First-Order Homotopical Logic

Joseph Helfer, Stanford University

HoTT 2019
August 12, 2019
1. A diagram
2. Propositions as spaces
3. Properties
4. Fibrational semantics
5. The abstract invariance theorem
Outline

1. A diagram
2. Propositions as spaces
3. Properties
4. Fibrational semantics
5. The abstract invariance theorem
Consider the diagram...

MLTT \[\xrightarrow{\text{Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-\cdots}}\] Simplicial Sets

IFOL

Martin-Löf 1972
Consider the diagram...

- **MLTT** \(\rightarrow\) Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-\ldots

- **IFOL** \(\leftarrow\) Martin-Löf 1972

- **Simplicial Sets**

First-order homotopical logic
Outline

1. A diagram
2. Propositions as spaces
3. Properties
4. Fibrational semantics
5. The abstract invariance theorem
Propositions as objects of \mathcal{C}
Propositions as objects of \(C \)

Fix a first-order language \(\mathcal{L} \)
Propositions as objects of \mathcal{C}

Fix a first-order language \mathcal{L} (many-sorted, no relation symbols).
Propositions as objects of \mathbf{C}

Fix a first-order language \mathcal{L} (many-sorted, no relation symbols). Given a category \mathbf{C} with finite products, we can
Propositions as objects of \(\mathbf{C} \)

Fix a first-order language \(\mathcal{L} \) (many-sorted, no relation symbols). Given a category \(\mathbf{C} \) with finite products, we can

- Define the notion of a \(\mathbf{C} \)-structure \(M \) for \(\mathcal{L} \)
Propositions as objects of \mathbf{C}

Fix a first-order language \mathcal{L} (many-sorted, no relation symbols). Given a category \mathbf{C} with finite products, we can

- Define the notion of a \mathbf{C}-structure M for \mathcal{L}
- Define $M(\Gamma) \in \text{Ob} \mathbf{C}$ for each context (=seq. of variables) Γ
Propositions as objects of \mathbf{C}

Fix a first-order language \mathcal{L} (many-sorted, no relation symbols). Given a category \mathbf{C} with finite products, we can

- Define the notion of a \mathbf{C}-structure M for \mathcal{L}
- Define $M(\Gamma) \in \text{Ob } \mathbf{C}$ for each context (ϕ-seq. of variables) Γ
- Define $M_\Gamma(t) : M(\Gamma) \to M(B)$ for each term t of \mathcal{L} of sort B with free variables in Γ
Fix a first-order language \mathcal{L} (many-sorted, no relation symbols). Given a category \mathcal{C} with finite products, we can

- Define the notion of a \mathcal{C}-structure M for \mathcal{L}
- Define $M(\Gamma) \in \text{Ob}\mathcal{C}$ for each context (=seq. of variables) Γ
- Define $M_{\Gamma}(t) : M(\Gamma) \to M(B)$ for each term t of \mathcal{L} of sort B with free variables in Γ

The “Propositions-as-Objects-of-\mathcal{C}” semantics
Fix a first-order language \mathcal{L} (many-sorted, no relation symbols). Given a category \mathbf{C} with finite products, we can

- Define the notion of a \mathbf{C}-structure M for \mathcal{L}
- Define $M(\Gamma) \in \text{Ob } \mathbf{C}$ for each context (=seq. of variables) Γ
- Define $M_\Gamma(t) : M(\Gamma) \to M(B)$ for each term t of \mathcal{L} of sort B with free variables in Γ

The “Propositions-as-Objects-of-\mathbf{C}” semantics should assign to each formula ϕ with free variables in Γ
Propositions as objects of \mathbf{C}

Fix a first-order language \mathcal{L} (many-sorted, no relation symbols). Given a category \mathbf{C} with finite products, we can

- Define the notion of a \mathbf{C}-structure M for \mathcal{L}
- Define $M(\Gamma) \in \text{Ob} \mathbf{C}$ for each context (=seq. of variables) Γ
- Define $M_\Gamma(t) : M(\Gamma) \to M(B)$ for each term t of \mathcal{L} of sort B with free variables in Γ

The “Propositions-as-Objects-of-\mathbf{C}” semantics should assign to each formula ϕ with free variables in Γ an object $M_\Gamma(\phi) \in \text{Ob}(\mathbf{C}/M(\Gamma))$
Fix a first-order language \mathcal{L} (many-sorted, no relation symbols). Given a category \mathbf{C} with finite products, we can

- Define the notion of a \mathbf{C}-structure M for \mathcal{L}
- Define $M(\Gamma) \in \text{Ob}\mathbf{C}$ for each context (=seq. of variables) Γ
- Define $M_\Gamma(t) : M(\Gamma) \to M(B)$ for each term t of \mathcal{L} of sort B with free variables in Γ

The “Propositions-as-Objects-of-\mathbf{C}” semantics should assign to each formula ϕ with free variables in Γ an object $M_\Gamma(\phi) \in \text{Ob}(\mathbf{C}/M(\Gamma))$ (a “family of objects” over $M(\Gamma)$).
Propositions as objects of \mathbf{C}

Possible if \mathbf{C} is locally cartesian closed and has finite coproducts.
Propositions as objects of \mathbf{C}

Possible if \mathbf{C} is locally cartesian closed and has finite coproducts.

<table>
<thead>
<tr>
<th>ϕ</th>
<th>$M_\Gamma(\phi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P \land Q$</td>
<td>$M_\Gamma(P) \times M_\Gamma(Q)$</td>
</tr>
<tr>
<td>$P \lor Q$</td>
<td>$M_\Gamma(P) + M_\Gamma(Q)$</td>
</tr>
<tr>
<td>$P \Rightarrow Q$</td>
<td>$M_\Gamma(Q)^{M_\Gamma(P)}$</td>
</tr>
<tr>
<td>$(\forall x \in A)P$</td>
<td>$\prod_{\pi : M(\Gamma \cup {x}) \to M(\Gamma)} M_\Gamma(P)$</td>
</tr>
<tr>
<td>$(\exists x \in A)P$</td>
<td>$\sum_{\pi : M(\Gamma \cup {x}) \to M(\Gamma)} M_\Gamma(P)$</td>
</tr>
<tr>
<td>\top</td>
<td>$1_{\mathbf{C}/M(\Gamma)}$</td>
</tr>
<tr>
<td>\bot</td>
<td>$0_{\mathbf{C}/M(\Gamma)}$</td>
</tr>
</tbody>
</table>
How do we interpret equality?
How do we interpret equality?

\[M(B) \xrightarrow{\Delta_{M(B)}} M(B) \times M(B) \]
How do we interpret equality?

$M(x, y)(x = y)$

\[
\begin{align*}
M(B) \\
\downarrow^{\Delta_{M(B)}} \\
M(B) \times M(B)
\end{align*}
\]
Equality

How do we interpret equality?

\[
\begin{align*}
M(B) \\
\downarrow \Delta_{M(B)} \\
M(B) \times M(B)
\end{align*}
\]
Equality

How do we interpret equality?

\[
\begin{align*}
M(\Gamma) &\xrightarrow{\langle M(s), M(t) \rangle} M(B) \times M(B) \\
&\downarrow \Delta_{M(B)} \\
M(B) &
\end{align*}
\]
Equality

How do we interpret equality?

\[
\begin{align*}
M(\Gamma) & \xrightarrow{\langle M(s), M(t) \rangle} M(B) \times M(B) \\
\downarrow & \quad \downarrow \Delta_{M(B)} \\
M(\Gamma) & \xrightarrow{\langle M(s), M(t) \rangle} M(B) \times M(B)
\end{align*}
\]
How do we interpret equality?

\[M_\Gamma(s = t) \]

\[\downarrow \]

\[M(\Gamma) \]

\[\downarrow \]

\[\langle M(s), M(t) \rangle \]

\[M(\Gamma) \]

\[\downarrow \]

\[M(B) \times M(B) \]

\[\downarrow \Delta_{M(B)} \]
Propositions as spaces

Now take $\mathcal{C} =$ “spaces” (e.g., simplicial sets, which is LCCC).
Propositions as spaces

Now take $C = \text{"spaces"}$ (e.g., simplicial sets, which is LCCC).

But

Equality should be "paths", not "identity"

Instead of $\Delta : X \to X \times X$, use the "path-space fibration" $X^I \to X \times X$.

End of definition of the homotopical semantics for first-order logic.

For homotopical semantics in topological spaces, start with an L-structure in Top and apply $\text{Sing} : \text{Top} \to \text{sSet}$.

Let us say $M \models \phi$ if $M(\phi) \neq \emptyset$.
Propositions as spaces

Now take \mathbf{C} = “spaces” (e.g., simplicial sets, which is LCCC).
But, following Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-⋯,

Equality should be “paths”, not “identity”
Instead of $\Delta : X \to X \times X$, use the “path-space fibration” $X I \to X \times X$.
End of definition of the homotopical semantics for first-order logic.

For homotopical semantics in topological spaces, start with an L-structure in Top and apply $\text{Sing} : \text{Top} \to s\text{Set}$.
Let us say $M \models \phi$ if $M(\phi) \neq \emptyset$.

Propositions as spaces

Now take $\mathbf{C} =$ “spaces” (e.g., simplicial sets, which is LCCC).

But, following Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-···, change the interpretation of *equality*!

- Equality should be “paths”, not “identity”
- Instead of $\Delta^1 : \mathcal{X} \to \mathcal{X} \times \mathcal{X}$, use the “path-space fibration” $\mathcal{X} \times I \to \mathcal{X} \times \mathcal{X}$.

End of definition of the homotopical semantics for first-order logic.

For homotopical semantics in topological spaces, start with an L-structure in Top and apply $\text{Sing} : \text{Top} \to \text{sSet}$.

Let us say $\mathcal{M} \models \phi$ if $\mathcal{M}(\phi) \neq \emptyset$.

Propositions as spaces

Now take $\mathbf{C} = \text{"spaces"}$ (e.g., simplicial sets, which is LCCC).

But, following Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-· · ·, change the interpretation of equality!

- Equality should be “paths”, not “identity”
Propositions as spaces

Now take $\mathbf{C} =$ “spaces” (e.g., simplicial sets, which is LCCC).

But, following Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-···, change the interpretation of *equality*!

- Equality should be “paths”, not “identity”
- Instead of $\Delta : X \to X \times X$, use the “path-space fibration” $X^I \to X \times X$.

For homotopical semantics in topological spaces, start with an L-structure in Top and apply $\text{Sing}: \text{Top} \to \text{sSet}$.

Let us say $M \models \phi$ if $M(\phi) \neq \emptyset$.

Propositions as spaces

Now take $\mathbf{C} =$“spaces” (e.g., simplicial sets, which is LCCC). **But**, following Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-···, change the interpretation of equality!

- Equality should be “paths”, not “identity”
- Instead of $\Delta : X \to X \times X$, use the “path-space fibration” $X^I \to X \times X$.

End of definition of the *homotopical semantics for first-order logic*.
Propositions as spaces

Now take $\mathbf{C} =$ “spaces” (e.g., simplicial sets, which is LCCC).

But, following Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-···, change the interpretation of equality!

- Equality should be “paths”, not “identity”
- Instead of $\Delta : X \to X \times X$, use the “path-space fibration” $X^I \to X \times X$.

End of definition of the homotopical semantics for first-order logic.

For homotopical semantics in topological spaces, start with an \mathcal{L}-structure in \textbf{Top} and apply $\text{Sing} : \textbf{Top} \to \textbf{sSet}$.
Propositions as spaces

Now take $C = \text{"spaces"}$ (e.g., simplicial sets, which is LCCC). **But**, following Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-\ldots, change the interpretation of equality!

- Equality should be "paths", not "identity"
- Instead of $\Delta : X \to X \times X$, use the "path-space fibration" $X^I \to X \times X$.

End of definition of the *homotopical semantics for first-order logic*.

For homotopical semantics in *topological spaces*, start with an \mathcal{L}-structure in \textbf{Top} and apply $\text{Sing} : \textbf{Top} \to \textbf{sSet}$.

Let us say $M \models \phi$ if $M(\phi) \neq \emptyset$.
Examples

Let $L = (A, B, f : A \to B, g : A \to B)$.

Then $M = (X, Y, f, g)$ satisfies $\forall x \in A [f(x) = g(x)]$ if and only if f and g are homotopic.

Let $L = (A, \circ : A \times A \to A)$.

Then $M = (M, \circ)$ satisfies $\forall x, y, z [x \circ (y \circ z) = (x \circ y) \circ z]$ if and only if \circ is homotopy-associative.

Let $L = (A)$.

Then $M = (X)$ satisfies $\exists x \forall y (x = y)$ if and only if X is contractible.

Let $L = (A, B, f : A \to B)$.

Then $M = (X, Y, f)$ satisfies $\forall y \in B \exists ! x \in A [f(x) = y]$ if and only if f is a homotopy-equivalence.
Examples

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$.

Let $\mathcal{L} = (A, B, \cdot : A \times A \to A)$. Then $\mathcal{M} = (M, \cdot)$ satisfies $\forall x, y, z [x \cdot (y \cdot z) = (x \cdot y) \cdot z]$ if and only if \cdot is homotopy-associative.

Let $\mathcal{L} = (A)$. Then $\mathcal{M} = (X)$ satisfies $\exists x \forall y (x = y)$ if and only if X is contractible.

Let $\mathcal{L} = (A, B, f : A \to B)$. Then $\mathcal{M} = (X, Y, f)$ satisfies $\forall y \in B \exists ! x \in A [f(x) = y]$ if and only if f is a homotopy-equivalence.
Examples

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then $M = (X, Y, f, g)$ satisfies
Examples

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then $M = (X, Y, f, g)$ satisfies $\forall x \in A[f(x) = g(x)]$ if and only if
Examples

Let \(\mathcal{L} = (A, B, f : A \to B, g : A \to B) \). Then \(M = (X, Y, f, g) \) satisfies \(\forall x \in A[f(x) = g(x)] \) if and only if \(f \) and \(g \) are homotopic.
Examples

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then $M = (X, Y, f, g)$ satisfies $\forall x \in A[f(x) = g(x)]$ if and only if f and g are homotopic.

Let $\mathcal{L} = (A, \circ : A \times A \to A)$.
Examples

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then $M = (X, Y, f, g)$ satisfies $\forall x \in A[f(x) = g(x)]$ if and only if f and g are homotopic.

Let $\mathcal{L} = (A, \circ : A \times A \to A)$. Then $M = (M, \circ)$ satisfies
Examples

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then $M = (X, Y, f, g)$ satisfies $\forall x \in A[f(x) = g(x)]$ if and only if f and g are homotopic.

Let $\mathcal{L} = (A, \circ : A \times A \to A)$. Then $M = (M, \circ)$ satisfies $\forall x, y, z[x \circ (y \circ z) = (x \circ y) \circ z]$ if and only if
Examples

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then $M = (X, Y, f, g)$ satisfies $\forall x \in A[f(x) = g(x)]$ if and only if f and g are homotopic.

Let $\mathcal{L} = (A, \circ : A \times A \to A)$. Then $M = (M, \circ)$ satisfies $\forall x, y, z[x \circ (y \circ z) = (x \circ y) \circ z]$ if and only if \circ is homotopy-associative.
Examples

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then $M = (X, Y, f, g)$ satisfies $\forall x \in A[f(x) = g(x)]$ if and only if f and g are homotopic.

Let $\mathcal{L} = (A, \circ : A \times A \to A)$. Then $M = (M, \circ)$ satisfies $\forall x, y, z[x \circ (y \circ z) = (x \circ y) \circ z]$ if and only if \circ is homotopy-associative.

Let $\mathcal{L} = (A)$.
Examples

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then $M = (X, Y, f, g)$ satisfies $\forall x \in A[f(x) = g(x)]$ if and only if f and g are homotopic.

Let $\mathcal{L} = (A, \circ : A \times A \to A)$. Then $M = (M, \circ)$ satisfies $\forall x, y, z[x \circ (y \circ z) = (x \circ y) \circ z]$ if and only if \circ is homotopy-associative.

Let $\mathcal{L} = (A)$. Then $M = (X)$ satisfies
Examples

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then $M = (X, Y, f, g)$ satisfies $\forall x \in A [f(x) = g(x)]$ if and only if f and g are homotopic.

Let $\mathcal{L} = (A, \circ : A \times A \to A)$. Then $M = (M, \circ)$ satisfies $\forall x, y, z [x \circ (y \circ z) = (x \circ y) \circ z]$ if and only if \circ is homotopy-associative.

Let $\mathcal{L} = (A)$. Then $M = (X)$ satisfies $\exists x \forall y (x = y)$ if and only if
Examples

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then $M = (X, Y, f, g)$ satisfies $\forall x \in A[f(x) = g(x)]$ if and only if f and g are homotopic.

Let $\mathcal{L} = (A, \circ : A \times A \to A)$. Then $M = (M, \circ)$ satisfies $\forall x, y, z[x \circ (y \circ z) = (x \circ y) \circ z]$ if and only if \circ is homotopy-associative.

Let $\mathcal{L} = (A)$. Then $M = (X)$ satisfies $\exists x \forall y (x = y)$ if and only if X is contractible.
Examples

Let $\mathcal{L} = (A, B, f : A \rightarrow B, g : A \rightarrow B)$. Then $M = (X, Y, f, g)$ satisfies $\forall x \in A[f(x) = g(x)]$ if and only if f and g are homotopic.

Let $\mathcal{L} = (A, \circ : A \times A \rightarrow A)$. Then $M = (M, \circ)$ satisfies $\forall x, y, z[x \circ (y \circ z) = (x \circ y) \circ z]$ if and only if \circ is \textit{homotopy-associative}.

Let $\mathcal{L} = (A)$. Then $M = (X)$ satisfies $\exists x \forall y (x = y)$ if and only if X is \textit{contractible}.

Let $\mathcal{L} = (A, B, f : A \rightarrow B)$.
Examples

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then $M = (X, Y, f, g)$ satisfies $\forall x \in A[f(x) = g(x)]$ if and only if f and g are homotopic.

Let $\mathcal{L} = (A, \circ : A \times A \to A)$. Then $M = (M, \circ)$ satisfies $\forall x, y, z[x \circ (y \circ z) = (x \circ y) \circ z]$ if and only if \circ is homotopy-associative.

Let $\mathcal{L} = (A)$. Then $M = (X)$ satisfies $\exists x \forall y(x = y)$ if and only if X is contractible.

Let $\mathcal{L} = (A, B, f : A \to B)$. Then $M = (X, Y, f)$ satisfies
Examples

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then $M = (X, Y, f, g)$ satisfies $\forall x \in A [f(x) = g(x)]$ if and only if f and g are homotopic.

Let $\mathcal{L} = (A, \circ : A \times A \to A)$. Then $M = (M, \circ)$ satisfies $\forall x, y, z [x \circ (y \circ z) = (x \circ y) \circ z]$ if and only if \circ is homotopy-associative.

Let $\mathcal{L} = (A)$. Then $M = (X)$ satisfies $\exists x \forall y (x = y)$ if and only if X is contractible.

Let $\mathcal{L} = (A, B, f : A \to B)$. Then $M = (X, Y, f)$ satisfies $\forall y \in B \exists! x \in A [f(x) = y]$ if and only if
Examples

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then $M = (X, Y, f, g)$ satisfies $\forall x \in A[f(x) = g(x)]$ if and only if f and g are homotopic.

Let $\mathcal{L} = (A, \circ : A \times A \to A)$. Then $M = (M, \circ)$ satisfies $\forall x, y, z [x \circ (y \circ z) = (x \circ y) \circ z]$ if and only if \circ is homotopy-associative.

Let $\mathcal{L} = (A)$. Then $M = (X)$ satisfies $\exists x \forall y (x = y)$ if and only if X is contractible.

Let $\mathcal{L} = (A, B, f : A \to B)$. Then $M = (X, Y, f)$ satisfies $\forall y \in B \exists! x \in A [f(x) = y]$ if and only if f is a homotopy-equivalence.
Outline

1. A diagram
2. Propositions as spaces
3. Properties
4. Fibrational semantics
5. The abstract invariance theorem
Properties

Some properties one might expect/hope for:
Some properties one might expect/hope for:

- Soundness

Consider $\exists x \forall y \left(\neg \neg x = y \right) \Rightarrow \exists x \forall y \left(x = y \right)$. A space X satisfies

- the antecedent if and only if X is path-connected.
- the consequent if and only if X is contractible.
Properties

Some properties one might expect/hope for:

• Soundness (i.e., $\vdash \phi$ implies $M \models \phi$)
Properties

Some properties one might expect/hope for:

- Soundness (i.e., $\vdash \phi$ implies $M \models \phi$)
 - For intuitionistic propositional logic

- For equality

- Completeness

- Homotopy-invariance
Some properties one might expect/hope for:

- **Soundness** (i.e., $\vdash \phi$ implies $M \models \phi$)
 - For intuitionistic propositional logic
 - For equality
Some properties one might expect/hope for:

- **Soundness** (i.e., $\vdash \phi$ implies $M \models \phi$)
 - For intuitionistic propositional logic
 - For equality
 - For LEM?
Properties

Some properties one might expect/hope for:

- **Soundness** (i.e., $\vdash \phi$ implies $M \vDash \phi$)
 - For intuitionistic propositional logic
 - For equality
 - For LEM? **Counterexample:**

A space X satisfies
- the antecedent if and only if X is path-connected.
- the consequent if and only if X is contractible.
Some properties one might expect/hope for:

- **Soundness** (i.e., $\vdash \phi$ implies $M \models \phi$)
 - For intuitionistic propositional logic
 - For equality
 - For LEM?

Counterexample:
Consider $\exists x \forall y (\neg \neg x = y) \Rightarrow \exists x \forall y (x = y)$.

A space X satisfies
- the antecedent if and only if X is path-connected.
- the consequent if and only if X is contractible.
Properties

Some properties one might expect/hope for:

- **Soundness** (i.e., $\vdash \phi$ implies $M \models \phi$)
 - For intuitionistic propositional logic
 - For equality
 - For LEM?

Counterexample:
Consider $\exists x \forall y (\neg \neg x = y) \Rightarrow \exists x \forall y (x = y)$.
A space X satisfies
Some properties one might expect/hope for:

- **Soundness** (i.e., $\vdash \phi$ implies $M \models \phi$)
 - For intuitionistic propositional logic
 - For equality
 - For LEM? **Counterexample:**
 Consider $\exists x \forall y (\neg\neg x = y) \Rightarrow \exists x \forall y (x = y)$. A space X satisfies
 - the antecedent if and only if X is path-connected.
Properties

Some properties one might expect/hope for:

• Soundness (i.e., $\vdash \phi$ implies $M \models \phi$)
 • For intuitionistic propositional logic
 • For equality
 • For LEM? **Counterexample:**
 Consider $\exists x \forall y (\neg \neg x = y) \Rightarrow \exists x \forall y (x = y)$.
 A space X satisfies
 • the antecedent if and only if X is path-connected.
 • the consequent if and only if X is contractible.
Properties

Some properties one might expect/hope for:

- **Soundness** (i.e., \(\vdash \phi \) implies \(M \models \phi \))
 - For intuitionistic propositional logic
 - For equality
 - For LEM? **Counterexample:**
 Consider \(\exists x \forall y (\neg \neg x = y) \Rightarrow \exists x \forall y (x = y) \).
 A space \(X \) satisfies
 - the antecedent if and only if \(X \) is path-connected.
 - the consequent if and only if \(X \) is contractible.

- **Completeness**
Properties

Some properties one might expect/hope for:

• **Soundness** (i.e., $\vdash \phi$ implies $M \models \phi$)

 • For intuitionistic propositional logic
 • For equality
 • For LEM? **Counterexample:**
 Consider $\exists x \forall y (\neg \neg x = y) \Rightarrow \exists x \forall y (x = y)$.
 A space X satisfies

 • the antecedent if and only if X is path-connected.
 • the consequent if and only if X is contractible.

• **Completeness**

 • ???
Some properties one might expect/hope for:

- **Soundness** (i.e., $\vdash \phi$ implies $M \models \phi$)
 - For intuitionistic propositional logic
 - For equality
 - For LEM? **Counterexample:**
 Consider $\exists x \forall y (\neg \neg x = y) \Rightarrow \exists x \forall y (x = y)$.
 A space X satisfies
 - the antecedent if and only if X is path-connected.
 - the consequent if and only if X is contractible.

- **Completeness**
 - ???

- **Homotopy-invariance**
Invariance

The classical (Tarskian) semantics is isomorphism-invariant. I.e., for isomorphic \(L \)-structures, \(M \) and \(N \) and a sentence \(\phi \):

- \(M \models \phi \) if and only if \(N \models \phi \) (and an analogous property for non-closed formulas).

Easy proof by induction on \(\phi \).

For Propositions-as-objects-of-C, this can be strengthened:

- For \(M \), \(N \), and \(\phi \) as above, \(M(\phi) \) and \(N(\phi) \) are (“canonically”) isomorphic (and again something for non-closed formulas).

Again, easy inductive proof.
Invariance

The **classical (Tarskian) semantics** is *isomorphism-invariant.*
Invariance

The classical (Tarskian) semantics is isomorphism-invariant.

- I.e., for isomorphic L-structures, M and N and a sentence ϕ:

$$M \models \phi \text{ if and only if } N \models \phi$$

(and an analogous property for non-closed formulas).

For Propositions-as-objects-of-C, this can be strengthened:

- For M, N, and ϕ as above $M(\phi)$ and $N(\phi)$ are (“canonically”) isomorphic

(and again something for non-closed formulas).

Again, easy inductive proof
The **classical (Tarskian) semantics** is *isomorphism-invariant*.

- I.e., for *isomorphic* \(\mathcal{L} \)-structures, \(M \) and \(N \) and a sentence \(\phi \):

\[
M \models \phi \text{ if and only if } N \models \phi
\]

Easy proof by induction on \(\phi \). For *Propositions-as-objects-of-C*, this can be strengthened:

- For \(M \), \(N \), and \(\phi \) as above \(M(\phi) \) and \(N(\phi) \) are ("canonically") isomorphic (and again something for non-closed formulas).

Again, easy inductive proof.
Invariance

The **classical (Tarskian) semantics** is *isomorphism-invariant*.

- I.e., for *isomorphic* \mathcal{L}-structures, M and N and a sentence ϕ:

 $$M \models \phi \text{ if and only if } N \models \phi$$

 (and an analogous property for non-closed formulas).
Invariance

The classical (Tarskian) semantics is *isomorphism-invariant*.
• I.e., for *isomorphic* \mathcal{L}-structures, M and N and a sentence ϕ:

$$M \models \phi \text{ if and only if } N \models \phi$$

(and an analogous property for non-closed formulas).
• Easy proof by induction on ϕ
Invariance

The **classical (Tarskian) semantics** is *isomorphism-invariant*.

- I.e., for *isomorphic* \mathcal{L}-structures, M and N and a sentence ϕ:

 $$M \models \phi \text{ if and only if } N \models \phi$$

 (and an analogous property for non-closed formulas).

- Easy proof by induction on ϕ

For **Propositions-as-objects-of-C**, this can be strengthened:
The **classical (Tarskian) semantics** is *isomorphism-invariant*.

• I.e., for isomorphic \(\mathcal{L} \)-structures, \(M \) and \(N \) and a sentence \(\phi \):

\[
M \vDash \phi \quad \text{if and only if} \quad N \vDash \phi
\]

(and an analogous property for non-closed formulas).

• Easy proof by induction on \(\phi \)

For **Propositions-as-objects-of-C**, this can be strengthened:

• For \(M, N, \) and \(\phi \) as above
Invariance

The classical (Tarskian) semantics is isomorphism-invariant.

- I.e., for isomorphic \mathcal{L}-structures, M and N and a sentence ϕ:

 $$M \models \phi \text{ if and only if } N \models \phi$$

 (and an analogous property for non-closed formulas).

- Easy proof by induction on ϕ

For \textbf{Propositions-as-objects-of-C}, this can be strengthened:

- For M, N, and ϕ as above

 $M(\phi)$ and $N(\phi)$ are ("canonically") isomorphic
Invariance

The classical (Tarskian) semantics is isomorphism-invariant.

- I.e., for isomorphic \mathcal{L}-structures, M and N and a sentence ϕ:

\[M \vDash \phi \text{ if and only if } N \vDash \phi \]

(and an analogous property for non-closed formulas).

- Easy proof by induction on ϕ

For Projects-as-objects-of-C, this can be strengthened:

- For M, N, and ϕ as above

\[M(\phi) \text{ and } N(\phi) \text{ are ("canonically") isomorphic} \]

(and again something for non-closed formulas).
Invariance

The classical (Tarskian) semantics is isomorphism-invariant.

• I.e., for isomorphic L-structures, M and N and a sentence ϕ:

$$M \models \phi \text{ if and only if } N \models \phi$$

(and an analogous property for non-closed formulas).

• Easy proof by induction on ϕ

For Propositions-as-objects-of-C, this can be strengthened:

• For M, N, and ϕ as above

$$M(\phi) \text{ and } N(\phi) \text{ are ("canonically") isomorphic}$$

(and again something for non-closed formulas).

• Again, easy inductive proof
Homotopy-invariance

The homotopical semantics satisfy an even stronger(*) property:

- Given homotopy-equivalent structures M and N,
 $M(\varphi)$ and $N(\varphi)$ are homotopy-equivalent.

- Here, M and N are homotopy equivalent if there are homotopy-equivalences $h_A : M(A) \cong N(A)$ s.t.
 $M(A) \times M(B) \cong N(A) \times N(B)$,
 $M(C) \cong N(C)$,
 h_C etc. commute up to homotopy.

- Can be proven by induction, but not so easily.

- There is a more conceptual (and general) proof using "fibrational" semantics.
Homotopy-invariance

The homotopical semantics satisfy an even stronger(*) property:

- Given *homotopy-equivalent* structures M and N

(*) Can be proven by induction, but not so easily.

There is a more conceptual (and general) proof using "fibrational" semantics.
Homotopy-invariance

The homotopical semantics satisfy an even stronger\(^(*)\) property:

- Given *homotopy-equivalent* structures \(M\) and \(N\)

 \[M(\phi) \text{ and } N(\phi) \text{ are homotopy-equivalent} \]
Homotopy-invariance

The homotopical semantics satisfy an even stronger\(^\ast\) property:

- Given *homotopy-equivalent* structures \(M\) and \(N\)
 \[M(\phi) \text{ and } N(\phi) \text{ are homotopy-equivalent} \]

- Here, \(M\) and \(N\) are *homotopy equivalent*
Homotopy-invariance

The homotopical semantics satisfy an even stronger(∗) property:

• Given *homotopy-equivalent* structures \(M \) and \(N \)
 \[M(\phi) \text{ and } N(\phi) \text{ are homotopy-equivalent} \]

• Here, \(M \) and \(N \) are *homotopy equivalent* if there are
 homotopy-equivalences \(h_A : M(A) \simeq N(A) \)
Homotopy-invariance

The homotopical semantics satisfy an even stronger property:

- Given homotopy-equivalent structures M and N

 $M(\phi)$ and $N(\phi)$ are homotopy-equivalent

- Here, M and N are homotopy equivalent if there are homotopy-equivalences $h_A : M(A) \simeq N(A)$ s.t.

 \[
 \begin{array}{cccc}
 M(A) \times M(B) & \xrightarrow{h_A \times h_B} & N(A) \times N(B) \\
 M(f) \downarrow & & & \downarrow N(f) \\
 M(C) & \xrightarrow{h_C} & N(C)
 \end{array}
 \]

 etc. commute up to homotopy.
Homotopy-invariance

The homotopical semantics satisfy an even stronger property:

- Given homotopy-equivalent structures M and N

 $M(\phi)$ and $N(\phi)$ are homotopy-equivalent

- Here, M and N are homotopy equivalent if there are homotopy-equivalences $h_A : M(A) \simeq N(A)$ s.t.

 \[
 \begin{align*}
 M(A) \times M(B) \xrightarrow{h_A \times h_B} & N(A) \times N(B) \\
 M(f) \quad & \quad \downarrow N(f) \\
 M(C) \xrightarrow{h_C} & N(C)
 \end{align*}
 \]

 etc. commute up to homotopy.

- Can be proven by induction, but not so easily.
Homotopy-invariance

The homotopical semantics satisfy an even stronger \((*)\) property:

- Given homotopy-equivalent structures \(M\) and \(N\), \(M(\phi)\) and \(N(\phi)\) are homotopy-equivalent.

- Here, \(M\) and \(N\) are homotopy equivalent if there are homotopy-equivalences \(h_A : M(A) \simeq N(A)\) s.t.

\[
\begin{array}{ccc}
M(A) \times M(B) & \xrightarrow{h_A \times h_B} & N(A) \times N(B) \\
M(f)\downarrow & & \downarrow N(f) \\
M(C) & \xrightarrow{h_C} & N(C)
\end{array}
\]

e etc. commute up to homotopy.

- Can be proven by induction, but not so easily.

- There is a more conceptual (and general) proof using “fibrational” semantics.
Outline

1 A diagram

2 Propositions as spaces

3 Properties

4 Fibrational semantics

5 The abstract invariance theorem
Functorial semantics (Lawvere)
Functorial semantics (Lawvere)

Syntax
Functorial semantics (Lawvere)
Functorial semantics (Lawvere)

Syntax \rightarrow \text{Semantics} \rightarrow \text{The Universe}
Functorial semantics (Lawvere)

Syntax \xrightarrow{\text{Semantics}} \text{The Universe}
Functorial semantics (Lawvere)

Some category \rightarrow \text{Semantics} \rightarrow \text{The Universe}
Functorial semantics (Lawvere)

Some category \rightarrow \text{Semantics} \rightarrow \text{The Universe}
Functorial semantics (Lawvere)

Some category

Semantics

Some other category (probably Set)
Functorial semantics (Lawvere)

Some category \rightarrow \text{Semantics} \rightarrow \text{Some other category (probably } Set)
Functorial semantics (Lawvere)

Some category \(\rightarrow\) Some functor \(\rightarrow\) Some other category (probably \(\text{Set}\))
Functorial semantics (Lawvere)

Some category \rightarrow Some functor \rightarrow Some other category (probably Set)
Functorial semantics (Lawvere)

Some Boolean (or Heyting) algebra

Some functor

2
Freeness

The Boolean/Heyting algebra $B\Sigma$ of propositions over a set Σ of atoms is free. Instead, can take the free "non-posetal Heyting algebra" (CCC w/ finite coproducts) $C\Sigma$. This is Lambek’s "category of proofs". This gives the "Propositions-as-objects-of $C\Sigma$" semantics.
Freeness

The Boolean/Heyting algebra B_{Σ} of propositions over a set Σ of atoms is free.
Freeness

The Boolean/Heyting algebra B_{Σ} of propositions over a set Σ of atoms is \textit{free}.

\[
\begin{array}{c}
B_{\Sigma} \\
\uparrow \\
\Sigma
\end{array}
\]

Instead, can take the free "non-posetal Heyting algebra" (CCC w/ finite coproducts) C_{Σ}.

This is Lambek's "category of proofs". This gives the "Propositions-as-objects-of C_{Σ}" semantics:
Freeness

The Boolean/Heyting algebra B_Σ of propositions over a set Σ of atoms is free.
The Boolean/Heyting algebra B_{Σ} of propositions over a set Σ of atoms is free.

\[B_{\Sigma} \rightarrow 2 \]

\[\Sigma \]
The Boolean/Heyting algebra B_Σ of propositions over a set Σ of atoms is \textit{free}.

\[
\begin{array}{ccc}
B_\Sigma & \longrightarrow & 2 \\
\uparrow & & \downarrow \\
\Sigma & \longrightarrow & \\
\end{array}
\]

Instead, can take the free "non-posetal Heyting algebra" (CCC w/ finite coproducts) C_Σ.
Freeness

The Boolean/Heyting algebra B_Σ of propositions over a set Σ of atoms is \textit{free}.

\[
B_\Sigma \longrightarrow 2
\]

\[
\Sigma
\]

Instead, can take the free “non-posetal Heyting algebra” (CCC w/ finite coproducts) C_Σ. This is Lambek’s “category of proofs”.
The Boolean/Heyting algebra B_Σ of propositions over a set Σ of atoms is free.

$$B_\Sigma \longrightarrow 2$$

\[\Sigma \]

Instead, can take the free “non-posetal Heyting algebra” (CCC w/ finite coproducts) C_Σ. This is Lambek’s “category of proofs”. This gives the “Propositions-as-objects-of C” semantics:
The Boolean/Heyting algebra B_Σ of propositions over a set Σ of atoms is free.

Instead, can take the free “non-posetal Heyting algebra” (CCC w/ finite coproducts) C_Σ. This is Lambek’s “category of proofs”. This gives the “Propositions-as-objects-of C” semantics:
Invariance

Using the "categorical" universal property of C, we obtain an "isomorphism invariance" property: $C\sigma Set \Sigma$.
Using the “categorical” universal property of \mathbf{C}_Σ
Invariance

Using the “categorical” universal property of C_Σ, we obtain an “isomorphism invariance” property:
Invariance

Using the “categorical” universal property of \mathbf{C}_Σ, we obtain an “isomorphism invariance” property:

![Diagram](image)
Invariance

Using the “categorical” universal property of C_Σ, we obtain an “isomorphism invariance” property:

$$C_\sigma \cong \Sigma \cong \text{Set}$$
Predicate logic

What are functorial semantics for first-order logic?

There are different answers. One is Lawvere's "hyperdoctrines". This involves:

- "Base category" of contexts and terms (finite product category)
- "Total category" of formulas and implications
- "Fibers" are Heyting algebras
- "Proof-theoretic" version: fibers are non-posetal
What are functorial semantics for first-order logic?

There are different answers. One is Lawvere's "hyperdoctrines". This involves:

- "Base category" of contexts and terms (finite product category)
- "Total category" of formulas and implications
- "Fibers" are Heyting algebras
- "Proof-theoretic" version: fibers are non-posetal
What are functorial semantics for first-order logic? There are different answers.
Predicate logic

What are functorial semantics for first-order logic? There are different answers. One is Lawvere’s “hyperdoctrines”.

- Base category: finite product category
- Total category: formulas and implications
- Fibers: Heyting algebras
- Proof-theoretic version: non-posetal
Predicate logic

What are functorial semantics for first-order logic? There are different answers. One is Lawvere’s “hyperdoctrines”. This involves \textit{fibrations}:
Predicate logic

What are functorial semantics for first-order logic? There are different answers. One is Lawvere’s “hyperdoctrines”. This involves fibrations:

- “Base category” of contexts and terms (finite product category)
What are functorial semantics for first-order logic? There are different answers. One is Lawvere’s “hyperdoctrines”. This involves fibrations:

- “Base category” of contexts and terms (finite product category)
Predicate logic

What are functorial semantics for first-order logic?
There are different answers. One is Lawvere’s “hyperdoctrines”.
This involves fibrations:
• “Base category” of contexts and terms
 (finite product category)
• “Total category” of formulas and implications
What are functorial semantics for first-order logic? There are different answers. One is Lawvere’s “hyperdoctrines”. This involves fibrations:

- “Base category” of contexts and terms (finite product category)
- “Total category” of formulas and implications
Predicate logic

What are functorial semantics for first-order logic? There are different answers. One is Lawvere’s “hyperdoctrines”. This involves fibrations:

- “Base category” of contexts and terms (finite product category)
- “Total category” of formulas and implications
- “Fibers” are Heyting algebras
What are functorial semantics for first-order logic? There are different answers. One is Lawvere’s “hyperdoctrines”. This involves fibrations:

- “Base category” of contexts and terms (finite product category)
- “Total category” of formulas and implications
- “Fibers” are Heyting algebras
What are functorial semantics for first-order logic? There are different answers. One is Lawvere’s “hyperdoctrines”. This involves fibrations:

- “Base category” of contexts and terms (finite product category)
- “Total category” of formulas and implications
- “Fibers” are Heyting algebras
- “Proof-theoretic” version: fibers are non-posetal
Fibrational semantics

Semantics are given by morphisms of fibrations into a "standard fibration".

Form

L Sub (Set)

"Propositions-as-objects-of-C" semantics are obtained from the non-posetal version.
Fibrational semantics

Semantics are given by morphisms of fibrations into a “standard fibration”.

Fibrational semantics

Semantics are given by morphisms of fibrations into a “standard fibration”.

\[
\begin{align*}
\text{Form}_\mathcal{L} & \longrightarrow \text{Sub}(\text{Set}) \\
\downarrow & \quad \quad \quad \quad \downarrow \\
\text{Ctx}_\mathcal{L} & \longrightarrow \text{Set}
\end{align*}
\]
Fibrational semantics

Semantics are given by morphisms of fibrations into a “standard fibration”.

\[
\begin{align*}
\text{Form}_L & \longrightarrow \text{Sub}(\text{Set}) \\
\downarrow & \downarrow \\
\text{Ctx}_L & \longrightarrow \text{Set}
\end{align*}
\]

“Propositions-as-objects-of-\(C\)” semantics are obtained from the non-posetal version.
Fibrational semantics

Semantics are given by morphisms of fibrations into a “standard fibration”.

```
\begin{array}{ccc}
\text{Form}_L & \rightarrow & \text{Sub}(\text{Set}) \\
\downarrow & & \downarrow \\
\text{Ctx}_L & \rightarrow & \text{Set}
\end{array}
```

“Propositions-as-objects-of-\(C\)” semantics are obtained from the non-posetal version.
Fibrational semantics

Semantics are given by morphisms of fibrations into a “standard fibration”.

\[
\begin{array}{ccc}
Pf_{\mathcal{L}} & \longrightarrow & \text{Sub}(\text{Set}) \\
\downarrow & & \downarrow \\
\text{Ctx}_{\mathcal{L}} & \longrightarrow & \text{Set}
\end{array}
\]

“Propositions-as-objects-of-\text{C}” semantics are obtained from the non-posetal version.
Fibrational semantics

Semantics are given by morphisms of fibrations into a “standard fibration”.

\[
\begin{array}{ccc}
\text{Pf}_\mathcal{L} & \rightarrow & \text{Sub}(\text{Set}) \\
\downarrow & & \downarrow \\
\text{Ctx}_\mathcal{L} & \rightarrow & \text{Set}
\end{array}
\]

“Propositions-as-objects-of-\(\mathcal{C}\)” semantics are obtained from the non-posetal version.
Fibrational semantics

Semantics are given by morphisms of fibrations into a “standard fibration”.

\[
\begin{array}{c}
Pf_L \\ \downarrow \\ Ctx_L \\
\end{array} \longrightarrow \begin{array}{c}
C \\ \downarrow \text{cod} \\
C \\
\end{array}
\]

“Propositions-as-objects-of-\(C\)” semantics are obtained from the non-posetal version.
Freeness

The fibration $Pf_L \downarrow Ctx_L$ is free, in two senses. It is the free "Heyting-fibration" over Ctx_L, and Ctx_L is the free f.p. category with an L-structure.
The fibration \(\text{Pf}_\mathcal{L} \downarrow \text{Ctx}_\mathcal{L} \) is free, in two senses.
Freeness

The fibration \(\text{Pf}_\mathcal{L} \downarrow \text{Ctx}_\mathcal{L} \) is free, in two senses. It is the free “Heyting-fibration” over \(\text{Ctx}_\mathcal{L} \)
Freeness

The fibration $\text{Pf}_L \downarrow \text{Ctx}_L$ is free, in two senses. It is the free "Heyting-fibration" over Ctx_L, and Ctx_L is the free f.p. category with an \mathcal{L}-structure.
The fibration \(\text{Pf}_\mathcal{L} \downarrow \) is free, in two senses. It is the free "Heyting-fibration" over \(\text{Ctx}_\mathcal{L} \), and \(\text{Ctx}_\mathcal{L} \) is the free f.p. category with an \(\mathcal{L} \)-structure.
Freeness

The fibration \(\text{Pf}_\mathcal{L} \downarrow \text{Ctx}_\mathcal{L} \) is free, in two senses. It is the free “Heyting-fibration” over \(\text{Ctx}_\mathcal{L} \), and \(\text{Ctx}_\mathcal{L} \) is the free f.p. category with an \(\mathcal{L} \)-structure.

\[
\begin{array}{ccc}
\text{Pf}_\mathcal{L} & \downarrow & \text{E} \\
\downarrow & \text{Ctx}_\mathcal{L} & \downarrow \\
\mathcal{L} & \rightarrow & \text{B}
\end{array}
\]
Freeness

The fibration \(Pf_\mathcal{L} \downarrow \mathcal{L} \) is free, in two senses. It is the free “Heyting-fibration” over \(\text{Ctx}_\mathcal{L} \), and \(\text{Ctx}_\mathcal{L} \) is the free f.p. category with an \(\mathcal{L} \)-structure.
The fibration \(\text{Pf}_L \downarrow \) is free, in two senses. It is the free "Heyting-fibration" over \(\text{Ctx}_L \), and \(\text{Ctx}_L \) is the free f.p. category with an \(L \)-structure.
Invariance

Again, we have a "categorical" freeness property, and this gives us isomorphism invariance.
Invariance

Again, we have a “categorical” freeness property
Invariance

Again, we have a “categorical” freeness property, and this gives us isomorphism invariance.
Again, we have a “categorical” freeness property, and this gives us isomorphism invariance.
Again, we have a “categorical” freeness property, and this gives us isomorphism invariance.
Again, we have a “categorical” freeness property, and this gives us isomorphism invariance.
Again, we have a “categorical” freeness property, and this gives us isomorphism invariance.
Homotopical semantics, fibrationally
Homotopical semantics, fibrationally

What is the correct “target fibration” for the homotopical semantics?

Equality in a fibration is given by a universal property:

\[\top \overset{\Delta}{\to} A \times A \]

In a codomain fibration cod\[C \to \triangleleft C\], this is satisfied by the diagonal \[\Delta A : A \to A \times A\].
Homotopical semantics, fibrationally

What is the correct “target fibration” for the homotopical semantics?

\[\text{sSet} \to \text{cod} \]

Guess: \(\text{cod} \downarrow \text{sSet} \).

Almost, but interpretation of equality is wrong!

Equality in a fibration is given by a universal property:

\[\top_{A} \xRightarrow{} P(a, a) \]

In a codomain fibration \(\text{cod} \to \downarrow \text{C} \), this is satisfied by the diagonal \(\Delta_{A} : A \to A \times A \).
Homotopical semantics, fibrationally

What is the correct “target fibration” for the homotopical semantics?

\[
\text{cod} : \text{sSet} \rightarrow \downarrow_{\text{sSet}} \text{sSet}
\]

Guess: cod \[\downarrow \]. Almost, but interpretation of \textit{equality} is wrong!
Homotopical semantics, fibrationally

What is the correct “target fibration” for the homotopical semantics?

\[\text{Guess: cod} \downarrow \text{sSet} \Rightarrow \text{almost, but interpretation of equality is wrong!} \]

Equality in a fibration is given by a universal property:
Homotopical semantics, fibrationally

What is the correct “target fibration” for the homotopical semantics?

\[
\text{cod} : \text{sSet} \rightarrow \downarrow \text{sSet}
\]

Guess: cod ↓ . Almost, but interpretation of equality is wrong!

Equality in a fibration is given by a universal property:

\[
\begin{array}{ccc}
\top_A & \longrightarrow & \text{Eq}_A \\
A & \xrightarrow{\Delta_A} & A \times A
\end{array}
\]
Homotopical semantics, fibrationally

What is the correct “target fibration” for the homotopical semantics?

Guess: \(\text{cod} \downarrow \text{sSet} \). Almost, but interpretation of equality is wrong!

Equality in a fibration is given by a universal property:

\[
P \xrightarrow{\top} \text{Eq}_A \xrightarrow{T_A} A \rightarrow A \times A
\]

\[
A \xrightarrow{\Delta_A} A \times A
\]
Homotopical semantics, fibrationally

What is the correct “target fibration” for the homotopical semantics?

\[\text{Guess: cod} \downarrow \text{sSet} \]

Almost, but interpretation of equality is wrong!

Equality in a fibration is given by a universal property:

\[
\begin{align*}
P & \to \Delta_A \\
\top_A & \to \text{Eq}_A \\
A & \xrightarrow{\Delta_A} A \times A
\end{align*}
\]
Homotopical semantics, fibrationally

What is the correct “target fibration” for the homotopical semantics?

Guess: $\text{cod} \downarrow \text{sSet} \rightarrow$. Almost, but interpretation of equality is wrong!

Equality in a fibration is given by a universal property:

\[
\begin{array}{rcl}
\top_A & \rightarrow &
\text{Eq}_A \\
\downarrow & & \\
A & \xrightarrow{\Delta_A} & A \times A
\end{array}
\]

i.e. \[
\frac{\top \implies P(a, a)}{a_1 = a_2 \implies P(a_1, a_2)}
\]
Homotopical semantics, fibrationally

What is the correct “target fibration” for the homotopical semantics?

$$\text{Guess: } \text{cod}_{\text{sSet}} \rightarrow \text{sSet}.$$ Almost, but interpretation of equality is wrong!

Equality in a fibration is given by a universal property:

$$\top_A \rightarrow \text{Eq}_A$$

$$A \xrightarrow{\Delta_A} A \times A$$

$$P$$

\[\frac{\top \Rightarrow P(a, a)}{a_1 = a_2 \Rightarrow P(a_1, a_2)} \]

In a codomain fibration $$\text{cod}_{\text{C}} \rightarrow \text{C}$$, this is satisfied by the diagonal $$\Delta_A : A \rightarrow A \times A.$$
Homotopical semantics, fibrationally

The path space has this universal property “up to homotopy” (\(^*\)).
Homotopical semantics, fibrationally

The path space has this universal property “up to homotopy” (*)

\[
\begin{array}{ccc}
X & \xrightarrow{c} & X^I \\
\downarrow & \text{c} & \downarrow \\
X & \xrightarrow{\Delta_X} & X \times X
\end{array}
\]

\[E \xrightarrow{\text{id}} E \]

Idea: replace \(\text{cod} : \text{Set} \rightarrow \downarrow \text{Set} \) with a fibration whose fibers are the homotopy categories of \(\text{Set} / X \).

It works! I.e., it is still a Heyting-fibration, with equality given by path spaces. (In fact, this works with \(\text{Top} \) as well!)
Homotopical semantics, fibrationally

The path space has this universal property “up to homotopy” (*).

\[
\begin{array}{ccc}
X & \xrightarrow{c} & X^I \\
X & \xrightarrow{\Delta X} & X \times X \\
E & \xrightarrow{} & \text{cod}
\end{array}
\]

Idea:
Homotopical semantics, fibrationally

The path space has this universal property “up to homotopy” (*).

\[
\begin{array}{ccc}
E & \xrightarrow{c} & X^I \\
\uparrow & & \downarrow \\
X & \xrightarrow{\Delta_X} & X \times X
\end{array}
\]

Idea: replace cod \[
\begin{array}{c}
sSet \\
\downarrow \\
sSet
\end{array}
\] with a fibration whose fibers are the homotopy categories of \(sSet/X\).
Homotopical semantics, fibrationally

The path space has this universal property “up to homotopy” (\(^*\)).

\[
\begin{align*}
X & \xrightarrow{c} X^I \\
X & \xrightarrow{\Delta^X} X \times X
\end{align*}
\]

Idea: replace \(\text{cod} \quad \downarrow\) with a fibration whose fibers are the homotopy categories of \(\text{sSet}/X\). It works!
Homotopical semantics, fibrationally

The path space has this universal property “up to homotopy” (*).

\[
\begin{array}{ccc}
\Delta^X &
\rightarrow & X \\
\downarrow & & \downarrow \\
X &
\rightarrow & X \times X
\end{array}
\]

Idea: replace \(\text{cod} \) with a fibration whose fibers are the \(\text{homotopy categories} \) of \(s\text{Set}/X \). It works! i.e., it is still a Heyting-fibration,
Homotopical semantics, fibrationally

The path space has this universal property “up to homotopy” \((*)\).

\[
\begin{align*}
E & \\
\uparrow & \\
X & \xrightarrow{c} X^I \\
\Delta X & \xrightarrow{X \times X}
\end{align*}
\]

Idea: replace cod \(\downarrow\) \(sSet\) with a fibration whose fibers are the homotopy categories of \(sSet/X\). It works! I.e., it is still a Heyting-fibration, with equality given by path spaces.
Homotopical semantics, fibrationally

The path space has this universal property “up to homotopy” (*).

\[\begin{array}{ccc}
E & \rightarrow & X \\
\uparrow & & \downarrow c \\
I_X & \rightarrow & X^I \\
\Delta X & \rightarrow & X \times X \\
\end{array} \]

Idea: replace cod \(\text{sSet} \rightarrow \) with a fibration whose fibers are the homotopy categories of \(\text{sSet}/X \). It works! I.e., it is still a Heyting-fibration, with equality given by path spaces. (In fact, this works with \(\text{Top} \) as well!)
Homotopy invariance

How can we express homotopy invariance with this setup?

\[M \xrightarrow{h} N \]

Partially answer:

\[M(A) \rightarrow N(A) \]

\[M(B) \rightarrow N(B) \]

\[h(f) \simeq h(B) \]
Homotopy invariance

How can we express homotopy invariance with this setup?

(Partial) answer: $M \to N$ is a pseudo-natural transformation into the homotopy 2-category of simplicial sets.

$M(A) \to N(A)$

$M(B) \to N(B)$

$h_A \sim h_B$
Homotopy invariance

How can we express homotopy invariance with this setup?

\[
\begin{array}{ccc}
\text{Pf}_L & \xrightarrow{M} & \text{Ho(sSet)} \\
\downarrow & & \downarrow \\
\text{Ctx}_L & \xrightarrow{N} & \text{sSet}
\end{array}
\]
Homotopy invariance

How can we express homotopy invariance with this setup?

\[\text{Pf}_\mathcal{L} \xrightarrow{\tilde{M}} \text{Ho}(\text{sSet} \rightarrow) \]

\[\text{Ctx}_\mathcal{L} \xrightarrow{\tilde{N}} \text{sSet} \]

\[\text{M}(A) \xrightarrow{\sim} \text{H}(B) \]

(Partial) answer: \(\tilde{M} \) is a pseudo-natural transformation into the homotopy 2-category of simplicial sets.

\[\text{M}(A) \xrightarrow{\sim} \text{H}(B) \]
Homotopy invariance

How can we express homotopy invariance with this setup?

\[
\begin{array}{ccc}
\text{Pf}_\mathcal{L} & \xrightarrow{\tilde{M}} & \text{Ho}(sSet \rightarrow) \\
\downarrow & & \downarrow \\
\text{Ctx}_\mathcal{L} & \xrightarrow{\tilde{N}} & sSet
\end{array}
\]

(Partial) answer: \(\tilde{M} \) is a pseudo-natural transformation into the homotopy 2-category of simplicial sets.

\[M(A) \xrightarrow{h_A} M(B) \sim \tilde{N}(A) \xrightarrow{h_B} \tilde{N}(B) \]
Homotopy invariance

How can we express homotopy invariance with this setup?

\[\text{Pf}_\mathcal{L} \xrightarrow{\tilde{M}} \text{Ho}(\text{sSet}^{\rightarrow}) \]

\[\text{Ctx}_\mathcal{L} \xrightarrow{\tilde{N}} \text{sSet} \]

(Partial) answer: \(\tilde{M} \) is a pseudo-natural transformation into the homotopy 2-category of simplicial sets.

\[M(A) \cong N(A) \]

\[M(B) \cong N(B) \]

\[h_A \cong h_B \]
Homotopy invariance

How can we express homotopy invariance with this setup?

(Partial) answer:

\[
\begin{array}{ccc}
\text{Pf}_\mathcal{L} & \xrightarrow{\tilde{M}} & \text{Ho(sSet} \to) \\
\downarrow & & \downarrow \\
\text{Ctx}_\mathcal{L} & \xrightarrow{M} & \text{sSet}
\end{array}
\]
Homotopy invariance

How can we express homotopy invariance with this setup?

(Partial) answer: \(M \xrightarrow{?} N \) is a pseudo-natural transformation into the homotopy 2-category of simplicial sets.
Homotopy invariance

How can we express homotopy invariance with this setup?

(Partial) answer: \(M \rightarrow N \) is a \textit{pseudo-natural transformation} into the \textit{homotopy 2-category} of simplicial sets.

\[
\begin{align*}
M(A) & \xrightarrow{h_A} N(A) \\
M(f) & \Downarrow \phi \quad \Downarrow \\
M(B) & \xrightarrow{h_B} N(B)
\end{align*}
\]
1-discrete 2-fibrations
1-discrete 2-fibrations

Fibrations arise as pullbacks
1-discrete 2-fibrations

Fibrations arise as pullbacks of a universal fibration over Cat^{op}.
1-discrete 2-fibrations

Fibrations arise as pullbacks of a *universal fibration* over \mathbf{Cat}^{op}.

\[
\begin{array}{ccc}
C & \xrightarrow{c} & \mathbf{B} \\
\downarrow & & \downarrow \\
\end{array}
\]
1-discrete 2-fibrations

Fibrations arise as pullbacks of a \textit{universal fibration} over Cat^{op}.

\[
\begin{array}{ccc}
C & \rightarrow & \text{Cat}^{\text{op}} \\
\downarrow C & \downarrow & \downarrow \\
\downarrow & B & \rightarrow \text{Cat}^{\text{op}}
\end{array}
\]
1-discrete 2-fibrations

Fibrations arise as pullbacks of a *universal fibration* over Cat^{op}.

\[
\begin{array}{ccc}
\text{C} & \longrightarrow & \text{Cat}^{\text{op}} \\
\downarrow \sigma & & \downarrow \\
\text{B} & \longrightarrow & \text{Cat}^{\text{op}}
\end{array}
\]
1-discrete 2-fibrations

Fibrations arise as pullbacks of a universal fibration over Cat^{op}.

$$
\begin{array}{ccc}
\text{C} & \rightarrow & \text{Cat}^{\text{op}} \\
\downarrow \text{c} & & \downarrow \\
\text{B} & \rightarrow & \hat{\text{C}} \\
\end{array}
$$

Here, $\hat{\text{C}}$ is a pseudofunctor.
1-discrete 2-fibrations

Fibrations arise as pullbacks of a *universal fibration* over Cat^{op}.

\[
\begin{array}{ccc}
\text{C} & \longrightarrow & \text{Cat}^{\text{op}} \\
\downarrow c & & \downarrow \\
\text{B} & \longrightarrow & \text{Cat}^{\text{op}} \\
\end{array}
\]

Here, \hat{C} is a *pseudofunctor* and Cat is considered as a 2-category.
1-discrete 2-fibrations

Fibrations arise as pullbacks of a *universal fibration* over \mathbf{Cat}^{op}.

\[
\begin{array}{ccc}
\mathbf{C} & \longrightarrow & \mathbf{Cat}^{\text{op}} \\
\downarrow c & & \downarrow \\
\mathbf{B} & \xrightarrow{\hat{c}} & \mathbf{Cat}^{\text{op}}
\end{array}
\]

Here, \hat{C} is a *pseudofunctor* and \mathbf{Cat} is considered as a *2-category*. This still makes sense.
1-discrete 2-fibrations

Fibrations arise as pullbacks of a universal fibration over Cat^{op}.

\[
\begin{array}{ccc}
\text{C} & \longrightarrow & \text{Cat}^{\text{op}} \\
\downarrow c & & \downarrow \\
\text{B} & \xrightarrow{\widehat{c}} & \text{Cat}^{\text{op}}
\end{array}
\]

Here, \widehat{C} is a pseudofunctor and Cat is considered as a 2-category. This still makes sense when B is also a 2-category.
1-discrete 2-fibrations

Fibrations arise as pullbacks of a *universal fibration* over Cat^{op}.

\[
\begin{array}{ccc}
C & \longrightarrow & \text{Cat}^{\text{op}} \\
\downarrow^c & & \downarrow \\
B & \longrightarrow & \hat{\text{Cat}}^{\text{op}} \\
\end{array}
\]

Here, $\hat{\text{C}}$ is a *pseudofunctor* and Cat is considered as a 2-category. This still makes sense when B is also a 2-category.

The resulting notion
1-discrete 2-fibrations

Fibrations arise as pullbacks of a \textit{universal fibration} over \textbf{Cat}^{op}.

\[
\begin{array}{ccc}
\text{C} & \longrightarrow & \text{Cat}^{\text{op}} \\
\downarrow \quad \quad & \quad & \downarrow \\
\text{B} & \overset{\hat{c}}{\longrightarrow} & \text{Cat}^{\text{op}}
\end{array}
\]

Here, \hat{C} is a \textit{pseudofunctor} and \textbf{Cat} is considered as a 2-category. This still makes sense when B is also a 2-category. The resulting notion is that of a \textit{1-discrete 2-fibration}.
1-discrete 2-fibrations

Fibrations arise as pullbacks of a \textit{universal fibration} over Cat^{op}.

\[
\begin{array}{c}
\text{C} \\
\downarrow c \\
\rightarrow \text{Cat}^{\text{op}} \\
\end{array}
\]

Here, $\widehat{\text{C}}$ is a \textit{pseudofunctor} and Cat is considered as a 2-category. This still makes sense when B is also a 2-category. The resulting notion is that of a \textit{1-discrete 2-fibration}, in which C is (also) also a 2-category.
1-discrete 2-fibrations

Fibrations arise as pullbacks of a *universal fibration* over \(\text{Cat}^{\text{op}} \).

\[
\begin{array}{ccc}
\text{C} & \longrightarrow & \text{Cat}^{\text{op}} \\
\downarrow^c & & \downarrow \\
\text{B} & \longrightarrow & \text{Cat}^{\text{op}} \\
\end{array}
\]

Here, \(\hat{\text{C}} \) is a *pseudofunctor* and \(\text{Cat} \) is considered as a *2-category*. This still makes sense when \(\text{B} \) is also a 2-category. The resulting notion is that of a *1-discrete 2-fibration*, in which \(\text{C} \) is (also) also a 2-category.

The pseudo-functor \(\text{sSet} \to \text{Cat}^{\text{op}} \)
1-discrete 2-fibrations

Fibrations arise as pullbacks of a *universal fibration* over \(\text{Cat}^{\text{op}} \).

\[
\begin{array}{ccc}
\text{C} & \longrightarrow & \text{Cat}^{\text{op}} \\
\downarrow \circ & \downarrow \circ & \downarrow \circ \\
\text{B} & \longrightarrow & \text{Hat}^{\text{op}}
\end{array}
\]

Here, \(\hat{\text{C}} \) is a *pseudofunctor* and \(\text{Cat} \) is considered as a 2-category. This still makes sense when \(\text{B} \) is also a 2-category.

The resulting notion is that of a *1-discrete 2-fibration*, in which \(\text{C} \) is (also) also a 2-category.

The pseudo-functor \(\text{sSet} \to \text{Cat}^{\text{op}} \) associated to \(\text{Ho}(\text{sSet}^{\to}) \) extends to the 2-category \(\text{sSet} \), hence this fibration extends to a 1D2F.
1-discrete 2-fibrations

Fibrations arise as pullbacks of a *universal fibration* over Cat^{op}.

\[
\begin{array}{ccc}
\text{C} & \longrightarrow & \text{Cat}^{\text{op}} \\
\downarrow^{c} & & \downarrow \\
\text{B} & \longrightarrow & \hat{\text{C}} \\
& \uparrow^{\hat{c}} & \\
& & \text{Cat}^{\text{op}}
\end{array}
\]

Here, $\hat{\text{C}}$ is a *pseudofunctor* and Cat is considered as a 2-category. This still makes sense when B is also a 2-category. The resulting notion is that of a *1-discrete 2-fibration*, in which C is (also) also a 2-category.

The pseudo-functor $\text{sSet} \to \text{Cat}^{\text{op}}$ associated to $\text{Ho}(\text{sSet}^{\rightarrow})$ extends to the 2-category sSet.
1-discrete 2-fibrations

Fibrations arise as pullbacks of a universal fibration over \textbf{Cat}^{op}.

\[
\begin{array}{ccc}
\text{C} & \longrightarrow & \text{Cat}^{\text{op}} \\
\downarrow_{c} & & \downarrow \\
\text{B} & \longrightarrow & \text{Cat}^{\text{op}}
\end{array}
\]

Here, \hat{C} is a pseudofunctor and Cat is considered as a 2-category. This still makes sense when B is also a 2-category. The resulting notion is that of a 1-discrete 2-fibration, in which C is (also) also a 2-category.

The pseudo-functor $\text{sSet} \rightarrow \text{Cat}^{\text{op}}$ associated to $\text{Ho}(\text{sSet} \rightarrow)$ extends to the 2-category sSet, hence this fibration extends to a 1D2F.
Homotopy invariance

The desired homotopy-invariance property then amounts to the existence of a pseudo-natural equivalence $\tilde{\alpha}$ over a given pseudo-natural equivalence α.

This can again be shown from the freeness property of $\text{Pf} \downarrow \text{Ctx}$.
Homotopy invariance

The desired homotopy-invariance property
Homotopy invariance

The desired homotopy-invariance property then amounts to the existence of a pseudo-natural equivalence $\tilde{\alpha}$.
The desired homotopy-invariance property then amounts to the existence of a pseudo-natural equivalence \(\tilde{\alpha} \)
Homotopy invariance

The desired homotopy-invariance property then amounts to the existence of a pseudo-natural equivalence $\tilde{\alpha}$
The desired homotopy-invariance property then amounts to the existence of a pseudo-natural equivalence $\tilde{\alpha}$.
The desired homotopy-invariance property then amounts to the existence of a pseudo-natural equivalence $\tilde{\alpha}$ over a given pseudo-natural equivalence α.

\begin{equation}
\begin{array}{ccc}
Pf_{\mathcal{L}} & \xrightarrow{\tilde{\alpha}} & Ho(sSet) \\
\downarrow & \swarrow & \downarrow \\
Ctx_{\mathcal{L}} & \xrightarrow{\alpha} & sSet
\end{array}
\end{equation}
Homotopy invariance

The desired homotopy-invariance property then amounts to the existence of a pseudo-natural equivalence \(\tilde{\alpha} \) over a given pseudo-natural equivalence \(\alpha \).

\[
Pf_{\mathcal{L}} \xrightarrow{\tilde{\alpha} \simeq} \text{Ho}(sSet \to) \xrightarrow{\tilde{\alpha} \simeq} \text{sSet}
\]

This can again be shown from the freeness property of \(Pf_{\mathcal{L}} \xrightarrow{} \text{Ctx}_{\mathcal{L}} \).
Outline

1. A diagram
2. Propositions as spaces
3. Properties
4. Fibrational semantics
5. The abstract invariance theorem
The abstract invariance theorem

This argument depended heavily on the special nature of the category $sSet$.

...
The abstract invariance theorem

This argument depended heavily on the special nature of the category \textbf{sSet}. (The *isomorphism* invariance property
The abstract invariance theorem

This argument depended heavily on the special nature of the category $sSet$. (The *isomorphism* invariance property, by contrast,
The abstract invariance theorem

This argument depended heavily on the special nature of the category \textbf{sSet}. (The \textit{isomorphism} invariance property, by contrast, does not.)
The abstract invariance theorem

This argument depended heavily on the special nature of the category $sSet$. (The *isomorphism* invariance property, by contrast, does not.) To put the proof in the proper, general context, we should

• Show that for any Heyting fibration $E \downarrow B$, there is natural 2-categorical structure on B
• (and that this recovers the usual one on $sSet$ and Top)
• Show that the associated pseudofunctor $B \to \text{Cat}^{\text{op}}$ is a pseudo-functor of 2-categories (thus giving us a 1D2F)
• We can do it!

In fact, we need much less than a Heyting fibration (a "\land-fibration" is good enough)

• The 2-categorical structure on B is given by the "internal" notion of homotopy/equality
The abstract invariance theorem

This argument depended heavily on the special nature of the category \textbf{sSet}. (The \textit{isomorphism} invariance property, by contrast, does not.) To put the proof in the proper, general context, we should

- Show that for any Heyting fibration \(E \downarrow B \), there is natural 2-categorical structure on \(B \)
The abstract invariance theorem

This argument depended heavily on the special nature of the category sSet. (The isomorphism invariance property, by contrast, does not.) To put the proof in the proper, general context, we should

- Show that for any Heyting fibration \downarrow, there is natural 2-categorical structure on B
- (and that this recovers the usual one on sSet and Top)
The abstract invariance theorem

This argument depended heavily on the special nature of the category \mathbf{sSet}. (The isomorphism invariance property, by contrast, does not.) To put the proof in the proper, general context, we should

- Show that for any Heyting fibration \downarrow, there is natural 2-categorical structure on \mathbf{B}
- (and that this recovers the usual one on \mathbf{sSet} and \mathbf{Top})
- Show that the associated pseudofunctor $\mathbf{B} \to \mathbf{Cat}^{\text{op}}$ is a pseudo-functor of 2-categories
The abstract invariance theorem

This argument depended heavily on the special nature of the category \textbf{sSet}. (The \textit{isomorphism} invariance property, by contrast, does not.) To put the proof in the proper, general context, we should

- Show that for any Heyting fibration \rightarrow, there is natural 2-categorical structure on B
- (and that this recovers the usual one on \textbf{sSet} and \textbf{Top})
- Show that the associated pseudofunctor $B \to \textbf{Cat}^{\text{op}}$ is a pseudo-functor of 2-categories (thus giving us a 1D2F)
The abstract invariance theorem

This argument depended heavily on the special nature of the category \mathbf{sSet}. (The isomorphism invariance property, by contrast, does not.) To put the proof in the proper, general context, we should

- Show that for any Heyting fibration \downarrow, there is natural 2-categorical structure on \mathbf{B}
- (and that this recovers the usual one on \mathbf{sSet} and \mathbf{Top})
- Show that the associated pseudofunctor $\mathbf{B} \rightarrow \mathbf{Cat}^{\text{op}}$ is a pseudo-functor of 2-categories (thus giving us a 1D2F)
- We can do it!
The abstract invariance theorem

This argument depended heavily on the special nature of the category \textbf{sSet}. (The \textit{isomorphism} invariance property, by contrast, does not.) To put the proof in the proper, general context, we should

- Show that for any Heyting fibration \(E \downarrow B \), there is natural 2-categorical structure on \(B \)
- (and that this recovers the usual one on \textbf{sSet} and \textbf{Top})
- Show that the associated pseudofunctor \(B \to \textbf{Cat}^{\text{op}} \) is a pseudo-functor of 2-categories (thus giving us a 1D2F)
- We can do it! In fact, we need much less than a Heyting fibration
The abstract invariance theorem

This argument depended heavily on the special nature of the category \textbf{sSet}. (The *isomorphism* invariance property, by contrast, does not.) To put the proof in the proper, general context, we should

- Show that for *any* Heyting fibration $\textbf{E} \downarrow \textbf{B}$, there is natural 2-categorical structure on \textbf{B}
- (and that this recovers the usual one on \textbf{sSet} and \textbf{Top})
- Show that the associated pseudofunctor $\textbf{B} \rightarrow \textbf{Cat}^{\text{op}}$ is a pseudo-functor of 2-categories (thus giving us a 1D2F)
- We can do it! In fact, we need much less than a Heyting fibration (a “$\land\equiv$-fibration” is good enough)
The abstract invariance theorem

This argument depended heavily on the special nature of the category \textbf{sSet}. (The \textit{isomorphism} invariance property, by contrast, does not.) To put the proof in the proper, general context, we should

- Show that for \textit{any} Heyting fibration $E \downarrow B$, there is natural 2-categorical structure on B
- (and that this recovers the usual one on \textbf{sSet} and \textbf{Top})
- Show that the associated pseudofunctor $B \to \textbf{Cat}^{\text{op}}$ is a pseudo-functor of 2-categories (thus giving us a 1D2F)
- We can do it! In fact, we need much less than a Heyting fibration (a \textit{\&=}\text{-fibration}” is good enough)
- The 2-categorical structure on B is given by the “internal” notion of homotopy/equality
Thank you for your attention!

For more information, see:

- Homotopies in Grothendieck fibrations (arXiv:1905.10690)
- First-order homotopical logic (forthcoming)