Borsuk-Ulam in real-cohesive homotopy type theory

Daniel Cicala, University of New Haven
Amelia Tebbe, Indiana University Kokomo
Chandrika Sadanand, University of Illinois Urbana Champaign
Thanks to

- 2017 MRC in HoTT program
- Mike Shulman for his guidance and patience with three non-experts
- Univalence, which I’ll be recklessly using without mentioning I’m doing so
What’s this talk about?

Borsuk-Ulam is a result in classical algebraic topology. We want to import it into HoTT.
Outline of this talk

1. real-cohesive homotopy type theory
2. Borsuk-Ulam: algebraic topology vs. HoTT
3. proof sketch
real-cohesive homotopy type theory
Algebraic topology has many proofs that involve discontinuous constructions

For instance, Brouwer fixed-pt theorem

\[ \prod \sum f(x) = x \mid_{0} \]

No continuous way to pick \( x \)
discontinuous constructions

homotopy type theory
However, we don’t merely have HoTT... we have real-cohesive HoTT
real cohesive hott

discontinuous constructions
For spaces $X$ and $Y$, how can we make a **discontinuous** map

$$X \rightarrow Y$$

into a **continuous** map?

*Retopologize!*

$$\text{discrete}(X) \rightarrow Y \quad \text{or} \quad X \rightarrow \text{codiscrete}(Y)$$

There’s a ready-made theory for this... *Lawvere’s cohesive topoi*
For spaces $X$ and $Y$, how can we make a **discontinuous** map

$$X \rightarrow Y$$

into a **continuous** map?

*Retopologize!*

$$\text{discrete}(X) \rightarrow Y \quad \text{or} \quad X \rightarrow \text{codiscrete}(Y)$$

There’s a ready-made theory for this... *Lawvere’s cohesive topoi*
For spaces $X$ and $Y$, how can we make a **discontinuous** map

$$X \to Y$$

into a **continuous** map?

*Retopologize!*

$$\text{discrete}(X) \to Y \quad \text{or} \quad X \to \text{codiscrete}(Y)$$

There’s a ready-made theory for this...*Lawvere’s cohesive topoi*
Discontinuity via cohesive topoi

\[ \flat X \to X \to \sharp X \]

Interpret \( \flat X \to Y \) or \( X \to \sharp Y \) as \textit{not necessarily continuous} maps from \( X \to Y \).
Interpret $♭X \to Y$ or $X \to ♯Y$ as *not necessarily continuous* maps from $X \to Y$. 

$♭X \to X \to ♯X$
Two concerns importing this to HoTT:

1) Algebraic topology trades in *spaces* not *higher inductive types*.
2) How can we retopologize when HoTT doesn’t have topologies (open sets)?
higher inductive types vs. spaces in HoTT
base : $S^1$
loop : base=base

$\{(x,y) \mid x^2 + y^2 = 1\}$
Lawvere’s theory of cohesive topoi has more to offer!

\[ \text{gives modality } \int : \text{SPACES} \to \text{SPACES} \]
- Cohesive topos: $\int$ is connected components
- HoTT: $\int$ is fundamental $\infty$-groupoid
- Cohesive topos: $\int$ is connected components
- HoTT: $\int$ is fundamental $\infty$-groupoid

\[
\int \vdash b \vdash \# \]

16
HoTT

+ \int 
\begin{align*}
\text{(suitably defined)}
\end{align*}
\text{cohesive homotopy type theory}

Notation

- \( S^1 := \{ (x, y) : x^2 + y^2 = 1 \} \)
- \( S^1 := \) higher inductive type

We want \( \int S^1 = S^1 \), but we’re not there yet.
HoTT
\[ + \int \vdash b \vdash \# \text{ (suitably defined)} \]
cohesive homotopy type theory

Notation

- \( S^1 := \{(x, y) : x^2 + y^2 = 1\} \)
- \( S^1 := \text{higher inductive type} \)

We want \( \int S^1 = S^1 \), but we’re not there yet.
HoTT + \int \dashv b \dashv \# \ (suitably \ defined) \quad \text{cohesive homotopy type theory}

Notation

- \( S^1 := \{ (x, y) : x^2 + y^2 = 1 \} \)
- \( S^1 := \text{higher inductive type} \)

We want \( \int S^1 = S^1 \), but we’re not there yet.
incorporating topology into HoTT
The topology of a type $X$ is encoded in the type of “continuous paths” $\mathbb{R} \to X$.

Needed to define $\int$:
An axiom ensuring that $\int$ is constructed from continuous paths indexed by intervals in $\mathbb{R}$.

**Axiom $R^\flat$:**
A type $X$ is discrete iff $\text{const}: X \to (\mathbb{R} \to X)$ is an equivalence.
The topology of a type $X$ is encoded in the type of “continuous paths” $\mathbb{R} \rightarrow X$.

**Needed to define $\int$:**
An axiom ensuring that $\int$ is constructed from continuous paths indexed by intervals in $\mathbb{R}$.

**Axiom $R^\flat$:**
A type $X$ is discrete iff $\text{const}: X \rightarrow (\mathbb{R} \rightarrow X)$ is an equivalence.
The topology of a type $X$ is encoded in the type of “continuous paths” $\mathbb{R} \to X$.

**Needed to define $\int$:**
An axiom ensuring that $\int$ is constructed from continuous paths indexed by intervals in $\mathbb{R}$.

**Axiom $R♭$:**
A type $X$ is *discrete* iff $\text{const}: X \to (\mathbb{R} \to X)$ is an equivalence.
real-cohesive homotopy type theory, a place where $\int S^1 = S^1$. 

**Axiom $R_b$:**

$X$ is discrete

iff

$\text{const} : X \cong (\mathbb{R} \to X)$
Borsuk-Ulam
Three related statements in classical algebraic topology:

<table>
<thead>
<tr>
<th>BU-classic</th>
<th>For any continuous map $f : S^n \to \mathbb{R}^n$, there exists an $x \in S^n$ such that $f(x) = f(-x)$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BU-odd</td>
<td>For any continuous map $f : S^n \to \mathbb{R}^n$ with the property that $f(-x) = -f(x)$, there is an $x \in S^n$ such that $f(x) = 0$</td>
</tr>
<tr>
<td>BU-retract</td>
<td>There is no continuous map $f : S^n \to S^{n-1}$ with the property that there exists an $x \in S^n$ such that $f(-x) = -f(x)$.</td>
</tr>
</tbody>
</table>

Proof of BU-classic involves proving that

1. show $(\text{BU-classic}) \equiv (\text{BU-odd})$
2. show $\neg (\text{BU-odd}) \Rightarrow \neg (\text{BU-retract})$
3. hence $(\text{BU-retract}) \Rightarrow (\text{BU-classic})$.
4. prove $(\text{BU-retract})$
5. conclude $(\text{BU-classic})$
### Three related statements in classical algebraic topology:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>BU-classic</strong></td>
<td>For any continuous map ( f : S^n \rightarrow \mathbb{R}^n ), there exists an ( x \in S^n ) such that ( f(x) = f(-x) ).</td>
</tr>
<tr>
<td><strong>BU-odd</strong></td>
<td>For any continuous map ( f : S^n \rightarrow \mathbb{R}^n ) with the property that ( f(-x) = -f(x) ), there is an ( x \in S^n ) such that ( f(x) = 0 ).</td>
</tr>
<tr>
<td><strong>BU-retract</strong></td>
<td>There is no continuous map ( f : S^n \rightarrow S^{n-1} ) with the property that there exists an ( x \in S^n ) such that ( f(-x) = -f(x) ).</td>
</tr>
</tbody>
</table>

**Proof of BU-classic involves proving that**

1. show \((BU-classic) \cong (BU-odd)\)
2. show \(\neg (BU-odd) \Rightarrow \neg (BU-retract)\)
3. hence \((BU-retract) \Rightarrow (BU-classic)\).
4. prove \((BU-retract)\)
5. conclude \((BU-classic)\)
Three related statements in classical algebraic topology:

<table>
<thead>
<tr>
<th>BU-classic</th>
<th>For any continuous map $f : S^n \to \mathbb{R}^n$, there exists an $x \in S^n$ such that $f(x) = f(-x)$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BU-odd</td>
<td>For any continuous map $f : S^n \to \mathbb{R}^n$ with the property that $f(-x) = -f(x)$, there is an $x \in S^n$ such that $f(x) = 0$.</td>
</tr>
<tr>
<td>BU-retract</td>
<td>There is no continuous map $f : S^n \to S^{n-1}$ with the property that there exists an $x \in S^n$ such that $f(-x) = -f(x)$.</td>
</tr>
</tbody>
</table>

Proof of BU-classic involves proving that

1. show $(\text{BU-classic}) \simeq (\text{BU-odd})$
2. show $\neg (\text{BU-odd}) \Rightarrow \neg (\text{BU-retract})$
3. hence $(\text{BU-retract}) \Rightarrow (\text{BU-classic})$.
4. prove $(\text{BU-retract})$
5. conclude $(\text{BU-classic})$
Three related statements in classical algebraic topology:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BU-classic</td>
<td>For any continuous map $f : S^n \to \mathbb{R}^n$, there exists an $x \in S^n$ such that $f(x) = f(-x)$.</td>
</tr>
<tr>
<td>BU-odd</td>
<td>For any continuous map $f : S^n \to \mathbb{R}^n$ with the property that $f(-x) = -f(x)$, there is an $x \in S^n$ such that $f(x) = 0$.</td>
</tr>
<tr>
<td>BU-retract</td>
<td>There is no continuous map $f : S^n \to S^{n-1}$ with the property that there exists an $x \in S^n$ such that $f(-x) = -f(x)$.</td>
</tr>
</tbody>
</table>

Proof of BU-classic involves proving that

1. show $(\text{BU-classic}) \simeq (\text{BU-odd})$
2. show $\neg (\text{BU-odd}) \Rightarrow \neg (\text{BU-retract})$
3. hence $(\text{BU-retract}) \Rightarrow (\text{BU-classic})$.  
4. prove $(\text{BU-retract})$
5. conclude $(\text{BU-classic})$
Three related statements in classical algebraic topology:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BU-classic</td>
<td>For any continuous map $f : S^n \to \mathbb{R}^n$, there exists an $x \in S^n$ such that $f(x) = f(-x)$.</td>
</tr>
<tr>
<td>BU-odd</td>
<td>For any continuous map $f : S^n \to \mathbb{R}^n$ with the property that $f(-x) = -f(x)$, there is an $x \in S^n$ such that $f(x) = 0$.</td>
</tr>
<tr>
<td>BU-retract</td>
<td>There is no continuous map $f : S^n \to S^{n-1}$ with the property that there exists an $x \in S^n$ such that $f(-x) = -f(x)$.</td>
</tr>
</tbody>
</table>

Proof of BU-classic involves proving that

1. show $(\text{BU-classic}) \simeq (\text{BU-odd})$
2. show $\neg (\text{BU-odd}) \Rightarrow \neg (\text{BU-retract})$
3. hence $(\text{BU-retract}) \Rightarrow (\text{BU-classic})$.
4. prove $(\text{BU-retract})$
5. conclude $(\text{BU-classic})$
**BU-* in real-cohesive homotopy type theory:**

| BU-classic | \[
| \prod_{f : S^n \to \mathbb{R}^n} \sum_{x : S^n} f(-x) = f(x) |
| BU-odd | \[
| \prod_{f : S^n \to \mathbb{R}^n} \prod_{x : S^n} f(-x) = -f(x) \to \sum_{x : S^n} f(x) = 0 |
| BU-retract | \[
| \prod_{f : S^n \to S^{n-1}} \sum_{x : S^n} f(-x) = -f(x) \to 0 |


Proof of BU-classic, strategy:

1. show $(\text{BU-classic}) \simeq (\text{BU-odd})$
2. show $\neg (\text{BU-odd}) \Rightarrow \neg (\text{BU-retract})$
3. hence $(\text{BU-retract}) \Rightarrow \neg \neg (\text{BU-odd})$
4. prove $(\text{BU-retract})$
5. conclude $\neg \neg (\text{BU-classic})$

$\neg \neg (\text{BU-classic}) \neq (\text{BU-classic})$ continuously

but

$\neg \neg (\text{BU-classic}) = (\text{BU-classic})$ discontinuously

Lemma: (Shulman) For $P$ a proposition, $\# P = \neg \neg P$
Proof of BU-classic, strategy:

1. show \((\text{BU-classic}) \simeq (\text{BU-odd})\)
2. show \(\neg \ (\text{BU-odd}) \Rightarrow \neg \ (\text{BU-retract})\)
3. hence \((\text{BU-retract}) \Rightarrow \neg \neg (\text{BU-odd})\)
4. prove \((\text{BU-retract})\)
5. conclude \(\neg \neg (\text{BU-classic})\)

\[\neg \neg (\text{BU-classic}) \neq (\text{BU-classic}) \text{ continuously}\]

but

\[\neg \neg (\text{BU-classic}) = (\text{BU-classic}) \text{ discontinuously}\]

Lemma: (Shulman) For \(P\) a proposition, \(\#P = \neg \neg P\)
Proof of BU-classic, strategy:

1. show \((\text{BU-classic}) \simeq (\text{BU-odd})\)

2. show \(\neg (\text{BU-odd}) \Rightarrow \neg (\text{BU-retract})\)

3. hence \((\text{BU-retract}) \Rightarrow \neg \neg (\text{BU-odd})\)

4. prove \((\text{BU-retract})\)

5. conclude \(\neg \neg (\text{BU-classic})\)

\[
\neg \neg (\text{BU-classic}) \neq (\text{BU-classic}) \text{ continuously}
\]

\[
\text{but}
\]

\[
\neg \neg (\text{BU-classic}) = (\text{BU-classic}) \text{ discontinuously}
\]

Lemma: (Shulman) For \(P\) a proposition, \(\sharp P = \neg \neg P\)
Proof of BU-classic, strategy:

1. show \((\text{BU-classic}) \simeq (\text{BU-odd})\)
2. show \(\neg (\text{BU-odd}) \Rightarrow \neg (\text{BU-retract})\)
3. hence \((\text{BU-retract}) \Rightarrow \neg\neg (\text{BU-odd})\)
4. prove \((\text{BU-retract})\)
5. conclude \(\neg\neg (\text{BU-classic})\)

\[\neg\neg (\text{BU-classic}) \neq (\text{BU-classic}) \text{ continuously}\]

but

\[\neg\neg (\text{BU-classic}) = (\text{BU-classic}) \text{ discontinuously}\]

Lemma: (Shulman) For \(P\) a proposition, \(\#P = \neg\neg P\)
Proof of BU-classic, strategy:

1. show \((\text{BU-classic}) \simeq (\text{BU-odd})\)
2. show \(\neg (\text{BU-odd}) \Rightarrow \neg (\text{BU-retract})\)
3. hence \((\text{BU-retract}) \Rightarrow \neg\neg (\text{BU-odd})\)
4. prove \((\text{BU-retract})\)
5. conclude \(\neg\neg (\text{BU-classic})\)

\[
\neg\neg (\text{BU-classic}) \neq (\text{BU-classic}) \text{ continuously}
\]

but

\[
\neg\neg (\text{BU-classic}) = (\text{BU-classic}) \text{ discontinuously}
\]

Lemma: (Shulman) For \(P\) a proposition, \(\#P = \neg\neg P\)
Proof of BU-classic, strategy:

1. show \((\text{BU-classic}) \simeq (\text{BU-odd})\)
2. show \(\neg (\text{BU-odd}) \Rightarrow \neg (\text{BU-retract})\)
3. hence \((\text{BU-retract}) \Rightarrow \neg \neg (\text{BU-odd})\)
4. prove \((\text{BU-retract})\)
5. conclude \(\neg \neg (\text{BU-classic})\)

\[
\neg \neg (\text{BU-classic}) \neq (\text{BU-classic}) \text{ continuously}
\]

but

\[
\neg \neg (\text{BU-classic}) = (\text{BU-classic}) \text{ discontinuously}
\]

Lemma: (Shulman) For \(P\) a proposition, \(#P = \neg \neg P\)
It follows that

\[
\prod_{f : S^n \to \mathbb{R}^n} \sum_{x : S^n} f(-x) = f(x) = \# \prod_{f : S^n \to \mathbb{R}^n} \sum_{x : S^n} f(-x) = f(x)
\]

Hence (BU-retract) \(\Rightarrow\) \(\#\) (BU-classic).

Real-cohesive HoTT supports the **sharp Borsuk-Ulam theorem**.
It follows that

\[ \prod f : S^n \to \mathbb{R}^n \sum x : S^n f(-x) = f(x) = \# \prod f : S^n \to \mathbb{R}^n \sum x : S^n f(-x) = f(x) \]

Hence (BU-retract) $\Rightarrow \#$ (BU-classic).

Real-cohesive HoTT supports the sharp Borsuk-Ulam theorem.
It follows that

\[
\prod_{f: S^n \to \mathbb{R}^n} \sum_{x: S^n} f(-x) = f(x) = \# \prod_{f: S^n \to \mathbb{R}^n} \sum_{x: S^n} f(-x) = f(x)
\]

Hence (BU-retract) \(\Rightarrow\) \(\#\) (BU-classic).

Real-cohesive HoTT supports the sharp Borsuk-Ulam theorem.
Borsuk-Ulam

rc hott

rc hott

Sharp Borsuk-Ulam
To prove BU-retract

\[ \prod \sum f(-x) = -f(x) \to 0 \]

we will model the classical proof, which is

- Assume \( f : S^n \to S^{n-1} \) is odd and continuous
- Pass to orbits under \( \mathbb{Z}/2\mathbb{Z} \)-action: \( \hat{f} : \mathbb{R}P^n \to \mathbb{R}P^{n-1} \)
- This induces isomorphism on fundamental groups, \( \mathbb{Z}/2\mathbb{Z} \)
- Hurewicz theorem gives an isomorphism on \( H^1 \), hence we get a ring map \( \hat{f}^* : H^*(\mathbb{R}P^{n-1}, \mathbb{Z}/2\mathbb{Z}) \to H^*(\mathbb{R}P^n, \mathbb{Z}/2\mathbb{Z}) \) such that
  \[ a : \mathbb{Z}/2\mathbb{Z}[a]/(a^{n-1}) \leftrightarrow b : \mathbb{Z}/2\mathbb{Z}[b]/(b^n) \]
- But then \( 0 = a^{n-1} \leftrightarrow b^{n-1} \neq 0 \). Contradiction.
To prove BU-retract

\[ \prod \sum f(-x) = -f(x) \rightarrow 0 \]

we will model the classical proof, which is

- Assume \( f : \mathbb{S}^n \rightarrow \mathbb{S}^{n-1} \) is odd and continuous
- Pass to orbits under \( \mathbb{Z}/2\mathbb{Z} \)-action: \( \hat{f} : \mathbb{RP}^n \rightarrow \mathbb{RP}^{n-1} \)
- This induces isomorphism on fundamental groups, \( \mathbb{Z}/2\mathbb{Z} \)
- Hurewicz theorem gives an isomorphism on \( H^1 \), hence we get a ring map \( \hat{f}^* : H^*(\mathbb{RP}^{n-1}, \mathbb{Z}/2\mathbb{Z}) \rightarrow H^*(\mathbb{RP}^n, \mathbb{Z}/2\mathbb{Z}) \) such that
  \[ a : \mathbb{Z}/2\mathbb{Z}[a]/(a^{n-1}) \leftrightarrow b : \mathbb{Z}/2\mathbb{Z}[b]/(b^n) \]
- But then \( 0 = a^{n-1} \leftrightarrow b^{n-1} \neq 0 \). Contradiction.
Proof by contradiction are not permitted in intuitionistic logic

\[ \neg p, \Gamma \vdash p \]

\[ \Gamma \vdash \neg p \rightarrow 0 \]

\[ \Gamma \vdash \neg \neg p \]

This is actually a proof by negation, not contradiction

\[ p, \Gamma \vdash \neg p \]

\[ \Gamma \vdash \neg p \]

\[ \Gamma \vdash p \rightarrow 0 \]

which is allowed.
Proof by contradiction are not permitted in intuitionistic logic

\[ \neg p, \Gamma \vdash p \]
\[ \Gamma \vdash \neg p \rightarrow 0 \]
\[ \Gamma \vdash \neg \neg p \]

This is actually a proof by negation, not contradiction

\[ p, \Gamma \vdash \neg p \]
\[ \Gamma \vdash \neg p \]
\[ \Gamma \vdash p \rightarrow 0 \]

which is allowed.
Four chunks of the real-cohesive HoTT proof:

- Define topological $S^n$
- Define topological $\mathbb{RP}^n$
- Define cohomology of $S^n$ and $\mathbb{RP}^n$ with $\mathbb{Z}/2\mathbb{Z}$-coefficients
- odd $f : S^n \to S^{n-1}$ induces contradiction (or, rather, negation).
Define $S^n$ topologically.

Per Shulman, $S^1$ is the coequalizer of

$$\text{id}, +1 : \mathbb{R} \to \mathbb{R}$$

giving $S^1 = \{(x, y) : x^2 + y^2 = 1\}$

Define higher dimensional spheres as pushouts:

\[
\begin{array}{ccc}
S^{n-1} \times \mathbb{R} & \overset{\text{fat } \partial}{\longrightarrow} & D^n \\
\downarrow \text{fat } \partial & & \downarrow \\
D^n & \longrightarrow & S^n
\end{array}
\]

Lemma: $S^n$ is a set.
Define $\mathbb{S}^n$ topologically.

Per Shulman, $\mathbb{S}^1$ is the coequalizer of

$$\text{id}, +1 : \mathbb{R} \to \mathbb{R}$$

giving $\mathbb{S}^1 = \{(x, y) : x^2 + y^2 = 1\}$

Define higher dimensional spheres as pushouts:

$$\mathbb{S}^{n-1} \times \mathbb{R} \xrightarrow{\text{fat } \partial} \mathbb{D}^n$$

**Lemma:** $\mathbb{S}^n$ is a set.
Define $\mathbb{R}P^n$ topologically using pushouts.

**Lemma:** The pushout of three sets over an injection is a set.

**Corollary:** $\mathbb{R}P^n$ is a set.
Define $\mathbb{R}P^n$ topologically using pushouts.

**Lemma:** The pushout of three sets over an injection is a set.

**Corollary:** $\mathbb{R}P^n$ is a set.
\[ H^n(X, R) := \|X \to K(R, n)\|_0 \]

Goals:

- Define a ring structure on \( H^* \) for \( S^n \) and \( \mathbb{RP}^n \)
- Compute \( H^* \) for \( S^n \) and \( \mathbb{RP}^n \)

Out strategy is inspired by Brunerie's doctoral thesis. Namely, work with EM-spaces \( K(R, n) \) then lift to cohomology.
Z/2Z-Cohomology for $S^n$ and $\mathbb{RP}^n$

For a type $X$ and ring $R$:

$$H^n(X, R) := \|X \to K(R, n)\|_0$$

Goals:

- Define a ring structure on $H^*$ for $S^n$ and $\mathbb{RP}^n$
- Compute $H^*$ for $S^n$ and $\mathbb{RP}^n$

Out strategy is inspired by Brunerie’s doctoral thesis. Namely, work with EM-spaces $K(R, n)$ then lift to cohomology.
For a type $X$ and ring $R$:

$$H^n(X, R) := \|X \rightarrow K(R, n)\|_0$$

Goals:

- Define a ring structure on $H^*$ for $S^n$ and $\mathbb{RP}^n$
- Compute $H^*$ for $S^n$ and $\mathbb{RP}^n$

Out strategy is inspired by Brunerie’s doctoral thesis. Namely, work with EM-spaces $K(R, n)$ then lift to cohomology.
Define a *cup product* on EM-spaces:

\[
K(\mathbb{Z}/2\mathbb{Z}, n) \times K(\mathbb{Z}/2\mathbb{Z}, m) \xrightarrow{\sim} K(\mathbb{Z}/2\mathbb{Z}, n + m)
\]

\[
\pi \downarrow \quad \quad
\]

\[
K(\mathbb{Z}/2\mathbb{Z}, n) \otimes K(\mathbb{Z}/2\mathbb{Z}, m) \equiv K(\mathbb{Z}/2\mathbb{Z} \otimes \mathbb{Z}/2\mathbb{Z}, n + m)
\]
Lift to $H^*$:

$$\sim: H^n(X, \mathbb{Z}/2\mathbb{Z}) \times H^m(X, \mathbb{Z}/2\mathbb{Z}) \to H^{n+m}(X, \mathbb{Z}/2\mathbb{Z})$$

$$\left( X \overset{\alpha}{\to} K(\mathbb{Z}/2\mathbb{Z}, n), X \overset{\beta}{\to} K(\mathbb{Z}/2\mathbb{Z}, m) \right)$$

is mapped to

$$X \overset{\langle \alpha, \beta \rangle}{\to} K(\mathbb{Z}/2\mathbb{Z}, n) \times K(\mathbb{Z}/2\mathbb{Z}, m) \overset{\sim}{\to} K(\mathbb{Z}/2\mathbb{Z}, n + m)$$

The remaining operations on $H^*(X, \mathbb{Z}/2\mathbb{Z})$ give a graded ring.
Lift to $H^*$:

$$\sim: H^n(X, \mathbb{Z}/2\mathbb{Z}) \times H^m(X, \mathbb{Z}/2\mathbb{Z}) \to H^{n+m}(X, \mathbb{Z}/2\mathbb{Z})$$

\[
\left( X \xrightarrow{\alpha} K(\mathbb{Z}/2\mathbb{Z}, n), X \xrightarrow{\beta} K(\mathbb{Z}/2\mathbb{Z}, m) \right)
\]

is mapped to

$$X \xrightarrow{\langle \alpha, \beta \rangle} K(\mathbb{Z}/2\mathbb{Z}, n) \times K(\mathbb{Z}/2\mathbb{Z}, m) \sim \to K(\mathbb{Z}/2\mathbb{Z}, n + m)$$

The remaining operations on $H^*(X, \mathbb{Z}/2\mathbb{Z})$ give a graded ring.
Use

- $K(\mathbb{Z}/2\mathbb{Z}, 0) := \mathbb{Z}/2\mathbb{Z}$
- $H^k(\mathbb{R}P^n, \mathbb{Z}/2\mathbb{Z}) := ||\mathbb{R}P^n \to \mathbb{Z}/2\mathbb{Z}||_0$

to compute $H^0(\mathbb{R}P^n, \mathbb{Z}/2\mathbb{Z})$

Use

- that $\mathbb{R}P^n$ is a pushout
- induction with Mayer-Vietoris

To compute $H^k(\mathbb{R}P^n, \mathbb{Z}/2\mathbb{Z})$, for $k \geq 1$

(req's cohomology of $S^n$ and $D^n$ which are computed using MV and $D^n = 1$)
Use

- $K(\mathbb{Z}/2\mathbb{Z}, 0) := \mathbb{Z}/2\mathbb{Z}$
- $H^k(\mathbb{RP}^n, \mathbb{Z}/2\mathbb{Z}) := ||\mathbb{RP}^n \to \mathbb{Z}/2\mathbb{Z}||_0$

to compute $H^0(\mathbb{RP}^n, \mathbb{Z}/2\mathbb{Z})$

Use

- that $\mathbb{RP}^n$ is a pushout
- induction with Mayer-Vietoris

to compute $H^k(\mathbb{RP}^n, \mathbb{Z}/2\mathbb{Z})$, for $k \geq 1$

(req's cohomology of $S^n$ and $\mathbb{D}^n$ which are computed using MV and $\mathbb{D}^n = 1$)
Use

- $K(\mathbb{Z}/2\mathbb{Z}, 0) := \mathbb{Z}/2\mathbb{Z}$
- $H^k(\mathbb{R}P^n, \mathbb{Z}/2\mathbb{Z}) := ||\mathbb{R}P^n \to \mathbb{Z}/2\mathbb{Z}||_0$

To compute $H^0(\mathbb{R}P^n, \mathbb{Z}/2\mathbb{Z})$

Use

- That $\mathbb{R}P^n$ is a pushout
- Induction with Mayer-Vietoris

To compute $H^k(\mathbb{R}P^n, \mathbb{Z}/2\mathbb{Z})$, for $k \geq 1$

(req's cohomology of $\mathbb{S}^n$ and $\mathbb{D}^n$ which are computed using MV and $\mathbb{D}^n = 1$)
The results are in:

\[ H^k(S^n, \mathbb{Z}/2\mathbb{Z}) = \begin{cases} \mathbb{Z}/2\mathbb{Z}, & k = 0, n; \\ 0, & \text{else} \end{cases} \]

\[ H^k(D^n, \mathbb{Z}/2\mathbb{Z}) = \begin{cases} \mathbb{Z}/2\mathbb{Z}, & k = 0; \\ 0, & \text{else} \end{cases} \]

\[ H^k(\mathbb{RP}^n, \mathbb{Z}/2\mathbb{Z}) = \begin{cases} \mathbb{Z}/2\mathbb{Z}, & k = 2, 3, \ldots, n; \\ 0, & k \geq n + 1 \end{cases} \]

*(note* \( n \geq 2 \))

In particular:

\[ H^*(\mathbb{RP}^n, \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}[x]/(x^{n+1}) \]
The results are in:

\[
H^k(S^n, \mathbb{Z}/2\mathbb{Z}) = \begin{cases} 
\mathbb{Z}/2\mathbb{Z}, & k = 0, n; \\
0, & \text{else}
\end{cases}
\]

\[
H^k(D^n, \mathbb{Z}/2\mathbb{Z}) = \begin{cases} 
\mathbb{Z}/2\mathbb{Z}, & k = 0; \\
0, & \text{else}
\end{cases}
\]

\[
H^k(\mathbb{R}P^n, \mathbb{Z}/2\mathbb{Z}) = \begin{cases} 
\mathbb{Z}/2\mathbb{Z}, & k = 2, 3, \ldots, n; \\
0, & k \geq n + 1
\end{cases}
\]

(note \( n \geq 2 \))

In particular:

\[
H^*(\mathbb{R}P^n, \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}[x]/(x^{n+1})
\]
Prove BU-retract

Recall,

- \( f : \mathbb{S}^n \to \mathbb{S}^{n-1} \) is continuous and odd
- \( \hat{f} : \mathbb{RP}^n \to \mathbb{RP}^{n-1} \) is the induced map

Apply \( H^1(\cdot, \mathbb{Z}/2\mathbb{Z}) \) to \( \hat{f} \) to get

\[
\hat{f}^* : H^1(\mathbb{RP}^n, \mathbb{Z}/2\mathbb{Z}) \to H^1(\mathbb{RP}^{n-1}, \mathbb{Z}/2\mathbb{Z})
\]

More concretely

\[
\hat{f}^* : \| \mathbb{RP}^n \to \mathbb{RP}^2 \| \to \| \mathbb{RP}^{n-1} \to \mathbb{RP}^2 \|
\]

\[\alpha \mapsto \hat{f}\alpha\]

Note: \( \alpha \) non-trivial implies \( \hat{f}\alpha \) non-trivial.
Prove BU-retract

Recall,

- $f : \mathbb{S}^n \to \mathbb{S}^{n-1}$ is continuous and odd
- $\hat{f} : \mathbb{RP}^n \to \mathbb{RP}^{n-1}$ is the induced map

Apply $H^1(-, \mathbb{Z}/2\mathbb{Z})$ to $\hat{f}$ to get

$$\hat{f}^* : H^1(\mathbb{RP}^n, \mathbb{Z}/2\mathbb{Z}) \to H^1(\mathbb{RP}^{n-1}, \mathbb{Z}/2\mathbb{Z})$$

More concretely

$$\hat{f}^* : \|\mathbb{RP}^n \to \mathbb{RP}^2\| \to \|\mathbb{RP}^{n-1} \to \mathbb{RP}^2\|$$

$$\alpha \mapsto \hat{f}\alpha$$

Note: $\alpha$ non-trivial implies $\hat{f}\alpha$ non-trivial.
Recall, 

- \( f : \mathbb{S}^n \rightarrow \mathbb{S}^{n-1} \) is continuous and odd
- \( \hat{f} : \mathbb{R}P^n \rightarrow \mathbb{R}P^{n-1} \) is the induced map

Apply \( H^1(-, \mathbb{Z}/2\mathbb{Z}) \) to \( \hat{f} \) to get

\[
\hat{f}^* : H^1(\mathbb{R}P^n, \mathbb{Z}/2\mathbb{Z}) \rightarrow H^1(\mathbb{R}P^{n-1}, \mathbb{Z}/2\mathbb{Z})
\]

More concretely

\[
\hat{f}^* : \|\mathbb{R}P^n \rightarrow \mathbb{R}P^2\| \rightarrow \|\mathbb{R}P^{n-1} \rightarrow \mathbb{R}P^2\|
\]

\[
\alpha \mapsto \hat{f}\alpha
\]

**Note:** \( \alpha \) non-trivial implies \( \hat{f}\alpha \) non-trivial.
The generator of

\[ H^*(\mathbb{RP}^n, \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}[x]/(x^{n+1}) \]

live in \( H^1 \).

If follows: \( f : S^n \to S^{n-1} \) induces a map on cohomology

\[ \mathbb{Z}/2\mathbb{Z}[x]/(x^{n-1}) \to \mathbb{Z}/2\mathbb{Z}[y]/(y^n) \]

preserving the generator: \( x \mapsto y \)

But then \( 0 = x^{n-1} \mapsto y^{n-1} \neq 0 \).

Contradiction (or rather, negation).
The generator of

\[ H^\ast(\mathbb{RP}^n, \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}[x]/(x^{n+1}) \]

live in \( H^1 \).

If follows: \( f : \mathbb{S}^n \to \mathbb{S}^{n-1} \) induces a map on cohomology

\[ \mathbb{Z}/2\mathbb{Z}[x]/(x^{n-1}) \to \mathbb{Z}/2\mathbb{Z}[y]/(y^n) \]

preserving the generator: \( x \mapsto y \)

But then \( 0 = x^{n-1} \mapsto y^{n-1} \neq 0 \).

Contradiction (or rather, negation).
The generator of

\[ H^*(\mathbb{RP}^n, \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}[x]/(x^{n+1}) \]

live in \( H^1 \).

If follows: \( f : \mathbb{S}^n \to \mathbb{S}^{n-1} \) induces a map on cohomology

\[ \mathbb{Z}/2\mathbb{Z}[x]/(x^{n-1}) \to \mathbb{Z}/2\mathbb{Z}[y]/(y^n) \]

preserving the generator: \( x \mapsto y \)

But then \( 0 = x^{n-1} \mapsto y^{n-1} \neq 0 \).

Contradiction (or rather, negation).
The generator of

\[ H^* (\mathbb{RP}^n, \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}[x]/(x^{n+1}) \]

live in \( H^1 \).

If follows: \( f : \mathbb{S}^n \rightarrow \mathbb{S}^{n-1} \) induces a map on cohomology

\[ \mathbb{Z}/2\mathbb{Z}[x]/(x^{n-1}) \rightarrow \mathbb{Z}/2\mathbb{Z}[y]/(y^n) \]

preserving the generator: \( x \mapsto y \)

But then \( 0 = x^{n-1} \mapsto y^{n-1} \neq 0 \).

Contradiction (or rather, negation).
We have proved BU-retract, hence sharp Borsuk-Ulam as desired.

Thank you.
We have proved BU-retract, hence sharp Borsuk-Ulam as desired.

Thank you.