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2017 MRC in HoTT program

Mike Shulman for his guidance and patience with three

non-experts

Univalence, which I’ll be recklessly using without mentioning

I’m doing so
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What’s this talk about?

Borsuk-Ulam is a result in

classical algebraic topology.

We want to import it into

HoTT.
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Outline of this talk

1. real-cohesive homotopy type theory

2. Borsuk-Ulam: algebraic topology vs. HoTT

3. proof sketch
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real-cohesive homotopy type theory

5



Algebraic topology has many proofs that involve discontinuous

constructions

For instance, Brouwer fixed-pt theorem

∣∣∣∣∣
∣∣∣∣∣ ∏
f : D2→D2

∑
x :D2

f (x) = x

∣∣∣∣∣
∣∣∣∣∣
0

No continuous way to pick x
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However, we don’t merely have HoTT...

we have real-cohesive HoTT
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For spaces X and Y , how can we make a discontinuous map

X → Y

into a continuous map?

Retopologize!

discrete(X )→ Y or X → codiscrete(Y )

There’s a ready-made theory for this...Lawvere’s cohesive topoi
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Discontinuity via cohesive topoi
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Two concerns importing this to HoTT:

1) Algebraic topology trades in spaces not higher inductive types.

2) How can we retopologize when HoTT doesn’t have topologies

(open sets)?
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higher inductive types vs. spaces in HoTT
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Lawvere’s theory of cohesive topoi has more to offer!
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: SPACES→ SPACES
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Cohesive topos:
∫

is connected components

HoTT:
∫

is fundamental ∞-groupoid

∫
a [ a ]
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HoTT

+
∫
a [ a ] (suitably defined)

cohesive homotopy type theory

Notation

S1 := {(x , y) : x2 + y2 = 1}
S1 := higher inductive type

We want
∫
S1 = S1, but we’re not there yet.
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incorporating topology into HoTT
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The topology of a type X is encoded in the type of “continuous

paths” R→ X.

Needed to define
∫

:

An axiom ensuring that
∫

is constructed from continuous paths

indexed by intervals in R.

Axiom R[:

A type X is discrete iff const : X→ (R→ X) is an equivalence.
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TYPES

TYPES

a a a
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+

Axiom R[:

X is discrete

iff

const : X
=−→ (R→ X)

—equals—

real-cohesive homotopy type theory, a place where
∫
S1 = S1.
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Borsuk-Ulam
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Three related statements in classical algebraic topology:

BU-classic
For any continuous map f : Sn → Rn, there exists

an x ∈ Sn such that f (x) = f (−x).

BU-odd

For any continuous map f : Sn → Rn with the

property that f (−x) = −f (x), there is an x ∈ Sn

such that f (x) = 0

BU-retract

There is no continuous map f : Sn → Sn−1 with

the property that there exists an x ∈ Sn such that

f (−x) = −f (x).

Proof of BU-classic involves proving that

1. show (BU-classic) ' (BU-odd)

2. show ¬ (BU-odd) ⇒ ¬ (BU-retract)

3. hence (BU-retract) ⇒ (BU-classic).

4. prove (BU-retract)

5. conclude (BU-classic)
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BU-* in real-cohesive homotopy type theory:

BU-classic

∣∣∣∣∣∣∣∣ ∏
f : Sn→Rn

∑
x : Sn

f (−x) = f (x)

∣∣∣∣∣∣∣∣

BU-odd

∣∣∣∣∣∣∣∣ ∏
f : Sn→Rn

∏
x : Sn

f (−x) = −f (x)→
∑
x : Sn

f (x) = 0

∣∣∣∣∣∣∣∣

BU-retract

∣∣∣∣∣
∣∣∣∣∣ ∏
f : Sn→Sn−1

∑
x : Sn

f (−x) = −f (x)→ 0

∣∣∣∣∣
∣∣∣∣∣
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Proof of BU-classic, strategy:

1. show (BU-classic) ' (BU-odd)

2. show ¬ (BU-odd) ⇒ ¬ (BU-retract)

3. hence (BU-retract) ⇒ ¬¬ (BU-odd)

4. prove (BU-retract)

5. conclude ¬¬ (BU-classic)

¬¬ (BU-classic) 6= (BU-classic) continuously

but

¬¬ (BU-classic) = (BU-classic) discontinuously

Lemma: (Shulman) For P a proposition, ]P = ¬¬P

24
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It follows that

¬¬

∣∣∣∣∣
∣∣∣∣∣ ∏
f : Sn→Rn

∑
x : Sn

f (−x) = f (x)

∣∣∣∣∣
∣∣∣∣∣ = ]

∣∣∣∣∣
∣∣∣∣∣ ∏
f : Sn→Rn

∑
x : Sn

f (−x) = f (x)

∣∣∣∣∣
∣∣∣∣∣

Hence (BU-retract) ⇒ ] (BU-classic).

Real-cohesive HoTT supports the sharp Borsuk-Ulam theorem.
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To prove BU-retract∣∣∣∣∣
∣∣∣∣∣ ∏
f : Sn→Sn−1

∑
x : Sn

f (−x) = −f (x)→ 0

∣∣∣∣∣
∣∣∣∣∣

we will model the classical proof, which is

Assume f : Sn → Sn−1 is odd and continuous

Pass to orbits under Z/2Z-action: f̂ : RPn → RPn−1

This induces isomorphism on fundamental groups, Z/2Z

Hurewicz theorem gives an isomorphism on H1, hence we get

a ring map f̂ ∗ : H∗(RPn−1,Z/2Z)→ H∗(RPn,Z/2Z) such

that

a : Z/2Z[a]/(an−1) 7→ b : Z/2Z[b]/(bn)

But then 0 = an−1 7→ bn−1 6= 0. Contradiction.
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Proof by contradiction are not permitted in intuitionistic logic

¬p, Γ ` p

Γ ` ¬p → 0

Γ ` ¬¬p

This is actually a proof by negation, not contradiction

p, Γ ` ¬p
Γ ` p → 0

which is allowed.

28
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Four chunks of the real-cohesive HoTT proof:

Define topological Sn

Define topological RPn

Define cohomology of Sn and RPn with Z/2Z-coefficients

odd f : Sn → Sn−1 induces contradiction (or, rather,

negation).

29



Define Sn topologically.

Per Shulman, S1 is the coequalizer of

id,+1: R→ R

giving S1 = {(x , y) : x2 + y2 = 1}

Define higher dimensional spheres as pushouts:

Sn−1 × R

Dn

Dn

Sn

fat ∂

fat ∂

Lemma: Sn is a set.
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Define RPn topologically using pushouts.

S1 × R

M

D2

RP2

fat ∂

fat 2∂ Sn × R

RPn

Dn+1

RPn+1

fat ∂

∂

Lemma: The pushout of three sets over an injection is a set.

Corollary: RPn is a set.
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Z/2Z-Cohomology for Sn and RPn

For a type X and ring R:

Hn(X ,R) := ||X → K (R, n)||0

Goals:

Define a ring structure on H∗ for Sn and RPn

Compute H∗ for Sn and RPn

Out strategy is inspired by Brunerie’s doctoral thesis. Namely,

work with EM-spaces K (R, n) then lift to cohomology.

32
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Define a cup product on EM-spaces:

K (Z/2Z, n)× K (Z/2Z,m)

K (Z/2Z, n) ∧ K (Z/2Z,m)

||K (Z/2Z, n) ∧ K (Z/2Z,m)||n+m K (Z/2Z⊗ Z/2Z, n + m)

K (Z/2Z, n + m)

π

|| − ||n+m

=

=

^

33



Lift to H∗:

^ : Hn(X ,Z/2Z)× Hm(X ,Z/2Z)→ Hn+m(X ,Z/2Z)

(
X

α−→ K (Z/2Z, n),X
β−→ K (Z/2Z,m)

)
is mapped to

X
〈α,β〉−−−→ K (Z/2Z, n)× K (Z/2Z,m)

^−→ K (Z/2Z, n + m)

The remaining operations on H∗(X ,Z/2Z) give a graded ring.
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Use

K (Z/2Z, 0) := Z/2Z

Hk(RPn,Z/2Z) := ||RPn → Z/2Z||0

to compute H0(RPn,Z/2Z)

Use

that RPn is a pushout

induction with Mayer-Vietoris

to compute Hk(RPn,Z/2Z), for k ≥ 1

(req’s cohomology of Sn and Dn which are computed using MV

and Dn = 1)
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The results are in:

Hk(Sn,Z/2Z) =

Z/2Z, k = 0, n;

0, else

Hk(Dn,Z/2Z) =

Z/2Z, k = 0;

0, else

Hk(RPn,Z/2Z) =

Z/2Z, k = 2, 3, · · · , n;

0, k ≥ n + 1

(note n ≥ 2)

In particular:

H∗(RPn,Z/2Z) = Z/2Z[x ]/(xn+1)
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Prove BU-retract

Recall,

f : Sn → Sn−1 is continuous and odd

f̂ : RPn → RPn−1 is the induced map

Apply H1(−,Z/2Z) to f̂ to get

f̂ ∗ : H1(RPn,Z/2Z)→ H1(RPn−1,Z/2Z)

More concretely

f̂ ∗ :
∣∣∣∣RPn → RP2

∣∣∣∣→ ∣∣∣∣RPn−1 → RP2
∣∣∣∣

α 7→ f̂ α

Note: α non-trivial implies f̂ α non-trivial.
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The generator of

H∗(RPn,Z/2Z) = Z/2Z[x ]/(xn+1)

live in H1.

If follows: f : Sn → Sn−1 induces a map on cohomology

Z/2Z[x ]/(xn−1)→ Z/2Z[y ]/(yn)

preserving the generator: x 7→ y

But then 0 = xn−1 7→ yn−1 6= 0.

Contradiction (or rather, negation).
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We have proved BU-retract, hence sharp Borsuk-Ulam as desired.

Thank you.
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