulman) For P a proposition, $\| \boldsymbol{P}=\square \square$

Proof of BU-classic, strategy:

1. show $(B U-$ classic $) \simeq(B U-$ odd $)$
2. show $\neg(B U-$ odd $) \Rightarrow \neg$ (BU-retract)
3. hence $(B U-$ retract $) \Rightarrow \neg \neg$ (BU-odd)
4. prove (BU-retract)
5. conclude $\neg \neg$ (BU-classic)
(BU-classic) \neq (BU-classic) continuously

Lemma: (S'iulman) For P a proposition, $\boldsymbol{\mu} \boldsymbol{P}=\square \neg$

Proof of BU-classic, strategy:

1. show $(B U-$ classic $) \simeq(B U-$ odd $)$
2. show $\neg(B U$-odd $) \Rightarrow \neg$ (BU-retract)
3. hence $(B U-$ retract $) \Rightarrow \neg \neg$ (BU-odd)
4. prove (BU-retract)
5. conclude $\neg \neg$ (BU-classic)

Proof of BU-classic, strategy:

1. show $(B U-$ classic $) \simeq(B U-$ odd $)$
2. show $\neg(B U$-odd $) \Rightarrow \neg$ (BU-retract)
3. hence $(B U-$ retract $) \Rightarrow \neg \neg$ (BU-odd)
4. prove (BU-retract)
5. conclude $\neg \neg$ (BU-classic)

$$
\begin{gathered}
\neg \neg(B U-\text { classic }) \neq(\mathrm{BU} \text {-classic }) \text { continuously } \\
\text { but } \\
\neg \neg(\mathrm{BU} \text {-classic })=(\text { BU-classic }) \text { discontinuously }
\end{gathered}
$$

Proof of BU-classic, strategy:

1. show $(B U-$ classic $) \simeq(B U-$ odd $)$
2. show $\neg(B U$-odd $) \Rightarrow \neg$ (BU-retract)
3. hence (BU-retract) $\Rightarrow \neg \neg$ (BU-odd)
4. prove (BU-retract)
5. conclude $\neg \neg$ (BU-classic)

$$
\begin{gathered}
\neg \neg(\text { BU-classic }) \neq(\text { BU-classic }) \text { continuously } \\
\text { but } \\
\neg \neg(\text { BU-classic })=(\text { BU-classic }) \text { discontinuously }
\end{gathered}
$$

Lemma: (Shulman) For P a proposition, $\sharp P=\neg \neg P$

It follows that
$\neg \neg\left\|\prod_{f: \mathbb{S}^{n} \rightarrow \mathbb{R}^{n}} \sum_{x: \mathbb{S}^{n}} f(-x)=f(x)\right\|=\sharp\left\|\prod_{f: \mathbb{S}^{n} \rightarrow \mathbb{R}^{n}} \sum_{x: \mathbb{S}^{n}} f(-x)=f(x)\right\|$

Hence (BU-retract) $\Rightarrow \sharp$ (BU-classic).

Real-cohesive HoTT supports the sharp Borsuk-Ulam theorem.

It follows that
$\neg \neg\left\|\prod_{f: \mathbb{S}^{n} \rightarrow \mathbb{R}^{n}} \sum_{x: \mathbb{S}^{n}} f(-x)=f(x)\right\|=\sharp\left\|\prod_{f: \mathbb{S}^{n} \rightarrow \mathbb{R}^{n}} \sum_{x: \mathbb{S}^{n}} f(-x)=f(x)\right\|$

Hence (BU-retract) $\Rightarrow \sharp$ (BU-classic).

Real-cohesive HoTT supports the sharp Borsuk-Ulam theorem.

It follows that
$\neg \neg\left\|\prod_{f: \mathbb{S}^{n} \rightarrow \mathbb{R}^{n}} \sum_{x: \mathbb{S}^{n}} f(-x)=f(x)\right\|=\sharp\left\|\prod_{f: \mathbb{S}^{n} \rightarrow \mathbb{R}^{n}} \sum_{x: \mathbb{S}^{n}} f(-x)=f(x)\right\|$

Hence (BU-retract) $\Rightarrow \sharp$ (BU-classic).

Real-cohesive HoTT supports the sharp Borsuk-Ulam theorem.

Borsuk-Ulam

rc hott

rc hott

Sharp Borsuk-Ulam

To prove BU-retract

$$
\left\|\prod_{f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n-1}} \sum_{x: \mathbb{S}^{n}} f(-x)=-f(x) \rightarrow 0\right\|
$$

we will model the classical proof, which is

- Assume $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n-1}$ is odd and continuous
- Pass to orbits under $\mathbb{T} \cdot / 2 \mathbb{T}$-action: $\hat{f} \cdot \mathbb{R}^{P^{n}} \rightarrow \mathbb{R}^{(1)}{ }^{n-1}$
- This induces isomorphism on fundamental groups, $\mathbb{Z} / 2 \mathbb{Z}$
- Hurewicz theorem gives an isomorphism on H^{1}, hence we get a ring map $\hat{f}^{*}: H^{*}\left(\mathbb{R} P^{n-1}, \mathbb{Z} / 2 \mathbb{Z}\right) \rightarrow H^{*}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2 \mathbb{Z}\right)$ such that

$$
a: \mathbb{Z} / 2 \mathbb{Z}[a] /\left(a^{n-1}\right) \mapsto b: \mathbb{Z} / 2 \mathbb{Z}[b] /\left(b^{n}\right)
$$

- But then $0=a^{n-1} \mapsto b^{n-1} \neq 0$. Contradiction.

To prove BU-retract

$$
\left\|\prod_{f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n-1}} \sum_{x: \mathbb{S}^{n}} f(-x)=-f(x) \rightarrow 0\right\|
$$

we will model the classical proof, which is

- Assume $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n-1}$ is odd and continuous
- Pass to orbits under $\mathbb{Z} / 2 \mathbb{Z}$-action: $\hat{f}: \mathbb{R} P^{n} \rightarrow \mathbb{R} P^{n-1}$
- This induces isomorphism on fundamental groups, $\mathbb{Z} / 2 \mathbb{Z}$
- Hurewicz theorem gives an isomorphism on H^{1}, hence we get a ring map $\hat{f}^{*}: H^{*}\left(\mathbb{R} P^{n-1}, \mathbb{Z} / 2 \mathbb{Z}\right) \rightarrow H^{*}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2 \mathbb{Z}\right)$ such that

$$
a: \mathbb{Z} / 2 \mathbb{Z}[a] /\left(a^{n-1}\right) \mapsto b: \mathbb{Z} / 2 \mathbb{Z}[b] /\left(b^{n}\right)
$$

- But then $0=a^{n-1} \mapsto b^{n-1} \neq 0$. Contradiction.

Proof by contradiction are not permitted in intuitionistic logic

$$
\frac{\neg p, \Gamma \vdash p}{\Gamma \vdash \neg p \rightarrow 0} \frac{\Gamma \vdash \neg \neg p}{\Gamma}
$$

This is actually a proof by negation, not contradiction

which is allowed

Proof by contradiction are not permitted in intuitionistic logic

$$
\frac{\neg p, \Gamma \vdash p}{\Gamma \vdash \neg p \rightarrow 0} \frac{\Gamma \vdash \neg \neg p}{\Gamma}
$$

This is actually a proof by negation, not contradiction

$$
\frac{p, \Gamma \vdash \neg p}{\Gamma \vdash p \rightarrow 0}
$$

which is allowed.

Four chunks of the real-cohesive HoTT proof:

- Define topological \mathbb{S}^{n}
- Define topological $\mathbb{R P}^{n}$
- Define cohomology of \mathbb{S}^{n} and $\mathbb{R P}^{n}$ with $\mathbb{Z} / 2 \mathbb{Z}$-coefficients
- odd f : $\mathbb{S}^{n} \rightarrow \mathbb{S}^{n-1}$ induces contradiction (or, rather, negation).

Define \mathbb{S}^{n} topologically.

Per Shulman, \mathbb{S}^{1} is the coequalizer of

$$
\text { id, }+1: \mathbb{R} \rightarrow \mathbb{R}
$$

giving $\mathbb{S}^{1}=\left\{(x, y): x^{2}+y^{2}=1\right\}$
Define higher dimensional spheres as pushouts:

Lemma: \mathbb{S}^{n} is a set.

Define \mathbb{S}^{n} topologically.

Per Shulman, \mathbb{S}^{1} is the coequalizer of

$$
\text { id, }+1: \mathbb{R} \rightarrow \mathbb{R}
$$

giving $\mathbb{S}^{1}=\left\{(x, y): x^{2}+y^{2}=1\right\}$
Define higher dimensional spheres as pushouts:

Lemma: \mathbb{S}^{n} is a set.

Define $\mathbb{R P}^{n}$ topologically using pushouts.

Lemma: The pushout of three sets over an injection is a set.
Corollary: $\mathbb{R P}^{n}$ is a set.

Define $\mathbb{R P}^{n}$ topologically using pushouts.

Lemma: The pushout of three sets over an injection is a set.
Corollary: $\mathbb{R P}^{n}$ is a set.

$\mathbb{Z} / 2 \mathbb{Z}$-Cohomology for \mathbb{S}^{n} and $\mathbb{R} P^{n}$

For a type X and ring R :

$$
H^{n}(X, R):=\|X \rightarrow K(R, n)\|_{0}
$$

Goals:

- Define a ring structure on H^{*} for \mathbb{S}^{n} and $\mathbb{R P}{ }^{n}$
- Compute H^{*} for \mathbb{S}^{n} and $\mathbb{R}^{P}{ }^{n}$

Out strategy is inspired by Brunerie's doctoral thesis. Namely, work with EM-spaces $K(R, n)$ then lift to cohomology.

$\mathbb{Z} / 2 \mathbb{Z}$-Cohomology for \mathbb{S}^{n} and $\mathbb{R P}^{n}$

For a type X and ring R :

$$
H^{n}(X, R):=\|X \rightarrow K(R, n)\|_{0}
$$

Goals:

- Define a ring structure on H^{*} for \mathbb{S}^{n} and $\mathbb{R} P^{n}$
- Compute H^{*} for \mathbb{S}^{n} and $\mathbb{R} P^{n}$

Out strategy is inspired by Brunerie's doctoral thesis. Namely, work with EM-spaces $K(R, n)$ then lift to cohomology.

For a type X and ring R :

$$
H^{n}(X, R):=\|X \rightarrow K(R, n)\|_{0}
$$

Goals:

- Define a ring structure on H^{*} for \mathbb{S}^{n} and $\mathbb{R} P^{n}$
- Compute H^{*} for \mathbb{S}^{n} and $\mathbb{R P}^{n}$

Out strategy is inspired by Brunerie's doctoral thesis. Namely, work with EM-spaces $K(R, n)$ then lift to cohomology.

Define a cup product on EM-spaces:

Lift to H^{*} :

$$
\smile: H^{n}(X, \mathbb{Z} / 2 \mathbb{Z}) \times H^{m}(X, \mathbb{Z} / 2 \mathbb{Z}) \rightarrow H^{n+m}(X, \mathbb{Z} / 2 \mathbb{Z})
$$

$$
\begin{gathered}
(X \xrightarrow{\alpha} K(\mathbb{Z} / 2 \mathbb{Z}, n), X \xrightarrow{\beta} K(\mathbb{Z} / 2 \mathbb{Z}, m)) \\
\text { is mapped to } \\
X \xrightarrow{\langle\alpha, \beta\rangle} K(\mathbb{Z} / 2 \mathbb{Z}, n) \times K(\mathbb{Z} / 2 \mathbb{Z}, m) \xrightarrow{\smile} K(\mathbb{Z} / 2 \mathbb{Z}, n+m)
\end{gathered}
$$

Lift to H^{*} :

$$
\smile: H^{n}(X, \mathbb{Z} / 2 \mathbb{Z}) \times H^{m}(X, \mathbb{Z} / 2 \mathbb{Z}) \rightarrow H^{n+m}(X, \mathbb{Z} / 2 \mathbb{Z})
$$

$$
\begin{gathered}
(X \xrightarrow{\alpha} K(\mathbb{Z} / 2 \mathbb{Z}, n), X \xrightarrow{\beta} K(\mathbb{Z} / 2 \mathbb{Z}, m)) \\
\text { is mapped to } \\
X \xrightarrow{\langle\alpha, \beta\rangle} K(\mathbb{Z} / 2 \mathbb{Z}, n) \times K(\mathbb{Z} / 2 \mathbb{Z}, m) \xrightarrow{\smile} K(\mathbb{Z} / 2 \mathbb{Z}, n+m)
\end{gathered}
$$

The remaining operations on $H^{*}(X, \mathbb{Z} / 2 \mathbb{Z})$ give a graded ring.

Use

- $K(\mathbb{Z} / 2 \mathbb{Z}, 0):=\mathbb{Z} / 2 \mathbb{Z}$
- $H^{k}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2 \mathbb{Z}\right):=\left\|\mathbb{R} P^{n} \rightarrow \mathbb{Z} / 2 \mathbb{Z}\right\|_{0}$
to compute $H^{0}\left(\mathbb{R P}{ }^{n}, \mathbb{Z} / 2 \mathbb{Z}\right)$

Use

- that $\mathbb{R P}^{n}$ is a pushout
- induction with Mayer-Vietoris
to compute $H^{k}\left(\mathbb{R P} P^{n}, \mathbb{Z} / 2 \mathbb{Z}\right)$, for $k \geq 1$
(req's cohomology of \mathbb{S}^{n} and \mathbb{D}^{n} which are computed using MV
and $\mathbb{D}^{n}=1$)

Use

- $K(\mathbb{Z} / 2 \mathbb{Z}, 0):=\mathbb{Z} / 2 \mathbb{Z}$
- $H^{k}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2 \mathbb{Z}\right):=\left\|\mathbb{R} P^{n} \rightarrow \mathbb{Z} / 2 \mathbb{Z}\right\|_{0}$
to compute $H^{0}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2 \mathbb{Z}\right)$

Use

- that $\mathbb{R P}^{n}$ is a pushout
- induction with Mayer-Vietoris
to compute $H^{k}\left(\mathbb{R P} P^{n}, \mathbb{Z} / 2 \mathbb{Z}\right)$, for $k \geq 1$
(req's cohomology of \mathbb{S}^{n} and \mathbb{D}^{n} which are computed using MV
and $\mathbb{D}^{n}=1$)

Use

- $K(\mathbb{Z} / 2 \mathbb{Z}, 0):=\mathbb{Z} / 2 \mathbb{Z}$
- $H^{k}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2 \mathbb{Z}\right):=\left\|\mathbb{R} P^{n} \rightarrow \mathbb{Z} / 2 \mathbb{Z}\right\|_{0}$
to compute $H^{0}\left(\mathbb{R P}{ }^{n}, \mathbb{Z} / 2 \mathbb{Z}\right)$

Use

- that $\mathbb{R P}^{n}$ is a pushout
- induction with Mayer-Vietoris
to compute $H^{k}\left(\mathbb{R P} P^{n}, \mathbb{Z} / 2 \mathbb{Z}\right)$, for $k \geq 1$
(req's cohomology of \mathbb{S}^{n} and \mathbb{D}^{n} which are computed using MV and $\mathbb{D}^{n}=1$)

The results are in:

$$
\begin{aligned}
H^{k}\left(\mathbb{S}^{n}, \mathbb{Z} / 2 \mathbb{Z}\right) & = \begin{cases}\mathbb{Z} / 2 \mathbb{Z}, & k=0, n ; \\
0, & \text { else }\end{cases} \\
H^{k}\left(\mathbb{D}^{n}, \mathbb{Z} / 2 \mathbb{Z}\right) & = \begin{cases}\mathbb{Z} / 2 \mathbb{Z}, & k=0 ; \\
0, & \text { else }\end{cases} \\
H^{k}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2 \mathbb{Z}\right) & = \begin{cases}\mathbb{Z} / 2 \mathbb{Z}, & k=2,3, \cdots, n ; \\
0, & k \geq n+1\end{cases}
\end{aligned}
$$

The results are in:

$$
\begin{aligned}
H^{k}\left(\mathbb{S}^{n}, \mathbb{Z} / 2 \mathbb{Z}\right) & = \begin{cases}\mathbb{Z} / 2 \mathbb{Z}, & k=0, n ; \\
0, & \text { else }\end{cases} \\
H^{k}\left(\mathbb{D}^{n}, \mathbb{Z} / 2 \mathbb{Z}\right) & = \begin{cases}\mathbb{Z} / 2 \mathbb{Z}, & k=0 ; \\
0, & \text { else }\end{cases} \\
H^{k}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2 \mathbb{Z}\right) & = \begin{cases}\mathbb{Z} / 2 \mathbb{Z}, & k=2,3, \cdots, n ; \\
0, & k \geq n+1\end{cases}
\end{aligned}
$$

(note $n \geq 2$)
In particular:

$$
H^{*}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2 \mathbb{Z}\right)=\mathbb{Z} / 2 \mathbb{Z}[x] /\left(x^{n+1}\right)
$$

Prove BU-retract

Recall,

- $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n-1}$ is continuous and odd
- $\hat{f}: \mathbb{R} \mathrm{P}^{n} \rightarrow \mathbb{R} \mathrm{P}^{n-1}$ is the induced map

Apply $H^{1}(-, \mathbb{Z} / 2 \mathbb{Z})$ to \hat{f} to get

More concretely

Note: α non-trivial implies $\hat{f} \alpha$ non-trivial

Prove BU-retract

Recall,

- $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n-1}$ is continuous and odd
- $\hat{f}: \mathbb{R} P^{n} \rightarrow \mathbb{R} P^{n-1}$ is the induced map

Apply $H^{1}(-, \mathbb{Z} / 2 \mathbb{Z})$ to \hat{f} to get

$$
\hat{f}^{*}: H^{1}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2 \mathbb{Z}\right) \rightarrow H^{1}\left(\mathbb{R} P^{n-1}, \mathbb{Z} / 2 \mathbb{Z}\right)
$$

More concretely

$$
\begin{aligned}
\hat{f}^{*}: & \left\|\mathbb{R} \mathrm{P}^{n} \rightarrow \mathbb{R P}^{2}\right\| \rightarrow\left\|\mathbb{R} \mathrm{P}^{n-1} \rightarrow \mathbb{R} \mathrm{P}^{2}\right\| \\
& \alpha \mapsto \hat{f} \alpha
\end{aligned}
$$

Note: α non-trivial implies $\hat{f} \alpha$ non-trivial.

Prove BU-retract

Recall,

- $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n-1}$ is continuous and odd
- $\hat{f}: \mathbb{R} \mathrm{P}^{n} \rightarrow \mathbb{R} \mathrm{P}^{n-1}$ is the induced map

Apply $H^{1}(-, \mathbb{Z} / 2 \mathbb{Z})$ to \hat{f} to get

$$
\hat{f}^{*}: H^{1}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2 \mathbb{Z}\right) \rightarrow H^{1}\left(\mathbb{R} P^{n-1}, \mathbb{Z} / 2 \mathbb{Z}\right)
$$

More concretely

$$
\begin{aligned}
\hat{f}^{*}: & \left\|\mathbb{R} \mathrm{P}^{n} \rightarrow \mathbb{R} \mathrm{P}^{2}\right\| \rightarrow\left\|\mathbb{R} \mathrm{P}^{n-1} \rightarrow \mathbb{R P}^{2}\right\| \\
& \alpha \mapsto \hat{f} \alpha
\end{aligned}
$$

Note: α non-trivial implies $\hat{f} \alpha$ non-trivial.

The generator of

$$
H^{*}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2 \mathbb{Z}\right)=\mathbb{Z} / 2 \mathbb{Z}[x] /\left(x^{n+1}\right)
$$

live in H^{1}.

If follows: $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n-1}$ induces a map on cohomology

preserving the generator: $x \mapsto y$

But then $0=x^{n-1} \mapsto y^{n-1} \neq 0$.

Contradiction (or rather, negation).

The generator of

$$
H^{*}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2 \mathbb{Z}\right)=\mathbb{Z} / 2 \mathbb{Z}[x] /\left(x^{n+1}\right)
$$

live in H^{1}.

If follows: $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n-1}$ induces a map on cohomology

$$
\mathbb{Z} / 2 \mathbb{Z}[x] /\left(x^{n-1}\right) \rightarrow \mathbb{Z} / 2 \mathbb{Z}[y] /\left(y^{n}\right)
$$

preserving the generator: $x \mapsto y$

But then $0=x^{n-1} \mapsto y^{n-1} \neq 0$.

Contradiction (or rather, negation).

The generator of

$$
H^{*}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2 \mathbb{Z}\right)=\mathbb{Z} / 2 \mathbb{Z}[x] /\left(x^{n+1}\right)
$$

live in H^{1}.

If follows: $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n-1}$ induces a map on cohomology

$$
\mathbb{Z} / 2 \mathbb{Z}[x] /\left(x^{n-1}\right) \rightarrow \mathbb{Z} / 2 \mathbb{Z}[y] /\left(y^{n}\right)
$$

preserving the generator: $x \mapsto y$

But then $0=x^{n-1} \mapsto y^{n-1} \neq 0$.

Contradiction (or rather, negation).

The generator of

$$
H^{*}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2 \mathbb{Z}\right)=\mathbb{Z} / 2 \mathbb{Z}[x] /\left(x^{n+1}\right)
$$

live in H^{1}.

If follows: $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n-1}$ induces a map on cohomology

$$
\mathbb{Z} / 2 \mathbb{Z}[x] /\left(x^{n-1}\right) \rightarrow \mathbb{Z} / 2 \mathbb{Z}[y] /\left(y^{n}\right)
$$

preserving the generator: $x \mapsto y$

But then $0=x^{n-1} \mapsto y^{n-1} \neq 0$.

Contradiction (or rather, negation).

We have proved BU-retract, hence sharp Borsuk-Ulam as desired.

Thank you.

We have proved BU-retract, hence sharp Borsuk-Ulam as desired.

Thank you.

[^0]: Interpret $b X \rightarrow Y$ or $X \rightarrow \sharp Y$ as not necessarily continuous maps

