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Goal

To define a model of Univalent Foundations that is

(1) definable constructively, i.e. without EM and AC

(2) defined in a category homotopically-equivalent to Top.

Univalent Foundations = ML + UA , where

I ML = Martin-Löf type theory with one universe type

I UA = Voevodsky’s Univalence Axiom
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Related work

Cubical approach:

I [BCH], [BCHM], [OP], . . . do (1) but not (2).

I Recent [ACCRS] does (1) and (2) using equivariant fibrations.

Simplicial approach has some advantages:

I more familiar

I uses standard notion of Kan fibration

I straightforward equivalence with Top.
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Main result

Theorem (Gambino and Henry). Constructively, there exists a
comprehension category

Fib
χ

//

##

SSet→cof

cod
yy

SSetcof

with

I all the type constructors of ML

I univalence of the universe

I Π-types are weakly stable, other type constructors are pseudo-stable.

SSetcof = full subcategory of cofibrant simplicial sets $ SSet
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Outline of the talk

I Review of the classical simplicial model

I Constructive simplicial homotopy theory
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Voevodsky’s classical simplicial model

Idea

I contexts = simplicial sets

I dependent types = Kan fibrations.

⇒ The comprehension category

Fib
χ

//

##

SSet→

codzz

SSet

It supports

I all the type constructors of ML

I a univalent universe

satisfying stability conditions.

It gives rise to a strict model via a splitting process.
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Key facts

(0) Existence of the Kan-Quillen model structure on SSet.

(1) A,B ∈ SSet, B Kan complex ⇒ BA Kan complex.

(2) p :A→ X Kan fibration ⇒ the right adjoint to pullback

Πp :SSet/A → SSet/X

preserves Kan fibrations.

(3) There is a Kan fibration π : Ũ → U, with U Kan complex, that
classifies small Kan fibrations, i.e.

A //

∀
��

Ũ

π

��

X
∃
// U

(4) The Kan fibration π : Ũ → U is univalent.
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Constructivity problems

I Kan-Quillen model structure has classical proofs.

I [BCP] shows that (1), (2) require classical logic.

I [GS] fixed (1), (2) by introducing uniform Kan fibrations in SSet,
but this creates problems for (3), (4).
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Constructive simplicial homotopy theory

We start with

I =
{
∂∆n → ∆n | n ≥ 0

}
J =

{
Λk
n → ∆n | 0 ≤ k ≤ n

}
and generate wfs’s

(Sat(I ) , It) , (Sat(J) , Jt)

We wish to have a model structure (W,C,F) such that

C = Sat(I ) , W ∩ F = It

W ∩ C = Sat(J) , F = Jt

In particular, F = Kan fibrations. This helps with (3).



22

Constructive simplicial homotopy theory

We start with

I =
{
∂∆n → ∆n | n ≥ 0

}
J =

{
Λk
n → ∆n | 0 ≤ k ≤ n

}

and generate wfs’s

(Sat(I ) , It) , (Sat(J) , Jt)

We wish to have a model structure (W,C,F) such that

C = Sat(I ) , W ∩ F = It

W ∩ C = Sat(J) , F = Jt

In particular, F = Kan fibrations. This helps with (3).



23

Constructive simplicial homotopy theory

We start with

I =
{
∂∆n → ∆n | n ≥ 0

}
J =

{
Λk
n → ∆n | 0 ≤ k ≤ n

}
and generate wfs’s

(Sat(I ) , It) , (Sat(J) , Jt)

We wish to have a model structure (W,C,F) such that

C = Sat(I ) , W ∩ F = It

W ∩ C = Sat(J) , F = Jt

In particular, F = Kan fibrations. This helps with (3).



24

Constructive simplicial homotopy theory

We start with

I =
{
∂∆n → ∆n | n ≥ 0

}
J =

{
Λk
n → ∆n | 0 ≤ k ≤ n

}
and generate wfs’s

(Sat(I ) , It) , (Sat(J) , Jt)

We wish to have a model structure (W,C,F) such that

C = Sat(I ) , W ∩ F = It

W ∩ C = Sat(J) , F = Jt

In particular, F = Kan fibrations. This helps with (3).



25

Constructive simplicial homotopy theory

We start with

I =
{
∂∆n → ∆n | n ≥ 0

}
J =

{
Λk
n → ∆n | 0 ≤ k ≤ n

}
and generate wfs’s

(Sat(I ) , It) , (Sat(J) , Jt)

We wish to have a model structure (W,C,F) such that

C = Sat(I ) , W ∩ F = It

W ∩ C = Sat(J) , F = Jt

In particular, F = Kan fibrations. This helps with (3).



26

Constructive cofibrations

Let C = Sat(I ).

Classically, for i :A→ B in SSet, TFAE

I i ∈ C

I i is a monomorphism

Constructively, for i :A→ B in SSet, TFAE

I i ∈ C

I i is a monomorphism s.t. ∀n, in :An → Bn is complemented, i.e.

∀y ∈ Bn

(
y ∈ An ∨ y /∈ An

)
,

and degeneracy of simplices in Bn \ An is decidable.

Note. C = cofibrations in Reedy wfs generated by the wfs

(Complemented mono, Split epi)

on Set.
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The constructive Kan-Quillen model structure

Theorem [H2]. Constructively, the category SSet admits a model
structure (W,C,F) such that

C = Sat(I ) , F = Kan fibrations .

Two other proofs in [GSS].

Note

I Constructively, not every object is cofibrant: X is cofibrant if and
only if degeneracy of simplices in X is decidable.

I Every object X has a cofibrant replacement, given by L(X ) cofibrant
and t :L(X )→ X in W ∩ C.
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Towards a constructive simplicial model

Idea

I use cofibrancy to solve constructivity issues,

I contexts are cofibrant simplicial sets,

I types are Kan fibrations between cofibrant simplicial sets.

⇒ The comprehension category

Fibcof
χ

//

$$

SSet→cof

cod
yy

SSetcof

Challenge

I stay within the cofibrant fragment.
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Key facts

0. Existence of the constructive Kan-Quillen model structure.

1. A,B ∈ SSet, A cofibrant, B Kan ⇒ BA Kan.

2. p :A→ X Kan fibration, A cofibrant ⇒ the right adjoint to pullback

Πp :SSet/A → SSet/X

preserves Kan fibrations.

3. There is a Kan fibration π : Ũc → Uc , with Uc cofibrant Kan
complex, that weakly classifies small Kan fibrations between
cofibrant simplicial sets

A //

∀
��

Ũ

π

��

X
∃
// U

4. The fibration π : Ũc → Uc is univalent.
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Function types

Let A, B be cofibrant Kan complexes.

Step 1. Consider BA, which is a Kan complex by (1). We have

app :BA × A→ B

universal, i.e. such that

X
f // BA

X × A
f×1A // BA × A

app
// B

is a bijection. Its inverse is written

X × A
f // B

X
λ(f )

// BA

In general, BA is not cofibrant.
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Step 2. Let L(BA) be a cofibrant replacement of BA, with

t :L(BA)→ BA in W ∩ F

Now L(BA) is cofibrant Kan complex.

We have

ãpp : L(BA)× A
t×1A // BA × A

app
// B

For f :X × A→ B, with X cofibrant Kan complex, we get

X × A
f // B

X
λ(f )
// BA

X
λ̃(f )
// L(BA)

where

0 //

��

L(BA)

t

��

X
λ(f )

//

λ̃(f )
99

BA

Note

I β-rule holds judgementally, η-rule holds propositionally.

I This extends to Π-types.
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The universe (I)

Step 1. Construct a Kan fibration π : Ũ → U which classifies small Kan
fibrations with cofibrant fibers.

Un = {p :A→ ∆[n] | p small fibration ,A cofibrant}

Step 2.

I Let Uc be a cofibrant replacement of U, with t :Uc → U in W ∩ F

I Pullback

Ũc
//

πc

��

Ũ

π

��

Uc t
// U
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The universe (II)

Proposition. The map πc : Ũc → Uc classifies small Kan fibrations
between cofibrant objects.

Proof. Let p :A→ X be such a map. Since p has cofibrant fibers, we
have

A //

p

��

Ũ

π

��

X
a
// U

But

Uc

t

��

X
a
//

ac

>>

U

and so

A //

p

��

Ũc

πc

��

// Ũ

π

��

X
ac
// Uc t

// U .
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Ũc

πc

��

// Ũ
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π

��

X
ac
// Uc t

// U .



57

The universe (II)
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Fibrancy and univalence of the universe

Step 1. Prove equivalence extension property.

I Key Lemma. Let f :Y → X be a cofibration between cofibrant
objects. If q :B → Y has cofibrant domain, then so does
Πf (q) : ΠY (B)→ X .

Step 2. Prove U Kan complex, so that Uc is a cofibrant Kan complex.

I Familiar argument, via instance of equivalence extensional property.

Step 3. Prove π univalent, so that πc univalent.

I Equivalence extension property

I Diagram-chasing, using 3-for-2 for W.
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Coherence issues

The comprehension category

Fibcof
χ

//

$$

SSet→cof

cod
yy

SSetcof

It is not split and satisfies only weak versions of stability conditions.

Open problem. Can we construct a strict model from this?

None of the known strictification methods seems to apply constructively.
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Future work

I Solve coherence problem.

I Generalise from Set to a Grothendieck topos E

I Model structure on simplicial sheaves [∆op, E]

I Connections to higher topos theory

I A simplicial type theory extracted from the comprehension category,
in which univalence axiom is provable.
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