First-Order Homotopical Logic

Joseph Helfer, Stanford Univeristy

HoTT 2019 August 12, 2019

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の へ ? 1/30

Outline

< □ ▶ < ፼ ▶ < ≧ ▶ < ≧ ▶ Ξ · ⑦ < @ 2/30

- **2** Propositions as spaces
- **3** Properties
- **4** Fibrational semantics
- **5** The abstract invariance theorem

Outline

- Propositions as spaces
- **3** Properties
- **4** Fibrational semantics
- **5** The abstract invariance theorem

Consider the diagram...

・ロト・雪ト・雪ト・雪・・白・

4/30

Consider the diagram...

Outline

2 Propositions as spaces

3 Properties

- **4** Fibrational semantics
- **5** The abstract invariance theorem

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fix a first-order language $\mathcal L$

Fix a first-order language \mathcal{L} (many-sorted, no relation symbols).

Fix a first-order language ${\cal L}$ (many-sorted, no relation symbols). Given a category \bm{C} with finite products, we can

<ロ> < 母> < 臣> < 臣> < 臣> 三 のへで 6/30

Fix a first-order language ${\cal L}$ (many-sorted, no relation symbols). Given a category \bm{C} with finite products, we can

• Define the notion of a \mathbf{C} -structure M for \mathcal{L}

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Fix a first-order language ${\cal L}$ (many-sorted, no relation symbols). Given a category ${\bm C}$ with finite products, we can

- Define the notion of a \mathbf{C} -structure M for \mathcal{L}
- Define M(Γ) ∈ Ob C for each context (=seq. of variables) Γ

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Fix a first-order language ${\cal L}$ (many-sorted, no relation symbols). Given a category ${\bm C}$ with finite products, we can

- Define the notion of a \mathbf{C} -structure M for \mathcal{L}
- Define *M*(Γ) ∈ Ob **C** for each *context* (=seq. of variables) Γ
- Define M_Γ(t) : M(Γ) → M(B) for each term t of L of sort B with free variables in Γ

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Fix a first-order language ${\cal L}$ (many-sorted, no relation symbols). Given a category ${\bm C}$ with finite products, we can

- Define the notion of a \mathbf{C} -structure M for \mathcal{L}
- Define M(Γ) ∈ Ob C for each context (=seq. of variables) Γ
- Define M_Γ(t) : M(Γ) → M(B) for each term t of L of sort B with free variables in Γ

The "Propositions-as-Objects-of-C" semantics

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Fix a first-order language ${\cal L}$ (many-sorted, no relation symbols). Given a category ${\bm C}$ with finite products, we can

- Define the notion of a \mathbf{C} -structure M for \mathcal{L}
- Define M(Γ) ∈ Ob C for each context (=seq. of variables) Γ
- Define M_Γ(t) : M(Γ) → M(B) for each term t of L of sort B with free variables in Γ

The "Propositions-as-Objects-of-C" semantics should assign to each formula ϕ with free variables in Γ

Fix a first-order language ${\cal L}$ (many-sorted, no relation symbols). Given a category ${\bm C}$ with finite products, we can

- Define the notion of a \mathbf{C} -structure M for \mathcal{L}
- Define M(Γ) ∈ Ob C for each context (=seq. of variables) Γ
- Define M_Γ(t) : M(Γ) → M(B) for each term t of L of sort B with free variables in Γ

The "Propositions-as-Objects-of-**C**" semantics should assign to each formula ϕ with free variables in Γ an object $M_{\Gamma}(\phi) \in Ob(\mathbf{C}/M(\Gamma))$

Fix a first-order language ${\cal L}$ (many-sorted, no relation symbols). Given a category ${\bm C}$ with finite products, we can

- Define the notion of a \mathbf{C} -structure M for \mathcal{L}
- Define M(Γ) ∈ Ob C for each context (=seq. of variables) Γ
- Define $M_{\Gamma}(t): M(\Gamma) \to M(B)$ for each term t of \mathcal{L} of sort B with free variables in Γ

The "Propositions-as-Objects-of-**C**" semantics should assign to each formula ϕ with free variables in Γ an object $M_{\Gamma}(\phi) \in Ob(\mathbf{C}/M(\Gamma))$ (a "family of objects" over $M(\Gamma)$).

Possible if ${\bf C}$ is locally cartesian closed and has finite coproducts.

Possible if \mathbf{C} is locally cartesian closed and has finite coproducts.

ϕ	$M_{\Gamma}(\phi)$
$P \wedge Q$	$M_{\Gamma}(P) imes M_{\Gamma}(Q)$
$P \lor Q$	$M_{\Gamma}(P)+M_{\Gamma}(Q)$
$P \Rightarrow Q$	$M_{\Gamma}(Q)^{M_{\Gamma}(P)}$
$(\forall x \in A)P$	$\prod_{\pi: M(\Gamma \cup \{x\}) \to M(\Gamma)} M_{\Gamma}(P)$
$(\exists x \in A)P$	$\sum_{\pi: M(\Gamma \cup \{x\}) \to M(\Gamma)} M_{\Gamma}(P)$
Т	1 _{C/M(Γ)}
\perp	0_{C/M(Γ)}

< □ ▶ < 圖 ▶ < ≧ ▶ < ≧ ▶ ≧ り ♀ ⊗ _{8/30}

$$egin{aligned} & M(B) \ & & \downarrow^{\Delta_{M(B)}} \ & M(B) imes M(B) \end{aligned}$$

< □ ▶ < 圖 ▶ < ≧ ▶ < ≧ ▶ ≧ り ♀ ⊗ _{8/30}

$$M_{(x,y)}(x = y)$$

$$M(B)$$

$$\Delta_{M(B)}$$

$$M(B) \times M(B)$$

< □ ▶ < 圖 ▶ < ≧ ▶ < ≧ ▶ ≧ り ♀ ⊗ _{8/30}

$$egin{aligned} & M(B) \ & & \downarrow^{\Delta_{M(B)}} \ & M(B) imes M(B) \end{aligned}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$M(B) \ igstarrow \Delta_{M(B)} \ M(\Gamma) \xrightarrow{\langle M(s), M(t)
angle} M(B) imes M(B) imes M(B)$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @ 8/30

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ = のへで 9/30

Now take $\mathbf{C} =$ "spaces" (e.g., simplicial sets, which is LCCC).

Now take $\mathbf{C} =$ "spaces" (e.g., simplicial sets, which is LCCC). But

<□ > < @ > < E > < E > E のQ @ 9/30

Now take C = "spaces" (e.g., simplicial sets, which is LCCC). But, following Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-···,

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Now take C = "spaces" (e.g., simplicial sets, which is LCCC). But, following Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-···, change the interpretation of *equality*!

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Now take C = "spaces" (e.g., simplicial sets, which is LCCC). But, following Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-···, change the interpretation of *equality*!

• Equality should be "paths", not "identity"

<ロト < 部 ト < 臣 ト < 臣 ト 三 の へ で 9/30

Now take C = "spaces" (e.g., simplicial sets, which is LCCC). But, following Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-···, change the interpretation of *equality*!

- Equality should be "paths", not "identity"
- Instead of $\Delta : X \to X \times X$, use the "path-space fibration" $X^{I} \to X \times X$.

Now take C = "spaces" (e.g., simplicial sets, which is LCCC). But, following Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-···, change the interpretation of *equality*!

- Equality should be "paths", not "identity"
- Instead of $\Delta : X \to X \times X$, use the "path-space fibration" $X^{I} \to X \times X$.

End of definition of the homotopical semantics for first-order logic.

Now take C = "spaces" (e.g., simplicial sets, which is LCCC). But, following Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-···, change the interpretation of *equality*!

- Equality should be "paths", not "identity"
- Instead of $\Delta : X \to X \times X$, use the "path-space fibration" $X^{I} \to X \times X$.

End of definition of the homotopical semantics for first-order logic.

For homotopical semantics in *topological spaces*, start with an \mathcal{L} -structure in **Top** and apply Sing : **Top** \rightarrow **sSet**.

Now take C = "spaces" (e.g., simplicial sets, which is LCCC). But, following Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-···, change the interpretation of *equality*!

- Equality should be "paths", not "identity"
- Instead of $\Delta : X \to X \times X$, use the "path-space fibration" $X^{I} \to X \times X$.

End of definition of the homotopical semantics for first-order logic.

For homotopical semantics in *topological spaces*, start with an \mathcal{L} -structure in **Top** and apply Sing : **Top** \rightarrow **sSet**.

Let us say $M \vDash \phi$ if $M(\phi) \neq \emptyset$.

Examples

<ロ > < 母 > < 臣 > < 臣 > 三 の Q で 10/30

Let $\mathcal{L} = (A, B, f : A \rightarrow B, g : A \rightarrow B)$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $\mathcal{L} = (A, B, f : A \rightarrow B, g : A \rightarrow B)$. Then M = (X, Y, f, g) satisfies

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ 10/30

Let $\mathcal{L} = (A, B, f : A \rightarrow B, g : A \rightarrow B)$. Then M = (X, Y, f, g) satisfies $\forall x \in A[f(x) = g(x)]$ if and only if

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 10/30

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then M = (X, Y, f, g) satisfies $\forall x \in A[f(x) = g(x)]$ if and only if f and g are homotopic.

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then M = (X, Y, f, g) satisfies $\forall x \in A[f(x) = g(x)]$ if and only if f and g are homotopic.

Let $\mathcal{L} = (A, \circ : A \times A \rightarrow A).$

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then M = (X, Y, f, g) satisfies $\forall x \in A[f(x) = g(x)]$ if and only if f and g are homotopic.

Let $\mathcal{L} = (A, \circ : A \times A \rightarrow A)$. Then $M = (M, \circ)$ satisfies

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then M = (X, Y, f, g) satisfies $\forall x \in A[f(x) = g(x)]$ if and only if f and g are homotopic.

Let $\mathcal{L} = (A, \circ : A \times A \rightarrow A)$. Then $M = (M, \circ)$ satisfies $\forall x, y, z[x \circ (y \circ z) = (x \circ y) \circ z]$ if and only if

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then M = (X, Y, f, g) satisfies $\forall x \in A[f(x) = g(x)]$ if and only if f and g are homotopic.

Let $\mathcal{L} = (A, \circ : A \times A \to A)$. Then $M = (M, \circ)$ satisfies $\forall x, y, z[x \circ (y \circ z) = (x \circ y) \circ z]$ if and only if \circ is *homotopy-associative*.

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then M = (X, Y, f, g) satisfies $\forall x \in A[f(x) = g(x)]$ if and only if f and g are homotopic.

Let $\mathcal{L} = (A, \circ : A \times A \to A)$. Then $M = (M, \circ)$ satisfies $\forall x, y, z[x \circ (y \circ z) = (x \circ y) \circ z]$ if and only if \circ is *homotopy-associative*.

Let $\mathcal{L} = (A)$.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ ○ 10/30

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then M = (X, Y, f, g) satisfies $\forall x \in A[f(x) = g(x)]$ if and only if f and g are homotopic.

Let $\mathcal{L} = (A, \circ : A \times A \to A)$. Then $M = (M, \circ)$ satisfies $\forall x, y, z[x \circ (y \circ z) = (x \circ y) \circ z]$ if and only if \circ is *homotopy-associative*.

Let $\mathcal{L} = (A)$. Then M = (X) satisfies

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ ○ 10/30

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then M = (X, Y, f, g) satisfies $\forall x \in A[f(x) = g(x)]$ if and only if f and g are homotopic.

Let $\mathcal{L} = (A, \circ : A \times A \to A)$. Then $M = (M, \circ)$ satisfies $\forall x, y, z[x \circ (y \circ z) = (x \circ y) \circ z]$ if and only if \circ is *homotopy-associative*.

Let $\mathcal{L} = (A)$. Then M = (X) satisfies $\exists x \forall y (x = y)$ if and only if

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ ○ 10/30

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then M = (X, Y, f, g) satisfies $\forall x \in A[f(x) = g(x)]$ if and only if f and g are homotopic.

Let $\mathcal{L} = (A, \circ : A \times A \rightarrow A)$. Then $M = (M, \circ)$ satisfies $\forall x, y, z[x \circ (y \circ z) = (x \circ y) \circ z]$ if and only if \circ is *homotopy-associative*.

Let $\mathcal{L} = (A)$. Then M = (X) satisfies $\exists x \forall y (x = y)$ if and only if X is *contractible*.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ ○ 10/30

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then M = (X, Y, f, g) satisfies $\forall x \in A[f(x) = g(x)]$ if and only if f and g are homotopic.

Let
$$\mathcal{L} = (A, \circ : A \times A \to A)$$
. Then $M = (M, \circ)$ satisfies $\forall x, y, z[x \circ (y \circ z) = (x \circ y) \circ z]$ if and only if \circ is *homotopy-associative*.

Let $\mathcal{L} = (A)$. Then M = (X) satisfies $\exists x \forall y (x = y)$ if and only if X is *contractible*.

Let $\mathcal{L} = (A, B, f : A \rightarrow B)$.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ ○ 10/30

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then M = (X, Y, f, g) satisfies $\forall x \in A[f(x) = g(x)]$ if and only if f and g are homotopic.

Let $\mathcal{L} = (A, \circ : A \times A \rightarrow A)$. Then $M = (M, \circ)$ satisfies $\forall x, y, z[x \circ (y \circ z) = (x \circ y) \circ z]$ if and only if \circ is *homotopy-associative*.

Let $\mathcal{L} = (A)$. Then M = (X) satisfies $\exists x \forall y (x = y)$ if and only if X is *contractible*.

Let $\mathcal{L} = (A, B, f : A \rightarrow B)$. Then M = (X, Y, f) satisfies

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ ○ 10/30

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then M = (X, Y, f, g) satisfies $\forall x \in A[f(x) = g(x)]$ if and only if f and g are homotopic.

Let $\mathcal{L} = (A, \circ : A \times A \rightarrow A)$. Then $M = (M, \circ)$ satisfies $\forall x, y, z[x \circ (y \circ z) = (x \circ y) \circ z]$ if and only if \circ is *homotopy-associative*.

Let $\mathcal{L} = (A)$. Then M = (X) satisfies $\exists x \forall y (x = y)$ if and only if X is *contractible*.

Let $\mathcal{L} = (A, B, f : A \rightarrow B)$. Then M = (X, Y, f) satisfies $\forall y \in B \exists ! x \in A [f(x) = y]$ if and only if

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ ○ 10/30

Let $\mathcal{L} = (A, B, f : A \to B, g : A \to B)$. Then M = (X, Y, f, g) satisfies $\forall x \in A[f(x) = g(x)]$ if and only if f and g are homotopic.

Let
$$\mathcal{L} = (A, \circ : A \times A \to A)$$
. Then $M = (M, \circ)$ satisfies $\forall x, y, z[x \circ (y \circ z) = (x \circ y) \circ z]$ if and only if \circ is *homotopy-associative*.

Let $\mathcal{L} = (A)$. Then M = (X) satisfies $\exists x \forall y (x = y)$ if and only if X is *contractible*.

Let $\mathcal{L} = (A, B, f : A \rightarrow B)$. Then M = (X, Y, f) satisfies $\forall y \in B \exists ! x \in A [f(x) = y]$ if and only if f is a *homotopy-equivalence*.

Outline

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ り へ 은 11/30

1 A diagram

Propositions as spaces

3 Properties

- **④** Fibrational semantics
- 5 The abstract invariance theorem

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ ● ○ ○ ○ 12/30

<□ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = うへで 12/30

Some properties one might expect/hope for:

Soundness

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ りへで 12/30

Some properties one might expect/hope for:

• Soundness (i.e., $\vdash \phi$ implies $M \vDash \phi$)

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ ♪ ○ ○ ○ 12/30

- Soundness (i.e., $\vdash \phi$ implies $M \vDash \phi$)
 - For intuitionistic propositional logic

- Soundness (i.e., $\vdash \phi$ implies $M \vDash \phi$)
 - For intuitionistic propositional logic
 - For equality

- Soundness (i.e., $\vdash \phi$ implies $M \vDash \phi$)
 - For intuitionistic propositional logic
 - For equality
 - For LEM?

- Soundness (i.e., $\vdash \phi$ implies $M \vDash \phi$)
 - For intuitionistic propositional logic
 - For equality
 - For LEM? Counterexample:

- Soundness (i.e., $\vdash \phi$ implies $M \vDash \phi$)
 - For intuitionistic propositional logic
 - For equality
 - For LEM? **Counterexample:** Consider $\exists x \forall y (\neg \neg x = y) \Rightarrow \exists x \forall y (x = y).$

- Soundness (i.e., $\vdash \phi$ implies $M \vDash \phi$)
 - For intuitionistic propositional logic
 - For equality
 - For LEM? **Counterexample:** Consider $\exists x \forall y (\neg \neg x = y) \Rightarrow \exists x \forall y (x = y)$. A space X satisfies

- Soundness (i.e., $\vdash \phi$ implies $M \vDash \phi$)
 - For intuitionistic propositional logic
 - For equality
 - For LEM? Counterexample: Consider $\exists x \forall y (\neg \neg x = y) \Rightarrow \exists x \forall y (x = y)$. A space X satisfies
 - the antecedent if and only if X is path-connected.

- Soundness (i.e., $\vdash \phi$ implies $M \vDash \phi$)
 - For intuitionistic propositional logic
 - For equality
 - For LEM? **Counterexample:** Consider $\exists x \forall y (\neg \neg x = y) \Rightarrow \exists x \forall y (x = y)$. A space X satisfies
 - the antecedent if and only if X is path-connected.
 - the consequent if and only if X is contractible.

Some properties one might expect/hope for:

- Soundness (i.e., $\vdash \phi$ implies $M \vDash \phi$)
 - For intuitionistic propositional logic
 - For equality
 - For LEM? Counterexample: Consider ∃x∀y(¬¬x = y) ⇒ ∃x∀y(x = y). A space X satisfies
 - the antecedent if and only if X is path-connected.
 - the consequent if and only if X is contractible.

Completeness

- Soundness (i.e., $\vdash \phi$ implies $M \vDash \phi$)
 - For intuitionistic propositional logic
 - For equality
 - For LEM? Counterexample: Consider ∃x∀y(¬¬x = y) ⇒ ∃x∀y(x = y). A space X satisfies
 - the antecedent if and only if X is path-connected.
 - the consequent if and only if X is contractible.
- Completeness
 - ???

- Soundness (i.e., $\vdash \phi$ implies $M \vDash \phi$)
 - For intuitionistic propositional logic
 - For equality
 - For LEM? Counterexample: Consider ∃x∀y(¬¬x = y) ⇒ ∃x∀y(x = y). A space X satisfies
 - the antecedent if and only if X is path-connected.
 - the consequent if and only if X is contractible.
- Completeness
 - ???
- Homotopy-invariance

< □ > < □ > < □ > < ≧ > < ≧ > < ≧ > 三 のへで 13/30

The classical (Tarskian) semantics is isomorphism-invariant.

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ りへで 13/30

The classical (Tarskian) semantics is isomorphism-invariant.

• I.e., for *isomorphic* \mathcal{L} -structures, M and N and a sentence ϕ :

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ のへで 13/30

The classical (Tarskian) semantics is isomorphism-invariant.

• I.e., for *isomorphic* \mathcal{L} -structures, M and N and a sentence ϕ :

 $M \vDash \phi$ if and only if $N \vDash \phi$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ のへで 13/30

The classical (Tarskian) semantics is isomorphism-invariant.

• I.e., for *isomorphic* \mathcal{L} -structures, M and N and a sentence ϕ :

 $M \vDash \phi$ if and only if $N \vDash \phi$

(and an analogous property for non-closed formulas).

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 り < ○ 13/30

The classical (Tarskian) semantics is isomorphism-invariant.

• I.e., for *isomorphic* \mathcal{L} -structures, M and N and a sentence ϕ :

$$M \vDash \phi$$
 if and only if $N \vDash \phi$

(and an analogous property for non-closed formulas).

• Easy proof by induction on ϕ

The classical (Tarskian) semantics is isomorphism-invariant.

• I.e., for *isomorphic* \mathcal{L} -structures, M and N and a sentence ϕ :

$$M \vDash \phi$$
 if and only if $N \vDash \phi$

(and an analogous property for non-closed formulas).

• Easy proof by induction on ϕ

For **Propositions-as-objects-of-C**, this can be strengthened:

The classical (Tarskian) semantics is isomorphism-invariant.

• I.e., for *isomorphic* \mathcal{L} -structures, M and N and a sentence ϕ :

$$M \vDash \phi$$
 if and only if $N \vDash \phi$

(and an analogous property for non-closed formulas).

• Easy proof by induction on ϕ

For Propositions-as-objects-of-C, this can be strengthened:

• For M, N, and ϕ as above

The classical (Tarskian) semantics is isomorphism-invariant.

• I.e., for *isomorphic* \mathcal{L} -structures, M and N and a sentence ϕ :

$$M \vDash \phi$$
 if and only if $N \vDash \phi$

(and an analogous property for non-closed formulas).

• Easy proof by induction on ϕ

For Propositions-as-objects-of-C, this can be strengthened:

• For M, N, and ϕ as above

 $M(\phi)$ and $N(\phi)$ are ("canonically") isomorphic

The classical (Tarskian) semantics is isomorphism-invariant.

• I.e., for *isomorphic* \mathcal{L} -structures, M and N and a sentence ϕ :

$$M \vDash \phi$$
 if and only if $N \vDash \phi$

(and an analogous property for non-closed formulas).

• Easy proof by induction on ϕ

For Propositions-as-objects-of-C, this can be strengthened:

• For M, N, and ϕ as above

 $M(\phi)$ and $N(\phi)$ are ("canonically") isomorphic

(and again something for non-closed formulas).

The classical (Tarskian) semantics is isomorphism-invariant.

• I.e., for *isomorphic* \mathcal{L} -structures, M and N and a sentence ϕ :

$$M \vDash \phi$$
 if and only if $N \vDash \phi$

(and an analogous property for non-closed formulas).

• Easy proof by induction on ϕ

For Propositions-as-objects-of-C, this can be strengthened:

• For M, N, and ϕ as above

 $M(\phi)$ and $N(\phi)$ are ("canonically") isomorphic

(and again something for non-closed formulas).

• Again, easy inductive proof

The homotopical semantics satisfy an even stronger(*) property:

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ E の へ C 14/30

The homotopical semantics satisfy an even stronger(*) property:

• Given homotopy-equivalent structures M and N

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ E の へ C 14/30

The homotopical semantics satisfy an even stronger(*) property:

• Given homotopy-equivalent structures M and N $M(\phi)$ and $N(\phi)$ are homotopy-equivalent

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ E の へ C 14/30

The homotopical semantics satisfy an even stronger(*) property:

- Given homotopy-equivalent structures M and N $M(\phi) \text{ and } N(\phi) \text{ are homotopy-equivalent}$
- Here, M and N are homotopy equivalent

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ E の へ C 14/30

The homotopical semantics satisfy an even stronger(*) property:

- Given homotopy-equivalent structures M and N $M(\phi) \text{ and } N(\phi) \text{ are homotopy-equivalent}$
- Here, M and N are homotopy equivalent if there are homotopy-equivalences h_A : M(A) ~ N(A)

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ E の へ C 14/30

The homotopical semantics satisfy an even stronger(*) property:

- Given homotopy-equivalent structures M and N $M(\phi)$ and $N(\phi)$ are homotopy-equivalent
- Here, *M* and *N* are homotopy equivalent if there are homotopy-equivalences h_A : M(A) ≃ N(A) s.t.

$$\begin{array}{ccc} M(A) \times M(B) & \xrightarrow{h_A \times h_B} & N(A) \times N(B) \\ & & & \downarrow^{N(f)} \\ & & & \downarrow^{N(f)} \\ & & M(C) & \xrightarrow{h_C} & N(C) \end{array}$$

etc. commute up to homotopy.

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ E の へ C 14/30

The homotopical semantics satisfy an even stronger(*) property:

- Given homotopy-equivalent structures M and N $M(\phi)$ and $N(\phi)$ are homotopy-equivalent
- Here, *M* and *N* are homotopy equivalent if there are homotopy-equivalences h_A : M(A) ≃ N(A) s.t.

$$\begin{array}{c} M(A) \times M(B) \xrightarrow{h_A \times h_B} & N(A) \times N(B) \\ M(f) \downarrow & & \downarrow N(f) \\ M(C) \xrightarrow{h_C} & N(C) \end{array}$$

etc. commute up to homotopy.

· Can be proven by induction, but not so easily.

The homotopical semantics satisfy an even stronger(*) property:

- Given homotopy-equivalent structures M and N $M(\phi)$ and $N(\phi)$ are homotopy-equivalent
- Here, *M* and *N* are homotopy equivalent if there are homotopy-equivalences h_A : M(A) ≃ N(A) s.t.

$$\begin{array}{ccc} M(A) \times M(B) & \xrightarrow{h_A \times h_B} & N(A) \times N(B) \\ & & & \downarrow^{N(f)} \\ M(C) & \xrightarrow{h_C} & N(C) \end{array}$$

etc. commute up to homotopy.

- Can be proven by induction, but not so easily.
- There is a more conceptual (and general) proof using "fibrational" semantics

Outline

1 A diagram

- Propositions as spaces
- **3** Properties
- **4** Fibrational semantics
- **5** The abstract invariance theorem

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ ○ Q ○ 16/30

< □ ▶ < □ ▶ < 壹 ▶ < 壹 ▶ < Ξ ♪ ○ Q ℃ 16/30

< □ ▶ < □ ▶ < 壹 ▶ < 壹 ▶ < Ξ ♪ ○ Q ℃ 16/30

< □ ▶ < 圕 ▶ < 壹 ▶ < ⋽ ▶ ○ ♀ ♡ ♀ ♡ 16/30

< □ > < 母 > < 壹 > < Ξ > < Ξ > Ξ の Q @ 16/30

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ ○ ○ ○ 16/30

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ⑦ Q @ 16/30

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ⑦ Q @ 16/30

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ⑦ Q @ 16/30

< □ > < □ > < □ > < ≧ > < ≧ > < ≧ > 三 のへで 17/30

< □ ▶ < ■ ▶ < ≣ ▶ < ≣ ▶ Ξ ∽ ♀ ∩ 17/30

< □ ▶ < ■ ▶ < ≣ ▶ < ≣ ▶ Ξ ∽ ♀ ∩ 17/30

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ り Q ♀ 17/30

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q · 17/30

The Boolean/Heyting algebra B_{Σ} of propositions over a set Σ of atoms is *free*.

Instead, can take the free "non-posetal Heyting algebra" (CCC w/ finite coproducts) $\bm{C}_{\Sigma}.$

The Boolean/Heyting algebra B_{Σ} of propositions over a set Σ of atoms is *free*.

Instead, can take the free "non-posetal Heyting algebra" (CCC w/ finite coproducts) C_{Σ} . This is Lambek's "category of proofs".

The Boolean/Heyting algebra B_{Σ} of propositions over a set Σ of atoms is *free*.

Instead, can take the free "non-posetal Heyting algebra" (CCC w/ finite coproducts) \boldsymbol{C}_{Σ} . This is Lambek's "category of proofs". This gives the "Propositions-as-objects-of \boldsymbol{C} " semantics:

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q · 17/30

The Boolean/Heyting algebra B_{Σ} of propositions over a set Σ of atoms is *free*.

Instead, can take the free "non-posetal Heyting algebra" (CCC w/ finite coproducts) C_{Σ} . This is Lambek's "category of proofs". This gives the "Propositions-as-objects-of **C**" semantics:

< □ > < □ > < □ > < ≧ > < ≧ > < ≧ > 三 のへで 18/30

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ ● ○ ○ 18/30

Using the "categorical" universal property of $\boldsymbol{C}_{\boldsymbol{\Sigma}}$

<□ ▶ < @ ▶ < E ▶ < E ▶ E りへで 18/30

Using the "categorical" universal property of $\boldsymbol{C}_{\Sigma},$ we obtain an "isomorphism invariance" property:

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 りへで 18/30

Using the "categorical" universal property of $\boldsymbol{C}_{\Sigma},$ we obtain an "isomorphism invariance" property:

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 りへで 18/30

Using the "categorical" universal property of $\boldsymbol{C}_{\Sigma},$ we obtain an "isomorphism invariance" property:

<□ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = うへで 19/30

What are functorial semantics for first-order logic?

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ Ξ → ○ Q ↔ 19/30

What are functorial semantics for first-order logic? There are different answers.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで 19/30

What are functorial semantics for first-order logic? There are different answers. One is Lawvere's "hyperdoctrines".

What are functorial semantics for first-order logic? There are different answers. One is Lawvere's "hyperdoctrines". This involves *fibrations*:

What are functorial semantics for first-order logic? There are different answers. One is Lawvere's "hyperdoctrines". This involves *fibrations*:

• "Base category" of contexts and terms (finite product category)

What are functorial semantics for first-order logic? There are different answers. One is Lawvere's "hyperdoctrines". This involves *fibrations*:

• "Base category" of contexts and terms (finite product category)

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ℃ 19/30

What are functorial semantics for first-order logic? There are different answers. One is Lawvere's "hyperdoctrines". This involves *fibrations*:

- "Base category" of contexts and terms (finite product category)
- "Total category" of formulas and implications

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ℃ 19/30

What are functorial semantics for first-order logic? There are different answers. One is Lawvere's "hyperdoctrines". This involves *fibrations*:

- "Base category" of contexts and terms (finite product category)
- "Total category" of formulas and implications

What are functorial semantics for first-order logic? There are different answers. One is Lawvere's "hyperdoctrines". This involves *fibrations*:

- "Base category" of contexts and terms (finite product category)
- "Total category" of formulas and implications
- "Fibers" are Heyting algebras

◆□▶ < @ ▶ < E ▶ < E ▶ E ⑦ Q ℃ 19/30</p>

What are functorial semantics for first-order logic? There are different answers. One is Lawvere's "hyperdoctrines". This involves *fibrations*:

- "Base category" of contexts and terms (finite product category)
- "Total category" of formulas and implications
- "Fibers" are Heyting algebras

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ℃ 19/30

What are functorial semantics for first-order logic? There are different answers. One is Lawvere's "hyperdoctrines". This involves *fibrations*:

- "Base category" of contexts and terms (finite product category)
- "Total category" of formulas and implications
- "Fibers" are Heyting algebras
- "Proof-theoretic" version: fibers are non-posetal

◆□▶ < @ ▶ < E ▶ < E ▶ E ⑦ Q ℃ 19/30</p>

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ < 20/30

<□ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = うへで 20/30

Semantics are given by morphisms of fibrations into a "standard fibration" .

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 20/30

Semantics are given by morphisms of fibrations into a "standard fibration" .

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ■ ⑦ Q ℃ 20/30

Semantics are given by morphisms of fibrations into a "standard fibration".

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ■ ⑦ Q ℃ 20/30

Semantics are given by morphisms of fibrations into a "standard fibration".

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 り < ℃ 20/30

Semantics are given by morphisms of fibrations into a "standard fibration".

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 り < ℃ 20/30

Semantics are given by morphisms of fibrations into a "standard fibration".

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 20/30

Semantics are given by morphisms of fibrations into a "standard fibration".

< □ > < @ > < ≣ > < ≣ > E の Q @ 21/30

< □ ▶ < @ ▶ < \ > ▲ \ > \ \ = ▶ < \ = ♪ \ 21/30

The fibration $\bigvee_{\substack{L\\ Ctx_{\mathcal{L}}}}^{Pf_{\mathcal{L}}}$ is free, in two senses.

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ ♪ ♡ < ♡ 21/30

 $\begin{array}{l} \text{The fibration} \quad \begin{array}{c} Pf_{\mathcal{L}} \\ \downarrow \\ Ctx_{\mathcal{L}} \end{array} \text{ is free, in two senses. It is the free} \\ \text{``Heyting-fibration''} \ \textit{over}\ Ctx_{\mathcal{L}} \end{array}$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q @ 21/30

 $\begin{array}{l} \text{The fibration} \quad \begin{array}{l} \overset{Pf_{\mathcal{L}}}{\downarrow} \\ \overset{}{\downarrow} \\ \textbf{Ctx}_{\mathcal{L}} \end{array} \text{ is free, in two senses. It is the free} \\ \text{"Heyting-fibration"} \quad \textit{over } \textbf{Ctx}_{\mathcal{L}} \text{, and } \textbf{Ctx}_{\mathcal{L}} \text{ is the free f.p. category} \\ \text{with an } \mathcal{L}\text{-structure.} \end{array}$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 21/30

 $\begin{array}{ll} \text{The fibration} & \underset{\textbf{Ctx}_{\mathcal{L}}}{\overset{\textbf{Pf}_{\mathcal{L}}}{\overset{}}} \text{ is free, in two senses. It is the free} \\ \text{"Heyting-fibration"} & \textit{over } \textbf{Ctx}_{\mathcal{L}}, \text{ and } \textbf{Ctx}_{\mathcal{L}} \text{ is the free f.p. category} \\ \text{with an } \mathcal{L}\text{-structure.} \end{array}$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q @ 21/30

 $\begin{array}{ll} \text{The fibration} & \underset{\textbf{Ctx}_{\mathcal{L}}}{\overset{\textbf{Pf}_{\mathcal{L}}}{\overset{}}} \text{ is free, in two senses. It is the free} \\ \text{"Heyting-fibration"} & \textit{over } \textbf{Ctx}_{\mathcal{L}}, \text{ and } \textbf{Ctx}_{\mathcal{L}} \text{ is the free f.p. category} \\ \text{with an } \mathcal{L}\text{-structure.} \end{array}$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 21/30

 $\begin{array}{ll} \text{The fibration} & \underset{Ctx_{\mathcal{L}}}{\overset{Pf_{\mathcal{L}}}{\rightarrow}} \text{ is free, in two senses. It is the free} \\ \text{``Heyting-fibration''} & \textit{over } Ctx_{\mathcal{L}}, \text{ and } Ctx_{\mathcal{L}} \text{ is the free f.p. category} \\ \text{with an } \mathcal{L}\text{-structure.} \end{array}$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 21/30

 $\begin{array}{ll} \text{The fibration} & \underset{\textbf{Ctx}_{\mathcal{L}}}{\overset{\textbf{Pf}_{\mathcal{L}}}{\overset{}}} \text{ is free, in two senses. It is the free} \\ \text{"Heyting-fibration"} & \textit{over } \textbf{Ctx}_{\mathcal{L}}, \text{ and } \textbf{Ctx}_{\mathcal{L}} \text{ is the free f.p. category} \\ \text{with an } \mathcal{L}\text{-structure.} \end{array}$

< □ ▶ < @ ▶ < ≣ ▶ < ≣ ▶ E の Q @ 22/30

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Again, we have a "categorical" freeness property

<□ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = うへで 22/30

Again, we have a "categorical" freeness property, and this gives us isomorphism invariance.

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ペ 22/30

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ペ 22/30

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ペ 22/30

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ペ 22/30

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ • ○ Q ○ 23/30

What is the correct "target fibration" for the homotopical semantics?

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 23/30

What is the correct "target fibration" for the homotopical semantics? $sSet \rightarrow Guess: cod \qquad \downarrow \ . sSet$

What is the correct "target fibration" for the homotopical semantics? Set s_{set} Guess: cod \downarrow . Almost, but interpretation of *equality* is wrong! s_{set}

<□ ▶ < @ ▶ < \ > ↓ ▲ > ↓ = り へ ○ 23/30

What is the correct "target fibration" for the homotopical semantics? Set $\stackrel{sSet}{\downarrow}$. Almost, but interpretation of *equality* is wrong! solution is given by a universal property:

<□ ▶ < @ ▶ < \ > ↓ ▲ > ↓ = り へ ○ 23/30

What is the correct "target fibration" for the homotopical semantics? Set \downarrow Set \downarrow Almost, but interpretation of *equality* is wrong! solution is given by a universal property:

$$\begin{array}{c} \top_A \longrightarrow \mathsf{Eq}_A \\ A \xrightarrow{\Delta_A} A \times A \end{array}$$

<□ ▶ < @ ▶ < \ > ↓ ▲ > ↓ = り へ ○ 23/30

What is the correct "target fibration" for the homotopical semantics? Set $\stackrel{sSet}{\downarrow}$. Almost, but interpretation of *equality* is wrong! Set

Equality in a fibration is given by a universal property:

<□ ▶ < @ ▶ < \ > ↓ ▲ > ↓ = り へ ○ 23/30

What is the correct "target fibration" for the homotopical semantics? ${}_{sSet} \rightarrow$

Guess: cod \downarrow Almost, but interpretation of *equality* is wrong! sSet Equality in a fibration is given by a universal property:

Equality in a horation is given by a universal prope

What is the correct "target fibration" for the homotopical semantics? $$_{sSet}{\rightarrow}$$

Guess: cod \downarrow . Almost, but interpretation of *equality* is wrong! **sSet** Equality in a fibration is given by a universal property:

<□ ▶ < @ ▶ < \ > ↓ ▲ > ↓ = り へ ○ 23/30

What is the correct "target fibration" for the homotopical semantics? $$_{sSet} \rightarrow$

Guess: cod \downarrow Almost, but interpretation of *equality* is wrong! **sSet** Equality in a fibration is given by a universal property:

In a codomain fibration cod $\begin{array}{c} \mathbf{C}^{\rightarrow} \\ \downarrow \\ \mathbf{C} \end{array}$, this is satisfied by the diagonal $\Delta_{\mathcal{A}}: \mathcal{A} \to \mathcal{A} \times \mathcal{A}.$

The path space has this universal property "up to homotopy" (*).

The path space has this universal property "up to homotopy" (*).

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 24/30

The path space has this universal property "up to homotopy" (*).

Idea:

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 24/30

The path space has this universal property "up to homotopy" (*).

Idea: replace cod \downarrow^{sSet} with a fibration whose fibers are the sSet homotopy categories of sSet/X.

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 24/30

The path space has this universal property "up to homotopy" (*).

Idea: replace cod \downarrow^{sSet} with a fibration whose fibers are the sSet homotopy categories of sSet/X. It works!

The path space has this universal property "up to homotopy" (*).

Idea: replace $\operatorname{cod} \overset{\mathbf{sSet}}{\underset{\mathbf{sSet}}{\downarrow}}$ with a fibration whose fibers are the *sSet sSet homotopy categories* of sSet/X . It works! I.e., it is still a Heyting-fibration,

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 ∽ Q @ 24/30

The path space has this universal property "up to homotopy" (*).

Idea: replace $\operatorname{cod} \overset{\mathbf{sSet}}{\underset{sSet}{\downarrow}}$ with a fibration whose fibers are the *sSet* homotopy categories of sSet/X . It works! I.e., it is still a Heyting-fibration, with equality given by path spaces.

The path space has this universal property "up to homotopy" (*).

Idea: replace cod \downarrow^{sSet} with a fibration whose fibers are the sSet sSet homotopy categories of sSet/X. It works! I.e., it is still a Heyting-fibration, with equality given by path spaces. (In fact, this works with **Top** as well!)

< □ ▶ < ፼ ▶ < ≣ ▶ < ≣ ▶ ■ ⑦ Q @ 25/30

How can we express homotopy invariance with this setup?

(Partial) answer:

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ◆ ○ へ ○ 25/30

How can we express homotopy invariance with this setup?

(Partial) answer: $M \xrightarrow{?} N$ is a *pseudo-natural transformation* into the *homotopy 2-category* of simplicial sets.

How can we express homotopy invariance with this setup?

(Partial) answer: $M \xrightarrow{?} N$ is a *pseudo-natural transformation* into the *homotopy 2-category* of simplicial sets.

$$\begin{array}{c} M(A) \xrightarrow{h_A} N(A) \\ M(f) \downarrow & \swarrow & \downarrow N(f) \\ M(B) \xrightarrow{h_B} & N(B) \end{array}$$

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ◆ ○ へ ○ 25/30

<□ ▶ < @ ▶ < E ▶ < E ▶ ○ 26/30

Fibrations arise as pullbacks

Fibrations arise as pullbacks of a *universal fibration* over **Cat**^{op}.

< □ ▶ < ፼ ▶ < ≣ ▶ < ≣ ▶ E の Q @ 26/30

Fibrations arise as pullbacks of a *universal fibration* over **Cat**^{op}.

 $\begin{array}{c}
\mathbf{C} \\
c \\
\mathbf{B}
\end{array}$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ 差 ∽ Q ^Q 26/30

Fibrations arise as pullbacks of a *universal fibration* over **Cat**^{op}.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 26/30

Fibrations arise as pullbacks of a *universal fibration* over **Cat**^{op}.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 26/30

Fibrations arise as pullbacks of a *universal fibration* over **Cat**^{op}.

Here, $\widehat{\mathcal{C}}$ is a *pseudofunctor*

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ 26/30

Fibrations arise as pullbacks of a *universal fibration* over **Cat**^{op}.

Here, \widehat{C} is a *pseudofunctor* and **Cat** is considered as a *2-category*.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 26/30

Fibrations arise as pullbacks of a *universal fibration* over **Cat**^{op}.

Here, $\widehat{\mathcal{C}}$ is a *pseudofunctor* and **Cat** is considered as a *2-category*. This still makes sense

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ↔ 26/30

Fibrations arise as pullbacks of a *universal fibration* over **Cat**^{op}.

Here, \widehat{C} is a *pseudofunctor* and **Cat** is considered as a *2-category*. This still makes sense when **B** is also a 2-category.

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ↔ 26/30

Fibrations arise as pullbacks of a *universal fibration* over **Cat**^{op}.

Here, \widehat{C} is a *pseudofunctor* and **Cat** is considered as a *2-category*. This still makes sense when **B** is also a 2-category. The resulting notion

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ↔ 26/30

Fibrations arise as pullbacks of a *universal fibration* over **Cat**^{op}.

Here, \widehat{C} is a *pseudofunctor* and **Cat** is considered as a *2-category*. This still makes sense when **B** is also a 2-category. The resulting notion is that of a *1-discrete 2-fibration*

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ↔ 26/30

Fibrations arise as pullbacks of a *universal fibration* over **Cat**^{op}.

Here, \widehat{C} is a *pseudofunctor* and **Cat** is considered as a *2-category*. This still makes sense when **B** is also a 2-category. The resulting notion is that of a *1-discrete 2-fibration*, in which **C** is (also) also a 2-category.

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ↔ 26/30

Fibrations arise as pullbacks of a *universal fibration* over **Cat**^{op}.

Here, \widehat{C} is a *pseudofunctor* and **Cat** is considered as a *2-category*. This still makes sense when **B** is also a 2-category. The resulting notion is that of a *1-discrete 2-fibration*, in which **C** is (also) also a 2-category.

The pseudo-functor $\mathbf{sSet} \to \mathbf{Cat}^{\mathsf{op}}$

sSet

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ↔ 26/30

Fibrations arise as pullbacks of a *universal fibration* over **Cat**^{op}.

Here, \widehat{C} is a *pseudofunctor* and **Cat** is considered as a *2-category*. This still makes sense when **B** is also a 2-category. The resulting notion is that of a *1-discrete 2-fibration*, in which **C** is (also) also a 2-category. Ho(sSet^{\rightarrow})

The pseudo-functor $\mathbf{sSet} \to \mathbf{Cat}^{\mathsf{op}}$ associated to

Fibrations arise as pullbacks of a *universal fibration* over **Cat**^{op}.

Here, \widehat{C} is a *pseudofunctor* and **Cat** is considered as a *2-category*. This still makes sense when **B** is also a 2-category. The resulting notion is that of a *1-discrete 2-fibration*, in which **C** is (also) also a 2-category.

The pseudo-functor $sSet \rightarrow Cat^{op}$ associated to to the 2-category sSet

Fibrations arise as pullbacks of a *universal fibration* over **Cat**^{op}.

Here, \widehat{C} is a *pseudofunctor* and **Cat** is considered as a *2-category*. This still makes sense when **B** is also a 2-category. The resulting notion is that of a *1-discrete 2-fibration*, in which **C** is (also) also a 2-category.

The pseudo-functor $sSet \rightarrow Cat^{op}$ associated to to the 2-category sSet, hence this fibration extends to a 1D2F.

< □ ▶ < ፼ ▶ < ≣ ▶ < ≣ ▶ E の Q @ 27/30

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

The desired homotopy-invariance property

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ● ■ の Q @ 27/30

< □ ▶ < @ ▶ < \ = ▶ < \ = ♪ ○ Q (? 27/30)

< □ ▶ < @ ▶ < \ = ▶ < \ = ♪ ○ Q (? 27/30)

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 27/30)

The desired homotopy-invariance property then amounts to the existence of a pseudo-natural equivalence $\tilde{\alpha}$ over a given pseudo-natural equivalence α .

◆□▶ ◆昼▶ ◆ ≧▶ ◆ ≧▶ ≧ の Q (* 27/30)

The desired homotopy-invariance property then amounts to the existence of a pseudo-natural equivalence $\tilde{\alpha}$ over a given pseudo-natural equivalence α .

This can again be shown from the freeness property of $\begin{array}{c} \mathsf{Pf}_\mathcal{L} \\ \downarrow \\ \mathsf{Ctx}_\mathcal{L} \end{array}$

Outline

1 A diagram

- Propositions as spaces
- **3** Properties
- **4** Fibrational semantics
- **5** The abstract invariance theorem

This argument depended heavily on the special nature of the category **sSet**.

This argument depended heavily on the special nature of the category **sSet**. (The *isomorphism* invariance property

This argument depended heavily on the special nature of the category **sSet**. (The *isomorphism* invariance property, by contrast,

This argument depended heavily on the special nature of the category **sSet**. (The *isomorphism* invariance property, by contrast, does not.)

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ↔ 29/30

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで 29/30

This argument depended heavily on the special nature of the category **sSet**. (The *isomorphism* invariance property, by contrast, does not.) To put the proof in the proper, general context, we should

 Show that for any Heyting fibration 2-categorical structure on B
 E ↓, there is natural B

- Show that for any Heyting fibration 2-categorical structure on B
 E ↓, there is natural B
- (and that this recovers the usual one on sSet and Top)

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで 29/30

- Show that for any Heyting fibration ↓, there is natural
 2-categorical structure on B
- (and that this recovers the usual one on sSet and Top)
- Show that the associated pseudofunctor $B\to Cat^{op}$ is a pseudo-functor of 2-categories

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで 29/30

- Show that for any Heyting fibration ↓, there is natural
 2-categorical structure on B
- (and that this recovers the usual one on sSet and Top)
- Show that the associated pseudofunctor $\mathbf{B} \rightarrow \mathbf{Cat}^{\mathrm{op}}$ is a pseudo-functor of 2-categories (thus giving us a 1D2F)

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで 29/30

- Show that for any Heyting fibration ↓, there is natural
 2-categorical structure on B
- (and that this recovers the usual one on sSet and Top)
- Show that the associated pseudofunctor $\mathbf{B} \rightarrow \mathbf{Cat}^{\mathrm{op}}$ is a pseudo-functor of 2-categories (thus giving us a 1D2F)
- We can do it!

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで 29/30

- Show that for any Heyting fibration ↓, there is natural
 2-categorical structure on B
- (and that this recovers the usual one on sSet and Top)
- Show that the associated pseudofunctor ${\bf B} \to {\bf Cat}^{\rm op}$ is a pseudo-functor of 2-categories (thus giving us a 1D2F)
- We can do it! In fact, we need much less than a Heyting fibration

- Show that for any Heyting fibration ^E
 ↓, there is natural
 B
 B
- (and that this recovers the usual one on sSet and Top)
- Show that the associated pseudofunctor ${\bf B} \to {\bf Cat}^{\rm op}$ is a pseudo-functor of 2-categories (thus giving us a 1D2F)
- We can do it! In fact, we need much less than a Heyting fibration (a "∧=-fibration" is good enough)

- Show that for any Heyting fibration ↓, there is natural
 2-categorical structure on B
- (and that this recovers the usual one on sSet and Top)
- Show that the associated pseudofunctor ${\bf B} \to {\bf Cat}^{\rm op}$ is a pseudo-functor of 2-categories (thus giving us a 1D2F)
- We can do it! In fact, we need much less than a Heyting fibration (a "∧=-fibration" is good enough)
- The 2-categorical structure on B is given by the "internal" notion of homotopy/equality

Thank you for your attention!

For more information, see:

• Homotopies in Grothendieck fibrations (arXiv:1905.10690)

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ E の へ C 30/30

• First-order homotopical logic (forthcoming)