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Main Goal

Our simple goal is to discuss the following definition:

Def. Higher Turing category

A higher Turing category is a cartesian restriction 8-category C
with an object A of C and coherent application ‚ : AˆAÑ A, such
that every object X of C is a homotopy retract of A.

and its relevance to computable interpretations of univalence in
HoTT.
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Categorifying Recursion Theory

The notion of function partiality is foreign to type theories, both
natively and as the internal logics of categories.

Models of computability as found in recursion theory reflect this
fact, e.g. PCAs are models of untyped lambda calculi.

Categorical folks interested in computability have therefore introduced

many ways to apply intrinsically categorical methods to recursion theory:

Partial map categories (Longo, Moggi, Robinson, Rosolini...)

Dominical/recursion categories (Di Paola, Heller, Montagna, Lengyel...)

The recursive topos (Mulry...)

Arithmetical universes (Joyal...)

Realizability toposes (Hyland, Pitts, Johnstone...)

The effective topos (Hyland...)

Restriction categories (Cockett, Lack...)
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The notion of function partiality is foreign to type theories, both
natively and as the internal logics of categories.

Models of computability as found in recursion theory reflect this
fact, e.g. PCAs are models of untyped lambda calculi.

Categorical folks interested in computability have therefore introduced
many ways to apply categorical methods to recursion theory:

Partial map categories (Longo, Moggi, Robinson, Rosolini...)

Dominical/recursion categories (Di Paola, Heller, Montagna, Lengyel...)

The recursive topos (Mulry...)

Arithmetical universes (Joyal...)

Realizability toposes (Hyland, Pitts, Johnstone...)

The effective topos (Hyland...)

Restriction categories (Cockett, Lack, Hofstra...)

The minimalism and equationality of restriction categories make them our
starting point for “homotopifying” recursion theory with a view towards a
realizable interpretation of univalence.
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Categorifying Recursion Theory

Def. Restriction category

A restriction category pC, q̄ is a category C along with a combinator
¯ : ArrC Ñ ArrC assigning to each arrow f : AÑ B in C an f̄ : AÑ A
such that:

i) ff̄ “ f
ii) for all g : HomCpA,Cq, ḡf̄ “ f̄ ḡ

iii) for all g : HomCpA,Cq, gf̄ “ ḡf̄

iv) for all g : HomCpB,Cq, ḡf “ fgf

NB - A morphism f : AÑ B in C is called total if f̄ “ idA.

Functors (properly, restriction functors) of restriction categories
preserve the partiality structures.

Objects and total maps of C form a subcategory TotpC, q̄ ãÑ pC, q̄ in
this sense.

Examples: ParSet,Rec,ParTop...
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Restriction Categories - Some Properties

Diagrams in a restriction category do not commute equationally, but as
inequalities in the poset order induced by restriction. E.g.

a restricted final object 1 for a restriction category pC, q̄ has the
universal property:

A

B

f D!A

D!B

ď

and restricted binary products satisfy:

A

B B ˆ C C

D!d
gf

πCπB

ě ď

where the projections are total.

Def.

A restriction category with restricted binary products and a restricted final
object is called a cartesian restriction category.
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Turing (1-)Categories

Def. Turing Category

A Turing category is a cartesian restriction category pC, q̄ with a fixed
object A and morphism ‚ : AˆAÑ A having the following universal
property: for each C-morphism f : X Ñ Y there is a section s : Y Ñ A
and retract r : AÑ X, along with a total map h : 1Ñ A satisfying the
diagram:

AˆA A X

Aˆ 1 » A

Y

‚ r

f

idAˆh
sfr

s

That is, each map in C ia A-computable up to sections and retractions. Note

that this commutes equationally; the products shown are restricted products.
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Turing (1-)categories

The universal object in C, the Turing object, should be thought of as

Gödel-encoding all maps f : X Ñ Y in C via its application AˆX Ñ Y ,

represented by the global section h : 1 Ñ A.

Basic examples:

Rec, of natural numbers n,m P N and partial recursive functions
Nn

Ñ Nm, with universal applicative structure:

Nˆ 1 » N

NˆN N

D total h : 1ˆh
fi

x´´y

where the representation is xi, ny “ fipnq, the ith computable function.

Conversely, any PCA gives rise to a Turing category, via its computable
map category.

The Karoubi envelope (idempotent splitting) of any Turing category is a
Turing category.
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Turing Objects as Relative PCAs

Just as the computable map category of a PCA forms a Turing
category, a Turing object A of C and its Turing morphism
‚ : AˆAÑ A forms a PCA in C.

Def.

A (relative) PCA A is a combinatory complete partial applicative system

in a cartesian restriction category D.

Partial applicative system :“ a morphism ‚ : AˆAÑ A in D
Completeness in D :“ finite powers An and A-computable morphisms
form a well-defined cartesian restriction subcategory of D

Caveat. Not every PCA in a Turing category C is a Turing object for C.
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Note on Formalization

The preceding material (and more), but not the material to follow,
has been formalized in Coq by Vinogradova, Felty, and Scott
(2018), code available at:

github.com/polinavino/Turing-Category-Formalization
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Realizability Toposes from Turing Categories

The Turing object-to-realizability topos construction works much as in

the case for classical PCAs, but is again a purely categorical formulation.

Let F : D Ñ C be a restriction functor.

An assembly on D is a restriction idempotent α on an object
FpAq ˆX P C.

Let β be an D-assembly with object FpBq ˆ Y P C. Then a morphism of
assemblies f : αÑ β is a map f : X Ñ Y in C s.t. there exists a
D-morphism d : AÑ B and:

i) pFpdq ˆ fq ˝ α “ β ˝ pFpdq ˆ fq ˝ α,

ii) pidFpAq ˆ fq ˝ α “ pFpdq ˆ fq ˝ α.

These assemblies and their morphisms form a (restriction) category
ASMpFq
There is now a forgetful functor B : ASMpFq ÝÑ C.

When C and D are Turing categories, B is a fibration, and this
fibration is a tripos. In fact, BpASMpFqq is a realizability tripos
whose internal language defines a realizability topos.
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Realizability Toposes: An Extensional Characterization

“Frey’s axioms” (2014/2018): a resolution of Johnstone’s complaint (c. 2010)?

Theorem (Frey 2014)

A (locally small) category C is a realizability topos iff:

I) C is exact and locally cartesian closed,

II) C has enough projectives and the full subcategory ProjpCq ãÑ C has all finite
limits,

III) The global section functor

Γ :“ Cp‚,´q : C ÝÑ Set

has right adjoint ∇ : Set ãÑ C, a reflective inclusion s.t. ∇Γ preserves finite
limits and the idempotent closure operator. The modality ∇ factors through
ProjpCq.
IV) Finally, there is a ∇Γ-separated object D P ProjpCq s.t. regular epics closed
under ∇Γ have left lifting against D Ñ ‚, and for each P P ProjpCq there is a
morphism P Ñ D which is ∇Γ-closed.
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Vertical Promotion of Frey’s Axioms?

I) A direct approach:

C l.c.c. ÞÑ locally cartesian closed p8, 1q-category (slice
condition)

C exact ÞÑ effectivity of relations (groupoid objects)

∇ reflective inclusion ÞÑ faithful adjoint p8, 1q-functor

etc.

However, promoting the behavior of ProjpCq seemed very difficult (to me).

II) Indirect approach: internalize some model for higher toposes in
a well-understood realizability topos. This has been the approach
of Frey (2017), who suggests internalizing the cubical set model in
Eff .
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Partiality in Higher Categories

Def. Higher Restriction

A restriction 8-category pC, q̄ is an p8, 1q´category C along with a
combinator ¯ : ArrC Ñ ArrC which assigns to each 1-morphism f : AÑ B a
1-morphism f̄ : AÑ A such that:

i) The composition ff̄ exists and there is an 2-morphism R1 : ff̄ „ f

ii) for each 1-morphism g such that the composite ḡf̄ exists, then the composite
f̄ ḡ also exists and there is an 2-morphism R2 : ḡf̄ „ f̄ ḡ

iii) for each 1-morphism g such that the composite gf̄ is defined, there is an

2-morphism R3 : gf̄ „ ḡf̄

iv) for each 1-morphism g such that gf exists, there is an 2-morphism
R4 : ḡf „ fgf
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Partiality in Higher Categories

Def. Higher restriction (cont.)

And each of these 2-morphisms is witnessed by homotopy-coherent 2-cells:

ff̄pxq ff̄pyq

fpxq fpyq

R1pxq

ff̄ppq

R1pyq

f̄ppq

ó

ḡf̄pxq ḡf̄pyq

f̄ ḡpxq f̄ ḡpyq

R2pxq

ḡf̄ppq

R2pyq

f̄ ḡppq

ó

gf̄pxq gf̄pyq

ḡf̄pxq ḡf̄pyq

R3pxq

gf̄

R3pyq

ḡf̄ppq

ó

ḡfpxq ḡfpyq

fgfpxq fgfpyq

R4pxq

ḡfppq

R4pyq

fgfppq

ó

where p is now a element derived from higher coherence data.

Remark. If C were, say, a model category, p would be from a path object for A.



Outline Categorical recursion theory

Partiality in Higher Categories

Def. Higher restriction (cont.)

NB - A morphism f : AÑ B in a restriction category is called total if there is
a homotopy T : f̄ „ idA, witnessed by a coherent square:

f̄pxq f̄pyq

x y

T pxq

f̄ppq

T pyq

p

ó

In other words “restriction 8-categories” are (equivalent to)
categories enriched not just over posets, but directed topological
spaces.

The exact class of these spaces is not yet clear (d-Spaces? etc.)

One thing is extra tantalizing: some form of concurrency is naturally
appearing as a model of higher partiality.
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Higher Turing Categories

Finally, Turing categories will be vertically promoted based on the

following lemma:

Lemma.

A cartesian restriction category C is Turing iff it has an object A
with universal application ‚ : AˆAÑ A, and of which every X P C
is a retract.

The following is now routine:

Def. Higher Turing category

A higher Turing category is a cartesian restriction 8-category C
with an object A of C and coherent application ‚ : AˆAÑ A, such
that every object X of C is a homotopy retract of A.

Example: the nerve of a Turing category.
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Univalence vs. the Univalence Axiom

Univalence has two main roles in the use of (book) HoTT: i) as an
extensionality principle, ii) as a coherence principle. Its two main
issues are well-known:

It is a statement about computing certain proof witnesses (namely,
paths in identity types).

It is a statement about computing certain proof witnesses (namely,
paths in identity types).

Much work devoted to formulating univalence as a computational
rule within homotopy type theory:

two-level/two-dimensional type theory (Angiuli, Harper, Favonia,
Licata,...)

cubical type theories (Cohen, Coquand, Huber, Mörtberg,...)

Both De Morgan and Cartesian TT indeed verify univalence!
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Both De Morgan and Cartesian TT indeed verify univalence!



Outline Categorical recursion theory

A Place for Realizability

Bauer (c. 2005, pre-HoTT) defends realizability models as the correct
family of computational interpretations of constructive mathematics.

Stekelenburg (2014/2016) proposes modest Kan complexes (simplicial
modest sets w/lifting propery)/partial equivalence relations as a
realizability model of homotopy type theory, also establishing that the
generic modest fibration is univalent.

Frey (2017) asserts the need for a realizability interpretation of homotopy
type theory for sake of showing the consistency of impredicate universes
w/HoTT. (Desirable for Voevodsky’s notion of propositional resizing.)

In short, in order to have complete computational meaning, we now
expect constructions in HoTT, especially paths introduced by
univalence, to have an interpretation in an as-yet unknown
realizability 8-topos. Details are emerging:

Uemura (2018) provides a counterexample to propositional resizing in a
model of cubical assemblies with an impredicative universe satisfying
univalence. (This shows the independence of propositional resizing from
UA.) But this model is “far from a realizability 8-topos”.
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Syntax for Higher Triposes

Let C,D be higher Turing categories, and F : D Ñ C a restriction

8-functor.

Suggestion

Define an 8-assembly on D to be a higher restriction idempotent on
FpAq ˆX P C.

Morphisms of 8-assemblies are then tracked by D-morphisms d : AÑ B
s.t.

i) pFpdq ˆ fq ˝ α „ β ˝ pFpdq ˆ fq ˝ α,
+

ii) pidFpAq ˆ fq ˝ α „ pFpdq ˆ fq ˝ α,
+ directed coherence data.

These 8-assemblies and their (directed, homotopy coherent) morphisms
form a restriction 8-category ASMpFq with a forgetful 8-functor
B8 : ASM8pFq ÝÑ C.

Def. (special case) The functor B8, an p8, 1q-Grothendieck fibration, is a
homtopy tripos.
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i) pFpdq ˆ fq ˝ α „ β ˝ pFpdq ˆ fq ˝ α,
+

ii) pidFpAq ˆ fq ˝ α „ pFpdq ˆ fq ˝ α,
+ directed coherence data.

These 8-assemblies and their (directed, homotopy coherent) morphisms
form a restriction 8-category ASMpFq with a forgetful 8-functor
B8 : ASM8pFq ÝÑ C.

Def. (special case) The functor B8, an p8, 1q-Grothendieck fibration, is a
homtopy tripos.
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Higher Partiality Monads?

N. Veltri (2008) defines a certain partial map classifier D« on a

restriction category, otherwise known to Capretta, Altenkirch...as a

partiality monad. This construction allows MLTT to deal syntactically

with “domains of definition”, traditionally not a feature of type theories.

Conjecture

Higher restriction structures as defined here yield a similar construction

of a partiality p8, 1q-monad definable in the syntax of homotopy type

theory.

For concurrency monads which generalize Capretta’s delay/partiality
monad see, e.g. Piróg and Gibbons, Tracing monadic computations and
representing effects.

This would be a partial map classifier for sections of type families,
with domains of definition, over a Martin-Löf universe with identity
types.
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Comments and Questions are Welcome

Thank you to Carnegie Mellon University and the HoTT2019
organizing team for making the summer school and conference
happen, and the scientific committee for kindly funding members of
this conference.
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