Borsuk-Ulam in real-cohesive homotopy type theory

Daniel Cicala, University of New Haven Amelia Tebbe, Indiana University Kokomo Chandrika Sadanand, University of Illinois Urbana Champaign

Thanks to

- 2017 MRC in HoTT program
- Mike Shulman for his guidance and patience with three **non**-experts
- Univalence, which I'll be recklessly using without mentioning I'm doing so

Borsuk-Ulam is a result in **classical algebraic topology**. We want to import it into HoTT.

- 1. real-cohesive homotopy type theory
- 2. Borsuk-Ulam: algebraic topology vs. HoTT
- 3. proof sketch

real-cohesive homotopy type theory

Algebraic topology has many proofs that involve discontinuous constructions

For instance, Brouwer fixed-pt theorem

$$\left\| \prod_{f: D^2 \to D^2} \sum_{x:D^2} f(x) = x \right\|_0$$

No continuous way to pick x

However, we don't merely have HoTT...

we have real-cohesive HoTT

For spaces X and Y, how can we make a **discontinuous** map

 $X \to Y$

into a **continuous** map?

Retopologize!

discrete $(X) \rightarrow Y$ or $X \rightarrow codiscrete(Y)$

There's a ready-made theory for this...Lawvere's cohesive topoi

For spaces X and Y, how can we make a **discontinuous** map

 $X \to Y$

into a **continuous** map?

Retopologize!

discrete(X) \rightarrow Y or X \rightarrow codiscrete(Y)

There's a ready-made theory for this...Lawvere's cohesive topoi

For spaces X and Y, how can we make a **discontinuous** map

 $X \to Y$

into a **continuous** map?

Retopologize!

discrete(X) \rightarrow Y or X \rightarrow codiscrete(Y)

There's a ready-made theory for this...Lawvere's cohesive topoi

Discontinuity via cohesive topoi

 $\flat X \to X \to \sharp X$

Interpret $\flat X \to Y$ or $X \to \sharp Y$ as *not necessarily continuous* maps from $X \to Y$.

Discontinuity via cohesive topoi

 $\flat X \to X \to \sharp X$

Interpret $\flat X \to Y$ or $X \to \sharp Y$ as not necessarily continuous maps from $X \to Y$.

Two concerns importing this to HoTT:

Algebraic topology trades in *spaces* not *higher inductive types*.
 How can we retopologize when HoTT doesn't have topologies (open sets)?

higher inductive types vs. spaces in HoTT

Lawvere's theory of cohesive topoi has more to offer!

gives modality $\int : SPACES \rightarrow SPACES$

- Cohesive topos: \int is connected components
- HoTT: \int is fundamental $\infty\text{-}\mathsf{groupoid}$

- Cohesive topos: \int is connected components
- HoTT: \int is fundamental $\infty\text{-}\mathsf{groupoid}$

$$\int - b - \sharp$$

HoTT + $\int \neg \flat \neg \ddagger$ (suitably defined)

cohesive homotopy type theory

Notation

•
$$\mathbb{S}^1 := \{(x, y) : x^2 + y^2 = 1\}$$

• $S^1 :=$ higher inductive type

We want $\int S^1 = S^1$, but we're not there yet.

HoTT
+
$$\int \dashv \flat \dashv \ddagger$$
 (suitably defined)
cohesive homotopy type theory

Notation

•
$$\mathbb{S}^1 \coloneqq \{(x, y) : x^2 + y^2 = 1\}$$

• $S^1 :=$ higher inductive type

We want $\int S^1 = S^1$, but we're not there yet.

HoTT
+
$$\int \neg \flat \neg \ddagger$$
 (suitably defined)
cohesive homotopy type theory

Notation

•
$$\mathbb{S}^1 \coloneqq \{(x, y) : x^2 + y^2 = 1\}$$

• $S^1 :=$ higher inductive type

We want $\int \mathbb{S}^1 = \mathbb{S}^1$, but we're not there yet.

incorporating topology into HoTT

The topology of a type X is encoded in the type of "continuous paths" $\mathbb{R} \to X.$

Needed to define \int : An axiom ensuring that \int is constructed from continuous paths indexed by intervals in \mathbb{R} .

Axiom $R\flat$: A type X is *discrete* iff const: $X \to (\mathbb{R} \to X)$ is an equivalence. The topology of a type X is encoded in the type of "continuous paths" $\mathbb{R} \to X.$

Needed to define \int :

An axiom ensuring that \int is constructed from continuous paths indexed by intervals in $\mathbb{R}.$

Axiom $R\flat$: A type X is *discrete* iff const : X $ightarrow (\mathbb{R}
ightarrow$ X) is an equivalence. The topology of a type X is encoded in the type of "continuous paths" $\mathbb{R} \to X.$

Needed to define \int :

An axiom ensuring that \int is constructed from continuous paths indexed by intervals in $\mathbb{R}.$

Axiom $R\flat$:

A type X is *discrete* iff const: $X \to (\mathbb{R} \to X)$ is an equivalence.

-equals-

real-cohesive homotopy type theory, a place where $\int \mathbb{S}^1 = \mathbb{S}^1$.

Borsuk-Ulam

BU-classic	For any continuous map $f: S^n \to \mathbb{R}^n$, there exists				
	an $x \in S^n$ such that $f(x) = f(-x)$.				
	For any continuous map $f\colon S^n o \mathbb{R}^n$ with the				
BU-odd	property that $f(-x) = -f(x)$, there is an $x \in S^n$				
	such that $f(x) = 0$				
	There is no continuous map $f: S^n o S^{n-1}$ with				
BU-retract	the property that there exists an $x\in S^n$ such that				
	f(-x) = -f(x).				

- 1. show (BU-classic) \simeq (BU-odd)
- 2. show \neg (BU-odd) $\Rightarrow \neg$ (BU-retract)
- 3. hence (BU-retract) \Rightarrow (BU-classic).
- 4. prove (BU-retract)
- 5. conclude (BU-classic)

Three related statements	in	classical	algebraic	topology:
--------------------------	----	-----------	-----------	-----------

BU-classic	For any continuous map $f: S^n \to \mathbb{R}^n$, there exists				
	an $x \in S^n$ such that $f(x) = f(-x)$.				
	For any continuous map $f\colon S^n o \mathbb{R}^n$ with the				
BU-odd	property that $f(-x) = -f(x)$, there is an $x \in S^n$				
	such that $f(x) = 0$				
	There is no continuous map $f: S^n o S^{n-1}$ with				
BU-retract	the property that there exists an $x\in S^n$ such that				
	f(-x) = -f(x).				

- 1. show (BU-classic) \simeq (BU-odd)
- 2. show \neg (BU-odd) $\Rightarrow \neg$ (BU-retract)
- 3. hence (BU-retract) \Rightarrow (BU-classic).
- 4. prove (BU-retract)
- 5. conclude (BU-classic)

Three related statements	in	classical	algebraic	topology:
--------------------------	----	-----------	-----------	-----------

BU-classic	For any continuous map $f: S^n \to \mathbb{R}^n$, there exists				
	an $x \in S^n$ such that $f(x) = f(-x)$.				
	For any continuous map $f\colon S^n o \mathbb{R}^n$ with the				
BU-odd	property that $f(-x) = -f(x)$, there is an $x \in S^n$				
	such that $f(x) = 0$				
	There is no continuous map $f: S^n o S^{n-1}$ with				
BU-retract	the property that there exists an $x\in S^n$ such that				
	f(-x) = -f(x).				

- 1. show (BU-classic) \simeq (BU-odd)
- 2. show \neg (BU-odd) $\Rightarrow \neg$ (BU-retract)
- 3. hence (BU-retract) \Rightarrow (BU-classic).
- 4. prove (BU-retract)
- 5. conclude (BU-classic)

Three related statements	in	classical	algebraic	topology:
--------------------------	----	-----------	-----------	-----------

BU-classic	For any continuous map $f: S^n \to \mathbb{R}^n$, there exists				
	an $x \in S^n$ such that $f(x) = f(-x)$.				
	For any continuous map $f\colon S^n o \mathbb{R}^n$ with the				
BU-odd	property that $f(-x) = -f(x)$, there is an $x \in S^n$				
	such that $f(x) = 0$				
	There is no continuous map $f: S^n o S^{n-1}$ with				
BU-retract	the property that there exists an $x\in S^n$ such that				
	f(-x) = -f(x).				

- 1. show (BU-classic) \simeq (BU-odd)
- 2. show \neg (BU-odd) $\Rightarrow \neg$ (BU-retract)
- 3. hence (BU-retract) \Rightarrow (BU-classic).
- 4. prove (BU-retract)
- 5. conclude (BU-classic)

Three related statements	in	classical	algebraic	topology:
--------------------------	----	-----------	-----------	-----------

BU-classic	For any continuous map $f: S^n \to \mathbb{R}^n$, there exists
	an $x \in S^n$ such that $f(x) = f(-x)$.
	For any continuous map $f\colon S^n o \mathbb{R}^n$ with the
BU-odd	property that $f(-x) = -f(x)$, there is an $x \in S^n$
	such that $f(x) = 0$
	There is no continuous map $f: S^n o S^{n-1}$ with
BU-retract	the property that there exists an $x\in S^n$ such that
	f(-x) = -f(x).

- 1. show (BU-classic) \simeq (BU-odd)
- 2. show \neg (BU-odd) $\Rightarrow \neg$ (BU-retract)
- 3. hence (BU-retract) \Rightarrow (BU-classic).
- 4. prove (BU-retract)
- 5. conclude (BU-classic)

BU-* in real-cohesive homotopy type theory:

BU-classic	$\left\ \prod_{f: \mathbb{S}^n \to \mathbb{R}^n x: \mathbb{S}^n} f(-x) = f(x) \right\ $
BU-odd	$\left \left \prod_{f: \mathbb{S}^n \to \mathbb{R}^n x: \mathbb{S}^n} \prod_{f(-x) = -f(x) \to \sum_{x: \mathbb{S}^n} f(x) = 0\right \right $
BU-retract	$\left\ \prod_{f: \mathbb{S}^n \to \mathbb{S}^{n-1} x: \mathbb{S}^n} f(-x) = -f(x) \to 0 \right\ $

Proof of BU-classic, strategy:

1. show (BU-classic) \simeq (BU-odd)

- 2. show \neg (BU-odd) $\Rightarrow \neg$ (BU-retract)
- 3. hence (BU-retract) $\Rightarrow \neg\neg$ (BU-odd)
- 4. prove (BU-retract)
- 5. conclude ¬¬ (BU-classic)

$$\neg \neg$$
 (BU-classic) \neq (BU-classic) continuously
but
 $\neg \neg$ (BU-classic) = (BU-classic) discontinuously

Lemma: (Shulman) For *P* a proposition, $\sharp P = \neg \neg P$

- 1. show (BU-classic) \simeq (BU-odd)
- 2. show \neg (BU-odd) $\Rightarrow \neg$ (BU-retract)
- 3. hence (BU-retract) $\Rightarrow \neg\neg$ (BU-odd)
- 4. prove (BU-retract)
- 5. conclude ¬¬ (BU-classic)

$$\neg \neg$$
 (BU-classic) \neq (BU-classic) continuously
but
 $\neg \neg$ (BU-classic) = (BU-classic) discontinuously

- 1. show (BU-classic) \simeq (BU-odd)
- 2. show \neg (BU-odd) $\Rightarrow \neg$ (BU-retract)
- 3. hence (BU-retract) $\Rightarrow \neg \neg$ (BU-odd)
- 4. prove (BU-retract)
- 5. conclude ¬¬ (BU-classic)

```
\neg \neg (BU-classic) \neq (BU-classic) continuously
but
\neg \neg (BU-classic) = (BU-classic) discontinuously
```

- 1. show (BU-classic) \simeq (BU-odd)
- 2. show \neg (BU-odd) $\Rightarrow \neg$ (BU-retract)
- 3. hence (BU-retract) $\Rightarrow \neg \neg$ (BU-odd)
- 4. prove (BU-retract)
- 5. conclude $\neg\neg$ (BU-classic)

$$eggen \neg$$
 (BU-classic) \neq (BU-classic) continuously
but
 $eggen \neg$ (BU-classic) = (BU-classic) discontinuously

- 1. show (BU-classic) \simeq (BU-odd)
- 2. show \neg (BU-odd) $\Rightarrow \neg$ (BU-retract)
- 3. hence (BU-retract) $\Rightarrow \neg \neg$ (BU-odd)
- 4. prove (BU-retract)
- 5. conclude $\neg\neg$ (BU-classic)

$$\neg \neg$$
 (BU-classic) \neq (BU-classic) continuously
but
 $\neg \neg$ (BU-classic) = (BU-classic) discontinuously

- 1. show (BU-classic) \simeq (BU-odd)
- 2. show \neg (BU-odd) $\Rightarrow \neg$ (BU-retract)
- 3. hence (BU-retract) $\Rightarrow \neg \neg$ (BU-odd)
- 4. prove (BU-retract)
- 5. conclude $\neg\neg$ (BU-classic)

$$\neg \neg$$
 (BU-classic) \neq (BU-classic) continuously
but
 $\neg \neg$ (BU-classic) = (BU-classic) discontinuously

It follows that

$$\neg \neg \left\| \prod_{f \colon \mathbb{S}^n \to \mathbb{R}^n \times : \mathbb{S}^n} f(-x) = f(x) \right\| = \sharp \left\| \prod_{f \colon \mathbb{S}^n \to \mathbb{R}^n \times : \mathbb{S}^n} f(-x) = f(x) \right\|$$

Hence (BU-retract) $\Rightarrow \ddagger$ (BU-classic).

Real-cohesive HoTT supports the sharp Borsuk-Ulam theorem.

It follows that

$$\neg \neg \left\| \prod_{f \colon \mathbb{S}^n \to \mathbb{R}^n \times : \mathbb{S}^n} f(-x) = f(x) \right\| = \sharp \left\| \prod_{f \colon \mathbb{S}^n \to \mathbb{R}^n \times : \mathbb{S}^n} f(-x) = f(x) \right\|$$

Hence (BU-retract) $\Rightarrow \ddagger$ (BU-classic).

Real-cohesive HoTT supports the sharp Borsuk-Ulam theorem.

It follows that

$$\neg \neg \left\| \prod_{f \colon \mathbb{S}^n \to \mathbb{R}^n \times : \mathbb{S}^n} f(-x) = f(x) \right\| = \sharp \left\| \prod_{f \colon \mathbb{S}^n \to \mathbb{R}^n \times : \mathbb{S}^n} f(-x) = f(x) \right\|$$

Hence (BU-retract) $\Rightarrow \ddagger$ (BU-classic).

Real-cohesive HoTT supports the sharp Borsuk-Ulam theorem.

To prove BU-retract

$$\left\| \prod_{f: \ \mathbb{S}^n \to \mathbb{S}^{n-1} \times : \ \mathbb{S}^n} f(-x) = -f(x) \to 0 \right\|$$

we will model the classical proof, which is

- Assume $f: \mathbb{S}^n \to \mathbb{S}^{n-1}$ is odd and continuous
- Pass to orbits under $\mathbb{Z}/2\mathbb{Z}$ -action: $\hat{f}: \mathbb{R}P^n \to \mathbb{R}P^{n-1}$
- \bullet This induces isomorphism on fundamental groups, $\mathbb{Z}/2\mathbb{Z}$
- Hurewicz theorem gives an isomorphism on H¹, hence we get a ring map f^{*}: H^{*}(ℝPⁿ⁻¹, ℤ/2ℤ) → H^{*}(ℝPⁿ, ℤ/2ℤ) such that

$$a: \mathbb{Z}/2\mathbb{Z}[a]/(a^{n-1}) \mapsto b: \mathbb{Z}/2\mathbb{Z}[b]/(b^n)$$

• But then $0 = a^{n-1} \mapsto b^{n-1} \neq 0$. Contradiction.

To prove BU-retract

$$\left\| \prod_{f: \, \mathbb{S}^n \to \mathbb{S}^{n-1} \, x: \, \mathbb{S}^n} f(-x) = -f(x) \to 0 \right\|$$

we will model the classical proof, which is

- Assume $f: \mathbb{S}^n \to \mathbb{S}^{n-1}$ is odd and continuous
- Pass to orbits under $\mathbb{Z}/2\mathbb{Z}$ -action: $\hat{f}: \mathbb{R}P^n \to \mathbb{R}P^{n-1}$
- \bullet This induces isomorphism on fundamental groups, $\mathbb{Z}/2\mathbb{Z}$
- Hurewicz theorem gives an isomorphism on H^1 , hence we get a ring map $\hat{f}^* \colon H^*(\mathbb{R}P^{n-1}, \mathbb{Z}/2\mathbb{Z}) \to H^*(\mathbb{R}P^n, \mathbb{Z}/2\mathbb{Z})$ such that

$$a: \mathbb{Z}/2\mathbb{Z}[a]/(a^{n-1}) \mapsto b: \mathbb{Z}/2\mathbb{Z}[b]/(b^n)$$

• But then $0 = a^{n-1} \mapsto b^{n-1} \neq 0$. Contradiction.

Proof by contradiction are not permitted in intuitionistic logic

$$\frac{\neg p, \Gamma \vdash p}{\Gamma \vdash \neg p \to 0}$$
$$\frac{\Gamma \vdash \neg \neg p}{\Gamma \vdash \neg \neg p}$$

This is actually a proof by negation, not contradiction

$$\frac{p, \Gamma \vdash \neg p}{\Gamma \vdash p \to 0}$$

which is allowed.

Proof by contradiction are not permitted in intuitionistic logic

$$\frac{\neg p, \Gamma \vdash p}{\Gamma \vdash \neg p \to 0}$$
$$\frac{\Gamma \vdash \neg \neg p}{\Gamma \vdash \neg \neg p}$$

This is actually a proof by negation, not contradiction

$$\frac{p, \Gamma \vdash \neg p}{\Gamma \vdash p \to 0}$$

which is allowed.

Four chunks of the real-cohesive HoTT proof:

- Define topological \mathbb{S}^n
- Define topological $\mathbb{R}P^n$
- \bullet Define cohomology of \mathbb{S}^n and $\mathbb{R}\mathrm{P}^n$ with $\mathbb{Z}/2\mathbb{Z}\text{-coefficients}$
- odd f: Sⁿ → Sⁿ⁻¹ induces contradiction (or, rather, negation).

Define \mathbb{S}^n topologically.

Per Shulman, \mathbb{S}^1 is the coequalizer of

 $\mathsf{id},+1\colon\mathbb{R}\to\mathbb{R}$

giving $S^1 = \{(x, y) : x^2 + y^2 = 1\}$

Define higher dimensional spheres as pushouts:

Lemma: \mathbb{S}^n is a set

Define \mathbb{S}^n topologically.

Per Shulman, \mathbb{S}^1 is the coequalizer of

 $\mathsf{id}, +1 \colon \mathbb{R} \to \mathbb{R}$

giving $S^1 = \{(x, y) : x^2 + y^2 = 1\}$

Define higher dimensional spheres as pushouts:

Lemma: \mathbb{S}^n is a set.

Define $\mathbb{R}P^n$ topologically using pushouts.

Lemma: The pushout of three sets over an injection is a set. **Corollary:** \mathbb{RP}^n is a set.

Define $\mathbb{R}P^n$ topologically using pushouts.

Lemma: The pushout of three sets over an injection is a set. **Corollary:** $\mathbb{R}P^n$ is a set.

$\mathbb{Z}/2\mathbb{Z}$ -Cohomology for \mathbb{S}^n and $\mathbb{R}P^n$

For a type X and ring R:

$$H^n(X,R) \coloneqq ||X \to K(R,n)||_0$$

Goals:

- Define a ring structure on H^* for \mathbb{S}^n and $\mathbb{R}P^n$
- Compute H^* for \mathbb{S}^n and $\mathbb{R}P^n$

Out strategy is inspired by Brunerie's doctoral thesis. Namely, work with EM-spaces K(R, n) then lift to cohomology.

For a type X and ring R:

$$H^n(X,R) := ||X \to K(R,n)||_0$$

Goals:

- Define a ring structure on H^* for \mathbb{S}^n and $\mathbb{R}\mathrm{P}^n$
- Compute H^* for \mathbb{S}^n and $\mathbb{R}\mathrm{P}^n$

Out strategy is inspired by Brunerie's doctoral thesis. Namely, work with EM-spaces K(R, n) then lift to cohomology.

For a type X and ring R:

$$H^n(X,R) \coloneqq ||X \to K(R,n)||_0$$

Goals:

- Define a ring structure on H^* for \mathbb{S}^n and $\mathbb{R}\mathrm{P}^n$
- Compute H^* for \mathbb{S}^n and $\mathbb{R}\mathrm{P}^n$

Out strategy is inspired by Brunerie's doctoral thesis. Namely, work with EM-spaces K(R, n) then lift to cohomology.

Define a *cup product* on EM-spaces:

$$\begin{array}{c} \mathcal{K}(\mathbb{Z}/2\mathbb{Z},n) \times \mathcal{K}(\mathbb{Z}/2\mathbb{Z},m) & \longrightarrow \mathcal{K}(\mathbb{Z}/2\mathbb{Z},n+m) \\ & & & \\ & & & \\ & & & \\ & & \\ \mathcal{K}(\mathbb{Z}/2\mathbb{Z},n) \wedge \mathcal{K}(\mathbb{Z}/2\mathbb{Z},m) & & \\ & & & \\ & & & \\ \mathcal{K}(\mathbb{Z}/2\mathbb{Z},n) \wedge \mathcal{K}(\mathbb{Z}/2\mathbb{Z},m)||_{n+m} \xrightarrow{} & \mathcal{K}(\mathbb{Z}/2\mathbb{Z}\otimes\mathbb{Z}/2\mathbb{Z},n+m) \end{array}$$

Lift to H^* :

\smile : $H^{n}(X, \mathbb{Z}/2\mathbb{Z}) \times H^{m}(X, \mathbb{Z}/2\mathbb{Z}) \rightarrow H^{n+m}(X, \mathbb{Z}/2\mathbb{Z})$

$$\begin{pmatrix} X \xrightarrow{\alpha} \mathcal{K}(\mathbb{Z}/2\mathbb{Z}, n), X \xrightarrow{\beta} \mathcal{K}(\mathbb{Z}/2\mathbb{Z}, m) \end{pmatrix}$$

is mapped to
$$X \xrightarrow{\langle \alpha, \beta \rangle} \mathcal{K}(\mathbb{Z}/2\mathbb{Z}, n) \times \mathcal{K}(\mathbb{Z}/2\mathbb{Z}, m) \xrightarrow{\smile} \mathcal{K}(\mathbb{Z}/2\mathbb{Z}, n+m)$$

The remaining operations on $H^*(X, \mathbb{Z}/2\mathbb{Z})$ give a graded ring.

Lift to H^* :

$$\smile$$
: $H^{n}(X, \mathbb{Z}/2\mathbb{Z}) \times H^{m}(X, \mathbb{Z}/2\mathbb{Z}) \rightarrow H^{n+m}(X, \mathbb{Z}/2\mathbb{Z})$

$$\begin{pmatrix} X \xrightarrow{\alpha} \mathcal{K}(\mathbb{Z}/2\mathbb{Z}, n), X \xrightarrow{\beta} \mathcal{K}(\mathbb{Z}/2\mathbb{Z}, m) \end{pmatrix}$$

is mapped to
$$X \xrightarrow{\langle \alpha, \beta \rangle} \mathcal{K}(\mathbb{Z}/2\mathbb{Z}, n) \times \mathcal{K}(\mathbb{Z}/2\mathbb{Z}, m) \xrightarrow{\smile} \mathcal{K}(\mathbb{Z}/2\mathbb{Z}, n+m)$$

The remaining operations on $H^*(X, \mathbb{Z}/2\mathbb{Z})$ give a graded ring.

Use

•
$$K(\mathbb{Z}/2\mathbb{Z},0) := \mathbb{Z}/2\mathbb{Z}$$

• $H^k(\mathbb{R}P^n, \mathbb{Z}/2\mathbb{Z}) := ||\mathbb{R}P^n \to \mathbb{Z}/2\mathbb{Z}||_0$

to compute $H^0(\mathbb{R}\mathrm{P}^n,\mathbb{Z}/2\mathbb{Z})$

Use

- that $\mathbb{R}P^n$ is a pushout
- induction with Mayer-Vietoris

to compute $H^k(\mathbb{R}\mathrm{P}^n,\mathbb{Z}/2\mathbb{Z})$, for $k\geq 1$

(req's cohomology of \mathbb{S}^n and \mathbb{D}^n which are computed using MV and $\mathbb{D}^n = 1$)

Use

•
$$K(\mathbb{Z}/2\mathbb{Z},0) := \mathbb{Z}/2\mathbb{Z}$$

• $H^k(\mathbb{R}P^n, \mathbb{Z}/2\mathbb{Z}) := ||\mathbb{R}P^n \to \mathbb{Z}/2\mathbb{Z}||_0$

to compute $H^0(\mathbb{R}\mathrm{P}^n,\mathbb{Z}/2\mathbb{Z})$

Use

- that $\mathbb{R}P^n$ is a pushout
- induction with Mayer-Vietoris

to compute $H^k(\mathbb{R}P^n, \mathbb{Z}/2\mathbb{Z})$, for $k \geq 1$

(req's cohomology of \mathbb{S}^n and \mathbb{D}^n which are computed using MV and $\mathbb{D}^n = 1$)

Use

•
$$K(\mathbb{Z}/2\mathbb{Z},0) := \mathbb{Z}/2\mathbb{Z}$$

• $H^k(\mathbb{R}P^n, \mathbb{Z}/2\mathbb{Z}) := ||\mathbb{R}P^n \to \mathbb{Z}/2\mathbb{Z}||_0$

to compute $H^0(\mathbb{R}\mathrm{P}^n,\mathbb{Z}/2\mathbb{Z})$

Use

- that $\mathbb{R}P^n$ is a pushout
- induction with Mayer-Vietoris

to compute $H^k(\mathbb{R}P^n, \mathbb{Z}/2\mathbb{Z})$, for $k \geq 1$

(req's cohomology of \mathbb{S}^n and \mathbb{D}^n which are computed using MV and $\mathbb{D}^n=1$)

The results are in:

$$H^{k}(\mathbb{S}^{n}, \mathbb{Z}/2\mathbb{Z}) = \begin{cases} \mathbb{Z}/2\mathbb{Z}, & k = 0, n; \\ 0, & \text{else} \end{cases}$$
$$H^{k}(\mathbb{D}^{n}, \mathbb{Z}/2\mathbb{Z}) = \begin{cases} \mathbb{Z}/2\mathbb{Z}, & k = 0; \\ 0, & \text{else} \end{cases}$$
$$H^{k}(\mathbb{R}P^{n}, \mathbb{Z}/2\mathbb{Z}) = \begin{cases} \mathbb{Z}/2\mathbb{Z}, & k = 2, 3, \cdots, n; \\ 0, & k \ge n+1 \end{cases}$$
$$(note \ n \ge 2)$$

In particular:

$$H^*(\mathbb{R}P^n,\mathbb{Z}/2\mathbb{Z})=\mathbb{Z}/2\mathbb{Z}[x]/(x^{n+1})$$

The results are in:

$$H^{k}(\mathbb{S}^{n}, \mathbb{Z}/2\mathbb{Z}) = \begin{cases} \mathbb{Z}/2\mathbb{Z}, & k = 0, n; \\ 0, & \text{else} \end{cases}$$
$$H^{k}(\mathbb{D}^{n}, \mathbb{Z}/2\mathbb{Z}) = \begin{cases} \mathbb{Z}/2\mathbb{Z}, & k = 0; \\ 0, & \text{else} \end{cases}$$
$$H^{k}(\mathbb{R}P^{n}, \mathbb{Z}/2\mathbb{Z}) = \begin{cases} \mathbb{Z}/2\mathbb{Z}, & k = 2, 3, \cdots, n; \\ 0, & k \ge n+1 \end{cases}$$
$$(note \ n \ge 2)$$

In particular:

$$H^*(\mathbb{R}\mathrm{P}^n,\mathbb{Z}/2\mathbb{Z})=\mathbb{Z}/2\mathbb{Z}[x]/(x^{n+1})$$

Prove BU-retract

Recall,

- $\bullet~f\colon \mathbb{S}^n\to \mathbb{S}^{n-1}$ is continuous and odd
- $\hat{f} : \mathbb{R}\mathrm{P}^n \to \mathbb{R}\mathrm{P}^{n-1}$ is the induced map

pply $H^1(-,\mathbb{Z}/2\mathbb{Z})$ to \hat{f} to get $\hat{f}^*\colon H^1(\mathbb{R}\mathrm{P}^n,\mathbb{Z}/2\mathbb{Z}) o H^1(\mathbb{R}\mathrm{P}^{n-1},\mathbb{Z})$

More concretely

$$\hat{f}^* \colon \left| \left| \mathbb{R} \mathbf{P}^n \to \mathbb{R} \mathbf{P}^2 \right| \right| \to \left| \left| \mathbb{R} \mathbf{P}^{n-1} \to \mathbb{R} \mathbf{P}^2 \right| \right|$$
$$\alpha \mapsto \hat{f} \alpha$$

Note: α non-trivial implies $\hat{f}\alpha$ non-trivial.

Prove BU-retract

Recall,

•
$$f: \mathbb{S}^n \to \mathbb{S}^{n-1}$$
 is continuous and odd

• $\hat{f} \colon \mathbb{R}\mathrm{P}^n \to \mathbb{R}\mathrm{P}^{n-1}$ is the induced map

Apply $H^1(-,\mathbb{Z}/2\mathbb{Z})$ to \hat{f} to get $\hat{f}^* \colon H^1(\mathbb{R}\mathrm{P}^n,\mathbb{Z}/2\mathbb{Z}) \to H^1(\mathbb{R}\mathrm{P}^{n-1},\mathbb{Z}/2\mathbb{Z})$

More concretely

$$\hat{f}^* \colon \left| \left| \mathbb{R} \mathbb{P}^n \to \mathbb{R} \mathbb{P}^2 \right| \right| \to \left| \left| \mathbb{R} \mathbb{P}^{n-1} \to \mathbb{R} \mathbb{P}^2 \right| \right|$$
$$\alpha \mapsto \hat{f} \alpha$$

Note: α non-trivial implies $\hat{f}\alpha$ non-trivial.

Prove BU-retract

Recall,

•
$$f: \mathbb{S}^n \to \mathbb{S}^{n-1}$$
 is continuous and odd

• $\hat{f} \colon \mathbb{R}\mathrm{P}^n \to \mathbb{R}\mathrm{P}^{n-1}$ is the induced map

Apply $H^1(-,\mathbb{Z}/2\mathbb{Z})$ to \hat{f} to get $\hat{f}^* \colon H^1(\mathbb{R}\mathrm{P}^n,\mathbb{Z}/2\mathbb{Z}) \to H^1(\mathbb{R}\mathrm{P}^{n-1},\mathbb{Z}/2\mathbb{Z})$

More concretely

$$\hat{f}^* \colon \left| \left| \mathbb{R} \mathbb{P}^n \to \mathbb{R} \mathbb{P}^2 \right| \right| \to \left| \left| \mathbb{R} \mathbb{P}^{n-1} \to \mathbb{R} \mathbb{P}^2 \right| \right|$$
$$\alpha \mapsto \hat{f} \alpha$$

Note: α non-trivial implies $\hat{f}\alpha$ non-trivial.

$$H^*(\mathbb{R}\mathrm{P}^n,\mathbb{Z}/2\mathbb{Z})=\mathbb{Z}/2\mathbb{Z}[x]/(x^{n+1})$$

live in H^1 .

If follows: $f: \mathbb{S}^n \to \mathbb{S}^{n-1}$ induces a map on cohomology

 $\mathbb{Z}/2\mathbb{Z}[x]/(x^{n-1}) \to \mathbb{Z}/2\mathbb{Z}[y]/(y^n)$

preserving the generator: $x \mapsto y$

But then $0 = x^{n-1} \mapsto y^{n-1} \neq 0$.

$$H^*(\mathbb{R}\mathrm{P}^n,\mathbb{Z}/2\mathbb{Z})=\mathbb{Z}/2\mathbb{Z}[x]/(x^{n+1})$$

live in H^1 .

If follows: $f: \mathbb{S}^n \to \mathbb{S}^{n-1}$ induces a map on cohomology

$$\mathbb{Z}/2\mathbb{Z}[x]/(x^{n-1}) \to \mathbb{Z}/2\mathbb{Z}[y]/(y^n)$$

preserving the generator: $x \mapsto y$

But then $0 = x^{n-1} \mapsto y^{n-1} \neq 0$.

$$H^*(\mathbb{R}\mathrm{P}^n,\mathbb{Z}/2\mathbb{Z})=\mathbb{Z}/2\mathbb{Z}[x]/(x^{n+1})$$

live in H^1 .

If follows: $f: \mathbb{S}^n \to \mathbb{S}^{n-1}$ induces a map on cohomology

$$\mathbb{Z}/2\mathbb{Z}[x]/(x^{n-1}) \to \mathbb{Z}/2\mathbb{Z}[y]/(y^n)$$

preserving the generator: $x \mapsto y$

But then $0 = x^{n-1} \mapsto y^{n-1} \neq 0$.

$$H^*(\mathbb{R}\mathrm{P}^n,\mathbb{Z}/2\mathbb{Z})=\mathbb{Z}/2\mathbb{Z}[x]/(x^{n+1})$$

live in H^1 .

If follows: $f: \mathbb{S}^n \to \mathbb{S}^{n-1}$ induces a map on cohomology

$$\mathbb{Z}/2\mathbb{Z}[x]/(x^{n-1}) \to \mathbb{Z}/2\mathbb{Z}[y]/(y^n)$$

preserving the generator: $x \mapsto y$

But then $0 = x^{n-1} \mapsto y^{n-1} \neq 0$.

We have proved BU-retract, hence sharp Borsuk-Ulam as desired.

Thank you.

We have proved BU-retract, hence sharp Borsuk-Ulam as desired.

Thank you.