
1/30

First-Order Homotopical Logic

Joseph Helfer, Stanford Univeristy

HoTT 2019
August 12, 2019



2/30

Outline

1 A diagram

2 Propositions as spaces

3 Properties

4 Fibrational semantics

5 The abstract invariance theorem



3/30

Outline

1 A diagram

2 Propositions as spaces

3 Properties

4 Fibrational semantics

5 The abstract invariance theorem



4/30

Consider the diagram...

MLTT Simplicial Sets

IFOL

Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-· · ·

M
ar

ti
n

-L
ö

f
1

9
7

2



4/30

Consider the diagram...

MLTT Simplicial Sets

IFOL

Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-· · ·

M
ar

ti
n

-L
ö

f
1

9
7

2

First
-order homotopical logic



5/30

Outline

1 A diagram

2 Propositions as spaces

3 Properties

4 Fibrational semantics

5 The abstract invariance theorem



6/30

Propositions as objects of C

Fix a first-order language L (many-sorted, no relation symbols).
Given a category C with finite products, we can

• Define the notion of a C-structure M for L
• Define M(Γ) ∈ ObC for each context (=seq. of variables) Γ

• Define MΓ(t) : M(Γ)→ M(B) for each term t of L of sort B
with free variables in Γ

The “Propositions-as-Objects-of-C” semantics should assign to
each formula φ with free variables in Γ an object
MΓ(φ) ∈ Ob(C/M(Γ)) (a “family of objects” over M(Γ)).



6/30

Propositions as objects of C

Fix a first-order language L

(many-sorted, no relation symbols).
Given a category C with finite products, we can

• Define the notion of a C-structure M for L
• Define M(Γ) ∈ ObC for each context (=seq. of variables) Γ

• Define MΓ(t) : M(Γ)→ M(B) for each term t of L of sort B
with free variables in Γ

The “Propositions-as-Objects-of-C” semantics should assign to
each formula φ with free variables in Γ an object
MΓ(φ) ∈ Ob(C/M(Γ)) (a “family of objects” over M(Γ)).



6/30

Propositions as objects of C

Fix a first-order language L (many-sorted, no relation symbols).

Given a category C with finite products, we can

• Define the notion of a C-structure M for L
• Define M(Γ) ∈ ObC for each context (=seq. of variables) Γ

• Define MΓ(t) : M(Γ)→ M(B) for each term t of L of sort B
with free variables in Γ

The “Propositions-as-Objects-of-C” semantics should assign to
each formula φ with free variables in Γ an object
MΓ(φ) ∈ Ob(C/M(Γ)) (a “family of objects” over M(Γ)).



6/30

Propositions as objects of C

Fix a first-order language L (many-sorted, no relation symbols).
Given a category C with finite products, we can

• Define the notion of a C-structure M for L
• Define M(Γ) ∈ ObC for each context (=seq. of variables) Γ

• Define MΓ(t) : M(Γ)→ M(B) for each term t of L of sort B
with free variables in Γ

The “Propositions-as-Objects-of-C” semantics should assign to
each formula φ with free variables in Γ an object
MΓ(φ) ∈ Ob(C/M(Γ)) (a “family of objects” over M(Γ)).



6/30

Propositions as objects of C

Fix a first-order language L (many-sorted, no relation symbols).
Given a category C with finite products, we can

• Define the notion of a C-structure M for L

• Define M(Γ) ∈ ObC for each context (=seq. of variables) Γ

• Define MΓ(t) : M(Γ)→ M(B) for each term t of L of sort B
with free variables in Γ

The “Propositions-as-Objects-of-C” semantics should assign to
each formula φ with free variables in Γ an object
MΓ(φ) ∈ Ob(C/M(Γ)) (a “family of objects” over M(Γ)).



6/30

Propositions as objects of C

Fix a first-order language L (many-sorted, no relation symbols).
Given a category C with finite products, we can

• Define the notion of a C-structure M for L
• Define M(Γ) ∈ ObC for each context (=seq. of variables) Γ

• Define MΓ(t) : M(Γ)→ M(B) for each term t of L of sort B
with free variables in Γ

The “Propositions-as-Objects-of-C” semantics should assign to
each formula φ with free variables in Γ an object
MΓ(φ) ∈ Ob(C/M(Γ)) (a “family of objects” over M(Γ)).



6/30

Propositions as objects of C

Fix a first-order language L (many-sorted, no relation symbols).
Given a category C with finite products, we can

• Define the notion of a C-structure M for L
• Define M(Γ) ∈ ObC for each context (=seq. of variables) Γ

• Define MΓ(t) : M(Γ)→ M(B) for each term t of L of sort B
with free variables in Γ

The “Propositions-as-Objects-of-C” semantics should assign to
each formula φ with free variables in Γ an object
MΓ(φ) ∈ Ob(C/M(Γ)) (a “family of objects” over M(Γ)).



6/30

Propositions as objects of C

Fix a first-order language L (many-sorted, no relation symbols).
Given a category C with finite products, we can

• Define the notion of a C-structure M for L
• Define M(Γ) ∈ ObC for each context (=seq. of variables) Γ

• Define MΓ(t) : M(Γ)→ M(B) for each term t of L of sort B
with free variables in Γ

The “Propositions-as-Objects-of-C” semantics

should assign to
each formula φ with free variables in Γ an object
MΓ(φ) ∈ Ob(C/M(Γ)) (a “family of objects” over M(Γ)).



6/30

Propositions as objects of C

Fix a first-order language L (many-sorted, no relation symbols).
Given a category C with finite products, we can

• Define the notion of a C-structure M for L
• Define M(Γ) ∈ ObC for each context (=seq. of variables) Γ

• Define MΓ(t) : M(Γ)→ M(B) for each term t of L of sort B
with free variables in Γ

The “Propositions-as-Objects-of-C” semantics should assign to
each formula φ with free variables in Γ

an object
MΓ(φ) ∈ Ob(C/M(Γ)) (a “family of objects” over M(Γ)).



6/30

Propositions as objects of C

Fix a first-order language L (many-sorted, no relation symbols).
Given a category C with finite products, we can

• Define the notion of a C-structure M for L
• Define M(Γ) ∈ ObC for each context (=seq. of variables) Γ

• Define MΓ(t) : M(Γ)→ M(B) for each term t of L of sort B
with free variables in Γ

The “Propositions-as-Objects-of-C” semantics should assign to
each formula φ with free variables in Γ an object
MΓ(φ) ∈ Ob(C/M(Γ))

(a “family of objects” over M(Γ)).



6/30

Propositions as objects of C

Fix a first-order language L (many-sorted, no relation symbols).
Given a category C with finite products, we can

• Define the notion of a C-structure M for L
• Define M(Γ) ∈ ObC for each context (=seq. of variables) Γ

• Define MΓ(t) : M(Γ)→ M(B) for each term t of L of sort B
with free variables in Γ

The “Propositions-as-Objects-of-C” semantics should assign to
each formula φ with free variables in Γ an object
MΓ(φ) ∈ Ob(C/M(Γ)) (a “family of objects” over M(Γ)).



7/30

Propositions as objects of C

Possible if C is locally cartesian closed and has finite coproducts.

φ MΓ(φ)

P ∧ Q MΓ(P)×MΓ(Q)

P ∨ Q MΓ(P) + MΓ(Q)

P ⇒ Q MΓ(Q)MΓ(P)

(∀x ∈ A)P
∏
π:M(Γ∪{x})→M(Γ) MΓ(P)

(∃x ∈ A)P
∑

π:M(Γ∪{x})→M(Γ) MΓ(P)

> 1C/M(Γ)

⊥ 0C/M(Γ)



7/30

Propositions as objects of C

Possible if C is locally cartesian closed and has finite coproducts.

φ MΓ(φ)

P ∧ Q MΓ(P)×MΓ(Q)

P ∨ Q MΓ(P) + MΓ(Q)

P ⇒ Q MΓ(Q)MΓ(P)

(∀x ∈ A)P
∏
π:M(Γ∪{x})→M(Γ) MΓ(P)

(∃x ∈ A)P
∑

π:M(Γ∪{x})→M(Γ) MΓ(P)

> 1C/M(Γ)

⊥ 0C/M(Γ)



8/30

Equality

How do we interpret equality?

M(B)

M(B)×M(B)

∆M(B)

〈M(s),M(t)〉

M(x ,y)(x = y)



8/30

Equality

How do we interpret equality?

M(B)

M(B)×M(B)

∆M(B)

〈M(s),M(t)〉

M(x ,y)(x = y)



8/30

Equality

How do we interpret equality?

M(B)

M(B)×M(B)

∆M(B)

〈M(s),M(t)〉

M(x ,y)(x = y)



8/30

Equality

How do we interpret equality?

M(B)

M(B)×M(B)

∆M(B)

〈M(s),M(t)〉

M(x ,y)(x = y)



8/30

Equality

How do we interpret equality?

M(B)

M(Γ) M(B)×M(B)

∆M(B)

〈M(s),M(t)〉

M(x ,y)(x = y)



8/30

Equality

How do we interpret equality?

· M(B)

M(Γ) M(B)×M(B)

y
∆M(B)

〈M(s),M(t)〉

M(x ,y)(x = y)



8/30

Equality

How do we interpret equality?

· M(B)

M(Γ) M(B)×M(B)

y
∆M(B)

〈M(s),M(t)〉

M(x ,y)(x = y)

MΓ(s = t)



9/30

Propositions as spaces

Now take C =“spaces” (e.g., simplicial sets, which is LCCC).

But, following Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-· · · ,
change the interpretation of equality!

• Equality should be “paths”, not “identity”

• Instead of ∆ : X → X × X , use the “path-space fibration”
X I → X × X .

End of definition of the homotopical semantics for first-order logic.

For homotopical semantics in topological spaces, start with an
L-structure in Top and apply Sing : Top→ sSet.

Let us say M � φ if M(φ) 6= ∅.



9/30

Propositions as spaces

Now take C =“spaces” (e.g., simplicial sets, which is LCCC).
But

, following Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-· · · ,
change the interpretation of equality!

• Equality should be “paths”, not “identity”

• Instead of ∆ : X → X × X , use the “path-space fibration”
X I → X × X .

End of definition of the homotopical semantics for first-order logic.

For homotopical semantics in topological spaces, start with an
L-structure in Top and apply Sing : Top→ sSet.

Let us say M � φ if M(φ) 6= ∅.



9/30

Propositions as spaces

Now take C =“spaces” (e.g., simplicial sets, which is LCCC).
But, following Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-· · · ,

change the interpretation of equality!

• Equality should be “paths”, not “identity”

• Instead of ∆ : X → X × X , use the “path-space fibration”
X I → X × X .

End of definition of the homotopical semantics for first-order logic.

For homotopical semantics in topological spaces, start with an
L-structure in Top and apply Sing : Top→ sSet.

Let us say M � φ if M(φ) 6= ∅.



9/30

Propositions as spaces

Now take C =“spaces” (e.g., simplicial sets, which is LCCC).
But, following Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-· · · ,
change the interpretation of equality!

• Equality should be “paths”, not “identity”

• Instead of ∆ : X → X × X , use the “path-space fibration”
X I → X × X .

End of definition of the homotopical semantics for first-order logic.

For homotopical semantics in topological spaces, start with an
L-structure in Top and apply Sing : Top→ sSet.

Let us say M � φ if M(φ) 6= ∅.



9/30

Propositions as spaces

Now take C =“spaces” (e.g., simplicial sets, which is LCCC).
But, following Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-· · · ,
change the interpretation of equality!

• Equality should be “paths”, not “identity”

• Instead of ∆ : X → X × X , use the “path-space fibration”
X I → X × X .

End of definition of the homotopical semantics for first-order logic.

For homotopical semantics in topological spaces, start with an
L-structure in Top and apply Sing : Top→ sSet.

Let us say M � φ if M(φ) 6= ∅.



9/30

Propositions as spaces

Now take C =“spaces” (e.g., simplicial sets, which is LCCC).
But, following Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-· · · ,
change the interpretation of equality!

• Equality should be “paths”, not “identity”

• Instead of ∆ : X → X × X , use the “path-space fibration”
X I → X × X .

End of definition of the homotopical semantics for first-order logic.

For homotopical semantics in topological spaces, start with an
L-structure in Top and apply Sing : Top→ sSet.

Let us say M � φ if M(φ) 6= ∅.



9/30

Propositions as spaces

Now take C =“spaces” (e.g., simplicial sets, which is LCCC).
But, following Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-· · · ,
change the interpretation of equality!

• Equality should be “paths”, not “identity”

• Instead of ∆ : X → X × X , use the “path-space fibration”
X I → X × X .

End of definition of the homotopical semantics for first-order logic.

For homotopical semantics in topological spaces, start with an
L-structure in Top and apply Sing : Top→ sSet.

Let us say M � φ if M(φ) 6= ∅.



9/30

Propositions as spaces

Now take C =“spaces” (e.g., simplicial sets, which is LCCC).
But, following Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-· · · ,
change the interpretation of equality!

• Equality should be “paths”, not “identity”

• Instead of ∆ : X → X × X , use the “path-space fibration”
X I → X × X .

End of definition of the homotopical semantics for first-order logic.

For homotopical semantics in topological spaces, start with an
L-structure in Top and apply Sing : Top→ sSet.

Let us say M � φ if M(φ) 6= ∅.



9/30

Propositions as spaces

Now take C =“spaces” (e.g., simplicial sets, which is LCCC).
But, following Voevodsky-Awodey-Warren-Kapulkin-Lumsdaine-· · · ,
change the interpretation of equality!

• Equality should be “paths”, not “identity”

• Instead of ∆ : X → X × X , use the “path-space fibration”
X I → X × X .

End of definition of the homotopical semantics for first-order logic.

For homotopical semantics in topological spaces, start with an
L-structure in Top and apply Sing : Top→ sSet.

Let us say M � φ if M(φ) 6= ∅.



10/30

Examples

Let L = (A,B, f : A→ B, g : A→ B). Then M = (X ,Y , f , g)
satisfies ∀x ∈ A[f (x) = g(x)] if and only if f and g are homotopic.

Let L = (A, ◦ : A× A→ A). Then M = (M, ◦) satisfies
∀x , y , z [x ◦ (y ◦ z) = (x ◦ y) ◦ z ] if and only if ◦ is
homotopy-associative.

Let L = (A). Then M = (X ) satisfies ∃x∀y(x = y) if and only if
X is contractible.

Let L = (A,B, f : A→ B). Then M = (X ,Y , f ) satisfies
∀y ∈ B ∃!x ∈ A [f (x) = y ] if and only if f is a
homotopy-equivalence.



10/30

Examples

Let L = (A,B, f : A→ B, g : A→ B).

Then M = (X ,Y , f , g)
satisfies ∀x ∈ A[f (x) = g(x)] if and only if f and g are homotopic.

Let L = (A, ◦ : A× A→ A). Then M = (M, ◦) satisfies
∀x , y , z [x ◦ (y ◦ z) = (x ◦ y) ◦ z ] if and only if ◦ is
homotopy-associative.

Let L = (A). Then M = (X ) satisfies ∃x∀y(x = y) if and only if
X is contractible.

Let L = (A,B, f : A→ B). Then M = (X ,Y , f ) satisfies
∀y ∈ B ∃!x ∈ A [f (x) = y ] if and only if f is a
homotopy-equivalence.



10/30

Examples

Let L = (A,B, f : A→ B, g : A→ B). Then M = (X ,Y , f , g)
satisfies

∀x ∈ A[f (x) = g(x)] if and only if f and g are homotopic.

Let L = (A, ◦ : A× A→ A). Then M = (M, ◦) satisfies
∀x , y , z [x ◦ (y ◦ z) = (x ◦ y) ◦ z ] if and only if ◦ is
homotopy-associative.

Let L = (A). Then M = (X ) satisfies ∃x∀y(x = y) if and only if
X is contractible.

Let L = (A,B, f : A→ B). Then M = (X ,Y , f ) satisfies
∀y ∈ B ∃!x ∈ A [f (x) = y ] if and only if f is a
homotopy-equivalence.



10/30

Examples

Let L = (A,B, f : A→ B, g : A→ B). Then M = (X ,Y , f , g)
satisfies ∀x ∈ A[f (x) = g(x)] if and only if

f and g are homotopic.

Let L = (A, ◦ : A× A→ A). Then M = (M, ◦) satisfies
∀x , y , z [x ◦ (y ◦ z) = (x ◦ y) ◦ z ] if and only if ◦ is
homotopy-associative.

Let L = (A). Then M = (X ) satisfies ∃x∀y(x = y) if and only if
X is contractible.

Let L = (A,B, f : A→ B). Then M = (X ,Y , f ) satisfies
∀y ∈ B ∃!x ∈ A [f (x) = y ] if and only if f is a
homotopy-equivalence.



10/30

Examples

Let L = (A,B, f : A→ B, g : A→ B). Then M = (X ,Y , f , g)
satisfies ∀x ∈ A[f (x) = g(x)] if and only if f and g are homotopic.

Let L = (A, ◦ : A× A→ A). Then M = (M, ◦) satisfies
∀x , y , z [x ◦ (y ◦ z) = (x ◦ y) ◦ z ] if and only if ◦ is
homotopy-associative.

Let L = (A). Then M = (X ) satisfies ∃x∀y(x = y) if and only if
X is contractible.

Let L = (A,B, f : A→ B). Then M = (X ,Y , f ) satisfies
∀y ∈ B ∃!x ∈ A [f (x) = y ] if and only if f is a
homotopy-equivalence.



10/30

Examples

Let L = (A,B, f : A→ B, g : A→ B). Then M = (X ,Y , f , g)
satisfies ∀x ∈ A[f (x) = g(x)] if and only if f and g are homotopic.

Let L = (A, ◦ : A× A→ A).

Then M = (M, ◦) satisfies
∀x , y , z [x ◦ (y ◦ z) = (x ◦ y) ◦ z ] if and only if ◦ is
homotopy-associative.

Let L = (A). Then M = (X ) satisfies ∃x∀y(x = y) if and only if
X is contractible.

Let L = (A,B, f : A→ B). Then M = (X ,Y , f ) satisfies
∀y ∈ B ∃!x ∈ A [f (x) = y ] if and only if f is a
homotopy-equivalence.



10/30

Examples

Let L = (A,B, f : A→ B, g : A→ B). Then M = (X ,Y , f , g)
satisfies ∀x ∈ A[f (x) = g(x)] if and only if f and g are homotopic.

Let L = (A, ◦ : A× A→ A). Then M = (M, ◦) satisfies

∀x , y , z [x ◦ (y ◦ z) = (x ◦ y) ◦ z ] if and only if ◦ is
homotopy-associative.

Let L = (A). Then M = (X ) satisfies ∃x∀y(x = y) if and only if
X is contractible.

Let L = (A,B, f : A→ B). Then M = (X ,Y , f ) satisfies
∀y ∈ B ∃!x ∈ A [f (x) = y ] if and only if f is a
homotopy-equivalence.



10/30

Examples

Let L = (A,B, f : A→ B, g : A→ B). Then M = (X ,Y , f , g)
satisfies ∀x ∈ A[f (x) = g(x)] if and only if f and g are homotopic.

Let L = (A, ◦ : A× A→ A). Then M = (M, ◦) satisfies
∀x , y , z [x ◦ (y ◦ z) = (x ◦ y) ◦ z ] if and only if

◦ is
homotopy-associative.

Let L = (A). Then M = (X ) satisfies ∃x∀y(x = y) if and only if
X is contractible.

Let L = (A,B, f : A→ B). Then M = (X ,Y , f ) satisfies
∀y ∈ B ∃!x ∈ A [f (x) = y ] if and only if f is a
homotopy-equivalence.



10/30

Examples

Let L = (A,B, f : A→ B, g : A→ B). Then M = (X ,Y , f , g)
satisfies ∀x ∈ A[f (x) = g(x)] if and only if f and g are homotopic.

Let L = (A, ◦ : A× A→ A). Then M = (M, ◦) satisfies
∀x , y , z [x ◦ (y ◦ z) = (x ◦ y) ◦ z ] if and only if ◦ is
homotopy-associative.

Let L = (A). Then M = (X ) satisfies ∃x∀y(x = y) if and only if
X is contractible.

Let L = (A,B, f : A→ B). Then M = (X ,Y , f ) satisfies
∀y ∈ B ∃!x ∈ A [f (x) = y ] if and only if f is a
homotopy-equivalence.



10/30

Examples

Let L = (A,B, f : A→ B, g : A→ B). Then M = (X ,Y , f , g)
satisfies ∀x ∈ A[f (x) = g(x)] if and only if f and g are homotopic.

Let L = (A, ◦ : A× A→ A). Then M = (M, ◦) satisfies
∀x , y , z [x ◦ (y ◦ z) = (x ◦ y) ◦ z ] if and only if ◦ is
homotopy-associative.

Let L = (A).

Then M = (X ) satisfies ∃x∀y(x = y) if and only if
X is contractible.

Let L = (A,B, f : A→ B). Then M = (X ,Y , f ) satisfies
∀y ∈ B ∃!x ∈ A [f (x) = y ] if and only if f is a
homotopy-equivalence.



10/30

Examples

Let L = (A,B, f : A→ B, g : A→ B). Then M = (X ,Y , f , g)
satisfies ∀x ∈ A[f (x) = g(x)] if and only if f and g are homotopic.

Let L = (A, ◦ : A× A→ A). Then M = (M, ◦) satisfies
∀x , y , z [x ◦ (y ◦ z) = (x ◦ y) ◦ z ] if and only if ◦ is
homotopy-associative.

Let L = (A). Then M = (X ) satisfies

∃x∀y(x = y) if and only if
X is contractible.

Let L = (A,B, f : A→ B). Then M = (X ,Y , f ) satisfies
∀y ∈ B ∃!x ∈ A [f (x) = y ] if and only if f is a
homotopy-equivalence.



10/30

Examples

Let L = (A,B, f : A→ B, g : A→ B). Then M = (X ,Y , f , g)
satisfies ∀x ∈ A[f (x) = g(x)] if and only if f and g are homotopic.

Let L = (A, ◦ : A× A→ A). Then M = (M, ◦) satisfies
∀x , y , z [x ◦ (y ◦ z) = (x ◦ y) ◦ z ] if and only if ◦ is
homotopy-associative.

Let L = (A). Then M = (X ) satisfies ∃x∀y(x = y) if and only if

X is contractible.

Let L = (A,B, f : A→ B). Then M = (X ,Y , f ) satisfies
∀y ∈ B ∃!x ∈ A [f (x) = y ] if and only if f is a
homotopy-equivalence.



10/30

Examples

Let L = (A,B, f : A→ B, g : A→ B). Then M = (X ,Y , f , g)
satisfies ∀x ∈ A[f (x) = g(x)] if and only if f and g are homotopic.

Let L = (A, ◦ : A× A→ A). Then M = (M, ◦) satisfies
∀x , y , z [x ◦ (y ◦ z) = (x ◦ y) ◦ z ] if and only if ◦ is
homotopy-associative.

Let L = (A). Then M = (X ) satisfies ∃x∀y(x = y) if and only if
X is contractible.

Let L = (A,B, f : A→ B). Then M = (X ,Y , f ) satisfies
∀y ∈ B ∃!x ∈ A [f (x) = y ] if and only if f is a
homotopy-equivalence.



10/30

Examples

Let L = (A,B, f : A→ B, g : A→ B). Then M = (X ,Y , f , g)
satisfies ∀x ∈ A[f (x) = g(x)] if and only if f and g are homotopic.

Let L = (A, ◦ : A× A→ A). Then M = (M, ◦) satisfies
∀x , y , z [x ◦ (y ◦ z) = (x ◦ y) ◦ z ] if and only if ◦ is
homotopy-associative.

Let L = (A). Then M = (X ) satisfies ∃x∀y(x = y) if and only if
X is contractible.

Let L = (A,B, f : A→ B).

Then M = (X ,Y , f ) satisfies
∀y ∈ B ∃!x ∈ A [f (x) = y ] if and only if f is a
homotopy-equivalence.



10/30

Examples

Let L = (A,B, f : A→ B, g : A→ B). Then M = (X ,Y , f , g)
satisfies ∀x ∈ A[f (x) = g(x)] if and only if f and g are homotopic.

Let L = (A, ◦ : A× A→ A). Then M = (M, ◦) satisfies
∀x , y , z [x ◦ (y ◦ z) = (x ◦ y) ◦ z ] if and only if ◦ is
homotopy-associative.

Let L = (A). Then M = (X ) satisfies ∃x∀y(x = y) if and only if
X is contractible.

Let L = (A,B, f : A→ B). Then M = (X ,Y , f ) satisfies

∀y ∈ B ∃!x ∈ A [f (x) = y ] if and only if f is a
homotopy-equivalence.



10/30

Examples

Let L = (A,B, f : A→ B, g : A→ B). Then M = (X ,Y , f , g)
satisfies ∀x ∈ A[f (x) = g(x)] if and only if f and g are homotopic.

Let L = (A, ◦ : A× A→ A). Then M = (M, ◦) satisfies
∀x , y , z [x ◦ (y ◦ z) = (x ◦ y) ◦ z ] if and only if ◦ is
homotopy-associative.

Let L = (A). Then M = (X ) satisfies ∃x∀y(x = y) if and only if
X is contractible.

Let L = (A,B, f : A→ B). Then M = (X ,Y , f ) satisfies
∀y ∈ B ∃!x ∈ A [f (x) = y ] if and only if

f is a
homotopy-equivalence.



10/30

Examples

Let L = (A,B, f : A→ B, g : A→ B). Then M = (X ,Y , f , g)
satisfies ∀x ∈ A[f (x) = g(x)] if and only if f and g are homotopic.

Let L = (A, ◦ : A× A→ A). Then M = (M, ◦) satisfies
∀x , y , z [x ◦ (y ◦ z) = (x ◦ y) ◦ z ] if and only if ◦ is
homotopy-associative.

Let L = (A). Then M = (X ) satisfies ∃x∀y(x = y) if and only if
X is contractible.

Let L = (A,B, f : A→ B). Then M = (X ,Y , f ) satisfies
∀y ∈ B ∃!x ∈ A [f (x) = y ] if and only if f is a
homotopy-equivalence.



11/30

Outline

1 A diagram

2 Propositions as spaces

3 Properties

4 Fibrational semantics

5 The abstract invariance theorem



12/30

Properties

Some properties one might expect/hope for:

• Soundness

(i.e., ` φ implies M � φ)
• For intuitionistic propositional logic
• For equality
• For LEM?

Consider ∃x∀y(¬¬x = y)⇒ ∃x∀y(x = y).
A space X satisfies

• the antecedent if and only if X is path-connected.
• the consequent if and only if X is contractible.

• Completeness

• ???

• Homotopy-invariance



12/30

Properties

Some properties one might expect/hope for:
• Soundness

(i.e., ` φ implies M � φ)
• For intuitionistic propositional logic
• For equality
• For LEM?

Consider ∃x∀y(¬¬x = y)⇒ ∃x∀y(x = y).
A space X satisfies

• the antecedent if and only if X is path-connected.
• the consequent if and only if X is contractible.

• Completeness

• ???

• Homotopy-invariance



12/30

Properties

Some properties one might expect/hope for:
• Soundness (i.e., ` φ implies M � φ)

• For intuitionistic propositional logic
• For equality
• For LEM?

Consider ∃x∀y(¬¬x = y)⇒ ∃x∀y(x = y).
A space X satisfies

• the antecedent if and only if X is path-connected.
• the consequent if and only if X is contractible.

• Completeness

• ???

• Homotopy-invariance



12/30

Properties

Some properties one might expect/hope for:
• Soundness (i.e., ` φ implies M � φ)

• For intuitionistic propositional logic

• For equality
• For LEM?

Consider ∃x∀y(¬¬x = y)⇒ ∃x∀y(x = y).
A space X satisfies

• the antecedent if and only if X is path-connected.
• the consequent if and only if X is contractible.

• Completeness

• ???

• Homotopy-invariance



12/30

Properties

Some properties one might expect/hope for:
• Soundness (i.e., ` φ implies M � φ)

• For intuitionistic propositional logic
• For equality

• For LEM?

Consider ∃x∀y(¬¬x = y)⇒ ∃x∀y(x = y).
A space X satisfies

• the antecedent if and only if X is path-connected.
• the consequent if and only if X is contractible.

• Completeness

• ???

• Homotopy-invariance



12/30

Properties

Some properties one might expect/hope for:
• Soundness (i.e., ` φ implies M � φ)

• For intuitionistic propositional logic
• For equality
• For LEM?

Consider ∃x∀y(¬¬x = y)⇒ ∃x∀y(x = y).
A space X satisfies

• the antecedent if and only if X is path-connected.
• the consequent if and only if X is contractible.

• Completeness

• ???

• Homotopy-invariance



12/30

Properties

Some properties one might expect/hope for:
• Soundness (i.e., ` φ implies M � φ)

• For intuitionistic propositional logic
• For equality
• For LEM? Counterexample:

Consider ∃x∀y(¬¬x = y)⇒ ∃x∀y(x = y).
A space X satisfies

• the antecedent if and only if X is path-connected.
• the consequent if and only if X is contractible.

• Completeness

• ???

• Homotopy-invariance



12/30

Properties

Some properties one might expect/hope for:
• Soundness (i.e., ` φ implies M � φ)

• For intuitionistic propositional logic
• For equality
• For LEM? Counterexample:

Consider ∃x∀y(¬¬x = y)⇒ ∃x∀y(x = y).

A space X satisfies
• the antecedent if and only if X is path-connected.
• the consequent if and only if X is contractible.

• Completeness

• ???

• Homotopy-invariance



12/30

Properties

Some properties one might expect/hope for:
• Soundness (i.e., ` φ implies M � φ)

• For intuitionistic propositional logic
• For equality
• For LEM? Counterexample:

Consider ∃x∀y(¬¬x = y)⇒ ∃x∀y(x = y).
A space X satisfies

• the antecedent if and only if X is path-connected.
• the consequent if and only if X is contractible.

• Completeness

• ???

• Homotopy-invariance



12/30

Properties

Some properties one might expect/hope for:
• Soundness (i.e., ` φ implies M � φ)

• For intuitionistic propositional logic
• For equality
• For LEM? Counterexample:

Consider ∃x∀y(¬¬x = y)⇒ ∃x∀y(x = y).
A space X satisfies

• the antecedent if and only if X is path-connected.

• the consequent if and only if X is contractible.

• Completeness

• ???

• Homotopy-invariance



12/30

Properties

Some properties one might expect/hope for:
• Soundness (i.e., ` φ implies M � φ)

• For intuitionistic propositional logic
• For equality
• For LEM? Counterexample:

Consider ∃x∀y(¬¬x = y)⇒ ∃x∀y(x = y).
A space X satisfies

• the antecedent if and only if X is path-connected.
• the consequent if and only if X is contractible.

• Completeness

• ???

• Homotopy-invariance



12/30

Properties

Some properties one might expect/hope for:
• Soundness (i.e., ` φ implies M � φ)

• For intuitionistic propositional logic
• For equality
• For LEM? Counterexample:

Consider ∃x∀y(¬¬x = y)⇒ ∃x∀y(x = y).
A space X satisfies

• the antecedent if and only if X is path-connected.
• the consequent if and only if X is contractible.

• Completeness

• ???

• Homotopy-invariance



12/30

Properties

Some properties one might expect/hope for:
• Soundness (i.e., ` φ implies M � φ)

• For intuitionistic propositional logic
• For equality
• For LEM? Counterexample:

Consider ∃x∀y(¬¬x = y)⇒ ∃x∀y(x = y).
A space X satisfies

• the antecedent if and only if X is path-connected.
• the consequent if and only if X is contractible.

• Completeness
• ???

• Homotopy-invariance



12/30

Properties

Some properties one might expect/hope for:
• Soundness (i.e., ` φ implies M � φ)

• For intuitionistic propositional logic
• For equality
• For LEM? Counterexample:

Consider ∃x∀y(¬¬x = y)⇒ ∃x∀y(x = y).
A space X satisfies

• the antecedent if and only if X is path-connected.
• the consequent if and only if X is contractible.

• Completeness
• ???

• Homotopy-invariance



13/30

Invariance

The classical (Tarskian) semantics is isomorphism-invariant.

• I.e., for isomorphic L-structures, M and N and a sentence φ:

M � φ if and only if N � φ

(and an analogous property for non-closed formulas).

• Easy proof by induction on φ

For Propositions-as-objects-of-C, this can be strengthened:

• For M, N, and φ as above

M(φ) and N(φ) are (“canonically”) isomorphic

(and again something for non-closed formulas).

• Again, easy inductive proof



13/30

Invariance

The classical (Tarskian) semantics is isomorphism-invariant.

• I.e., for isomorphic L-structures, M and N and a sentence φ:

M � φ if and only if N � φ

(and an analogous property for non-closed formulas).

• Easy proof by induction on φ

For Propositions-as-objects-of-C, this can be strengthened:

• For M, N, and φ as above

M(φ) and N(φ) are (“canonically”) isomorphic

(and again something for non-closed formulas).

• Again, easy inductive proof



13/30

Invariance

The classical (Tarskian) semantics is isomorphism-invariant.

• I.e., for isomorphic L-structures, M and N and a sentence φ:

M � φ if and only if N � φ

(and an analogous property for non-closed formulas).

• Easy proof by induction on φ

For Propositions-as-objects-of-C, this can be strengthened:

• For M, N, and φ as above

M(φ) and N(φ) are (“canonically”) isomorphic

(and again something for non-closed formulas).

• Again, easy inductive proof



13/30

Invariance

The classical (Tarskian) semantics is isomorphism-invariant.

• I.e., for isomorphic L-structures, M and N and a sentence φ:

M � φ if and only if N � φ

(and an analogous property for non-closed formulas).

• Easy proof by induction on φ

For Propositions-as-objects-of-C, this can be strengthened:

• For M, N, and φ as above

M(φ) and N(φ) are (“canonically”) isomorphic

(and again something for non-closed formulas).

• Again, easy inductive proof



13/30

Invariance

The classical (Tarskian) semantics is isomorphism-invariant.

• I.e., for isomorphic L-structures, M and N and a sentence φ:

M � φ if and only if N � φ

(and an analogous property for non-closed formulas).

• Easy proof by induction on φ

For Propositions-as-objects-of-C, this can be strengthened:

• For M, N, and φ as above

M(φ) and N(φ) are (“canonically”) isomorphic

(and again something for non-closed formulas).

• Again, easy inductive proof



13/30

Invariance

The classical (Tarskian) semantics is isomorphism-invariant.

• I.e., for isomorphic L-structures, M and N and a sentence φ:

M � φ if and only if N � φ

(and an analogous property for non-closed formulas).

• Easy proof by induction on φ

For Propositions-as-objects-of-C, this can be strengthened:

• For M, N, and φ as above

M(φ) and N(φ) are (“canonically”) isomorphic

(and again something for non-closed formulas).

• Again, easy inductive proof



13/30

Invariance

The classical (Tarskian) semantics is isomorphism-invariant.

• I.e., for isomorphic L-structures, M and N and a sentence φ:

M � φ if and only if N � φ

(and an analogous property for non-closed formulas).

• Easy proof by induction on φ

For Propositions-as-objects-of-C, this can be strengthened:

• For M, N, and φ as above

M(φ) and N(φ) are (“canonically”) isomorphic

(and again something for non-closed formulas).

• Again, easy inductive proof



13/30

Invariance

The classical (Tarskian) semantics is isomorphism-invariant.

• I.e., for isomorphic L-structures, M and N and a sentence φ:

M � φ if and only if N � φ

(and an analogous property for non-closed formulas).

• Easy proof by induction on φ

For Propositions-as-objects-of-C, this can be strengthened:

• For M, N, and φ as above

M(φ) and N(φ) are (“canonically”) isomorphic

(and again something for non-closed formulas).

• Again, easy inductive proof



13/30

Invariance

The classical (Tarskian) semantics is isomorphism-invariant.

• I.e., for isomorphic L-structures, M and N and a sentence φ:

M � φ if and only if N � φ

(and an analogous property for non-closed formulas).

• Easy proof by induction on φ

For Propositions-as-objects-of-C, this can be strengthened:

• For M, N, and φ as above

M(φ) and N(φ) are (“canonically”) isomorphic

(and again something for non-closed formulas).

• Again, easy inductive proof



13/30

Invariance

The classical (Tarskian) semantics is isomorphism-invariant.

• I.e., for isomorphic L-structures, M and N and a sentence φ:

M � φ if and only if N � φ

(and an analogous property for non-closed formulas).

• Easy proof by induction on φ

For Propositions-as-objects-of-C, this can be strengthened:

• For M, N, and φ as above

M(φ) and N(φ) are (“canonically”) isomorphic

(and again something for non-closed formulas).

• Again, easy inductive proof



13/30

Invariance

The classical (Tarskian) semantics is isomorphism-invariant.

• I.e., for isomorphic L-structures, M and N and a sentence φ:

M � φ if and only if N � φ

(and an analogous property for non-closed formulas).

• Easy proof by induction on φ

For Propositions-as-objects-of-C, this can be strengthened:

• For M, N, and φ as above

M(φ) and N(φ) are (“canonically”) isomorphic

(and again something for non-closed formulas).

• Again, easy inductive proof



14/30

Homotopy-invariance

The homotopical semantics satisfy an even stronger(∗) property:

• Given homotopy-equivalent structures M and N

M(φ) and N(φ) are homotopy-equivalent

• Here, M and N are homotopy equivalent if there are
homotopy-equivalences hA : M(A) ' N(A) s.t.

M(A)×M(B) N(A)× N(B)

M(C ) N(C )

hA×hB

M(f ) N(f )

hC

etc. commute up to homotopy.

• Can be proven by induction, but not so easily.

• There is a more conceptual (and general) proof using
“fibrational” semantics



14/30

Homotopy-invariance

The homotopical semantics satisfy an even stronger(∗) property:

• Given homotopy-equivalent structures M and N

M(φ) and N(φ) are homotopy-equivalent

• Here, M and N are homotopy equivalent if there are
homotopy-equivalences hA : M(A) ' N(A) s.t.

M(A)×M(B) N(A)× N(B)

M(C ) N(C )

hA×hB

M(f ) N(f )

hC

etc. commute up to homotopy.

• Can be proven by induction, but not so easily.

• There is a more conceptual (and general) proof using
“fibrational” semantics



14/30

Homotopy-invariance

The homotopical semantics satisfy an even stronger(∗) property:

• Given homotopy-equivalent structures M and N

M(φ) and N(φ) are homotopy-equivalent

• Here, M and N are homotopy equivalent if there are
homotopy-equivalences hA : M(A) ' N(A) s.t.

M(A)×M(B) N(A)× N(B)

M(C ) N(C )

hA×hB

M(f ) N(f )

hC

etc. commute up to homotopy.

• Can be proven by induction, but not so easily.

• There is a more conceptual (and general) proof using
“fibrational” semantics



14/30

Homotopy-invariance

The homotopical semantics satisfy an even stronger(∗) property:

• Given homotopy-equivalent structures M and N

M(φ) and N(φ) are homotopy-equivalent

• Here, M and N are homotopy equivalent

if there are
homotopy-equivalences hA : M(A) ' N(A) s.t.

M(A)×M(B) N(A)× N(B)

M(C ) N(C )

hA×hB

M(f ) N(f )

hC

etc. commute up to homotopy.

• Can be proven by induction, but not so easily.

• There is a more conceptual (and general) proof using
“fibrational” semantics



14/30

Homotopy-invariance

The homotopical semantics satisfy an even stronger(∗) property:

• Given homotopy-equivalent structures M and N

M(φ) and N(φ) are homotopy-equivalent

• Here, M and N are homotopy equivalent if there are
homotopy-equivalences hA : M(A) ' N(A)

s.t.

M(A)×M(B) N(A)× N(B)

M(C ) N(C )

hA×hB

M(f ) N(f )

hC

etc. commute up to homotopy.

• Can be proven by induction, but not so easily.

• There is a more conceptual (and general) proof using
“fibrational” semantics



14/30

Homotopy-invariance

The homotopical semantics satisfy an even stronger(∗) property:

• Given homotopy-equivalent structures M and N

M(φ) and N(φ) are homotopy-equivalent

• Here, M and N are homotopy equivalent if there are
homotopy-equivalences hA : M(A) ' N(A) s.t.

M(A)×M(B) N(A)× N(B)

M(C ) N(C )

hA×hB

M(f ) N(f )

hC

etc. commute up to homotopy.

• Can be proven by induction, but not so easily.

• There is a more conceptual (and general) proof using
“fibrational” semantics



14/30

Homotopy-invariance

The homotopical semantics satisfy an even stronger(∗) property:

• Given homotopy-equivalent structures M and N

M(φ) and N(φ) are homotopy-equivalent

• Here, M and N are homotopy equivalent if there are
homotopy-equivalences hA : M(A) ' N(A) s.t.

M(A)×M(B) N(A)× N(B)

M(C ) N(C )

hA×hB

M(f ) N(f )

hC

etc. commute up to homotopy.

• Can be proven by induction, but not so easily.

• There is a more conceptual (and general) proof using
“fibrational” semantics



14/30

Homotopy-invariance

The homotopical semantics satisfy an even stronger(∗) property:

• Given homotopy-equivalent structures M and N

M(φ) and N(φ) are homotopy-equivalent

• Here, M and N are homotopy equivalent if there are
homotopy-equivalences hA : M(A) ' N(A) s.t.

M(A)×M(B) N(A)× N(B)

M(C ) N(C )

hA×hB

M(f ) N(f )

hC

etc. commute up to homotopy.

• Can be proven by induction, but not so easily.

• There is a more conceptual (and general) proof using
“fibrational” semantics



15/30

Outline

1 A diagram

2 Propositions as spaces

3 Properties

4 Fibrational semantics

5 The abstract invariance theorem



16/30

Functorial semantics (Lawvere)



16/30

Functorial semantics (Lawvere)

Syntax



16/30

Functorial semantics (Lawvere)

Syntax The Universe



16/30

Functorial semantics (Lawvere)

Syntax The Universe
Semantics



16/30

Functorial semantics (Lawvere)

Syntax The Universe
Semantics



16/30

Functorial semantics (Lawvere)

The Universe
SemanticsSome

category



16/30

Functorial semantics (Lawvere)

The Universe
SemanticsSome

category



16/30

Functorial semantics (Lawvere)

SemanticsSome
category

Some other
category
(probably

Set)



16/30

Functorial semantics (Lawvere)

SemanticsSome
category

Some other
category
(probably

Set)



16/30

Functorial semantics (Lawvere)

Some
category

Some other
category
(probably

Set)

Some functor



16/30

Functorial semantics (Lawvere)

Some
category

Some other
category
(probably

Set)

Some functor



16/30

Functorial semantics (Lawvere)

Some functor

Some
Boolean

(or Heyting)
algebra

2



17/30

Freeness

The Boolean/Heyting algebra BΣ of propositions over a set Σ of
atoms is free.

BΣ 2

Σ

Instead, can take the free “non-posetal Heyting algebra” (CCC w/
finite coproducts) CΣ. This is Lambek’s “category of proofs”.
This gives the “Propositions-as-objects-of C” semantics:

CΣ C

Σ



17/30

Freeness

The Boolean/Heyting algebra BΣ of propositions over a set Σ of
atoms is free.

BΣ 2

Σ

Instead, can take the free “non-posetal Heyting algebra” (CCC w/
finite coproducts) CΣ. This is Lambek’s “category of proofs”.
This gives the “Propositions-as-objects-of C” semantics:

CΣ C

Σ



17/30

Freeness

The Boolean/Heyting algebra BΣ of propositions over a set Σ of
atoms is free.

BΣ 2

Σ

Instead, can take the free “non-posetal Heyting algebra” (CCC w/
finite coproducts) CΣ. This is Lambek’s “category of proofs”.
This gives the “Propositions-as-objects-of C” semantics:

CΣ C

Σ



17/30

Freeness

The Boolean/Heyting algebra BΣ of propositions over a set Σ of
atoms is free.

BΣ 2

Σ

Instead, can take the free “non-posetal Heyting algebra” (CCC w/
finite coproducts) CΣ. This is Lambek’s “category of proofs”.
This gives the “Propositions-as-objects-of C” semantics:

CΣ C

Σ



17/30

Freeness

The Boolean/Heyting algebra BΣ of propositions over a set Σ of
atoms is free.

BΣ 2

Σ

Instead, can take the free “non-posetal Heyting algebra” (CCC w/
finite coproducts) CΣ. This is Lambek’s “category of proofs”.
This gives the “Propositions-as-objects-of C” semantics:

CΣ C

Σ



17/30

Freeness

The Boolean/Heyting algebra BΣ of propositions over a set Σ of
atoms is free.

BΣ 2

Σ

Instead, can take the free “non-posetal Heyting algebra” (CCC w/
finite coproducts) CΣ.

This is Lambek’s “category of proofs”.
This gives the “Propositions-as-objects-of C” semantics:

CΣ C

Σ



17/30

Freeness

The Boolean/Heyting algebra BΣ of propositions over a set Σ of
atoms is free.

BΣ 2

Σ

Instead, can take the free “non-posetal Heyting algebra” (CCC w/
finite coproducts) CΣ. This is Lambek’s “category of proofs”.

This gives the “Propositions-as-objects-of C” semantics:

CΣ C

Σ



17/30

Freeness

The Boolean/Heyting algebra BΣ of propositions over a set Σ of
atoms is free.

BΣ 2

Σ

Instead, can take the free “non-posetal Heyting algebra” (CCC w/
finite coproducts) CΣ. This is Lambek’s “category of proofs”.
This gives the “Propositions-as-objects-of C” semantics:

CΣ C

Σ



17/30

Freeness

The Boolean/Heyting algebra BΣ of propositions over a set Σ of
atoms is free.

BΣ 2

Σ

Instead, can take the free “non-posetal Heyting algebra” (CCC w/
finite coproducts) CΣ. This is Lambek’s “category of proofs”.
This gives the “Propositions-as-objects-of C” semantics:

CΣ C

Σ



18/30

Invariance

Using the “categorical” universal property of CΣ, we obtain an
“isomorphism invariance” property:

Cσ Set

Σ



18/30

Invariance

Using the “categorical” universal property of CΣ

, we obtain an
“isomorphism invariance” property:

Cσ Set

Σ



18/30

Invariance

Using the “categorical” universal property of CΣ, we obtain an
“isomorphism invariance” property:

Cσ Set

Σ



18/30

Invariance

Using the “categorical” universal property of CΣ, we obtain an
“isomorphism invariance” property:

Cσ Set

Σ

∼=



18/30

Invariance

Using the “categorical” universal property of CΣ, we obtain an
“isomorphism invariance” property:

Cσ Set

Σ

∼ =
∼=



19/30

Predicate logic

What are functorial semantics for first-order logic?
There are different answers. One is Lawvere’s “hyperdoctrines”.
This involves fibrations:

• “Base category” of contexts and terms
(finite product category)

• “Total category” of formulas and
implications

• “Fibers” are Heyting algebras

• “Proof-theoretic” version: fibers are
non-posetal

·
·
·
·

·
·

·

·

·

·

·

·

·



19/30

Predicate logic

What are functorial semantics for first-order logic?

There are different answers. One is Lawvere’s “hyperdoctrines”.
This involves fibrations:

• “Base category” of contexts and terms
(finite product category)

• “Total category” of formulas and
implications

• “Fibers” are Heyting algebras

• “Proof-theoretic” version: fibers are
non-posetal

·
·
·
·

·
·

·

·

·

·

·

·

·



19/30

Predicate logic

What are functorial semantics for first-order logic?
There are different answers.

One is Lawvere’s “hyperdoctrines”.
This involves fibrations:

• “Base category” of contexts and terms
(finite product category)

• “Total category” of formulas and
implications

• “Fibers” are Heyting algebras

• “Proof-theoretic” version: fibers are
non-posetal

·
·
·
·

·
·

·

·

·

·

·

·

·



19/30

Predicate logic

What are functorial semantics for first-order logic?
There are different answers. One is Lawvere’s “hyperdoctrines”.

This involves fibrations:

• “Base category” of contexts and terms
(finite product category)

• “Total category” of formulas and
implications

• “Fibers” are Heyting algebras

• “Proof-theoretic” version: fibers are
non-posetal

·
·
·
·

·
·

·

·

·

·

·

·

·



19/30

Predicate logic

What are functorial semantics for first-order logic?
There are different answers. One is Lawvere’s “hyperdoctrines”.
This involves fibrations:

• “Base category” of contexts and terms
(finite product category)

• “Total category” of formulas and
implications

• “Fibers” are Heyting algebras

• “Proof-theoretic” version: fibers are
non-posetal

·
·
·
·

·
·

·

·

·

·

·

·

·



19/30

Predicate logic

What are functorial semantics for first-order logic?
There are different answers. One is Lawvere’s “hyperdoctrines”.
This involves fibrations:
• “Base category” of contexts and terms

(finite product category)

• “Total category” of formulas and
implications

• “Fibers” are Heyting algebras

• “Proof-theoretic” version: fibers are
non-posetal

·
·
·
·

·
·

·

·

·

·

·

·

·



19/30

Predicate logic

What are functorial semantics for first-order logic?
There are different answers. One is Lawvere’s “hyperdoctrines”.
This involves fibrations:
• “Base category” of contexts and terms

(finite product category)

• “Total category” of formulas and
implications

• “Fibers” are Heyting algebras

• “Proof-theoretic” version: fibers are
non-posetal

·
·
·
·

·
·

·

·

·

·

·

·

·



19/30

Predicate logic

What are functorial semantics for first-order logic?
There are different answers. One is Lawvere’s “hyperdoctrines”.
This involves fibrations:
• “Base category” of contexts and terms

(finite product category)

• “Total category” of formulas and
implications

• “Fibers” are Heyting algebras

• “Proof-theoretic” version: fibers are
non-posetal

·
·
·
·

·
·

·

·

·

·

·

·

·



19/30

Predicate logic

What are functorial semantics for first-order logic?
There are different answers. One is Lawvere’s “hyperdoctrines”.
This involves fibrations:
• “Base category” of contexts and terms

(finite product category)

• “Total category” of formulas and
implications

• “Fibers” are Heyting algebras

• “Proof-theoretic” version: fibers are
non-posetal

·
·
·
·

·
·

·

·

·

·

·

·

·



19/30

Predicate logic

What are functorial semantics for first-order logic?
There are different answers. One is Lawvere’s “hyperdoctrines”.
This involves fibrations:
• “Base category” of contexts and terms

(finite product category)

• “Total category” of formulas and
implications

• “Fibers” are Heyting algebras

• “Proof-theoretic” version: fibers are
non-posetal

·
·
·
·

·
·

·

·

·

·

·

·

·



19/30

Predicate logic

What are functorial semantics for first-order logic?
There are different answers. One is Lawvere’s “hyperdoctrines”.
This involves fibrations:
• “Base category” of contexts and terms

(finite product category)

• “Total category” of formulas and
implications

• “Fibers” are Heyting algebras

• “Proof-theoretic” version: fibers are
non-posetal

·
·
·
·

·
·

·

·

·

·

·

·

·



19/30

Predicate logic

What are functorial semantics for first-order logic?
There are different answers. One is Lawvere’s “hyperdoctrines”.
This involves fibrations:
• “Base category” of contexts and terms

(finite product category)

• “Total category” of formulas and
implications

• “Fibers” are Heyting algebras

• “Proof-theoretic” version: fibers are
non-posetal

·
·
·
·

·
·

·

·

·

·

·

·

·



20/30

Fibrational semantics

Semantics are given by morphisms of fibrations into a “standard
fibration”.

FormL Sub(Set)

CtxL Set

“Propositions-as-objects-of-C” semantics are obtained from the
non-posetal version.



20/30

Fibrational semantics

Semantics are given by morphisms of fibrations into a “standard
fibration”.

FormL Sub(Set)

CtxL Set

“Propositions-as-objects-of-C” semantics are obtained from the
non-posetal version.



20/30

Fibrational semantics

Semantics are given by morphisms of fibrations into a “standard
fibration”.

FormL Sub(Set)

CtxL Set

“Propositions-as-objects-of-C” semantics are obtained from the
non-posetal version.



20/30

Fibrational semantics

Semantics are given by morphisms of fibrations into a “standard
fibration”.

FormL Sub(Set)

CtxL Set

“Propositions-as-objects-of-C” semantics are obtained from the
non-posetal version.



20/30

Fibrational semantics

Semantics are given by morphisms of fibrations into a “standard
fibration”.

FormL Sub(Set)

CtxL Set

“Propositions-as-objects-of-C” semantics are obtained from the
non-posetal version.



20/30

Fibrational semantics

Semantics are given by morphisms of fibrations into a “standard
fibration”.

PfL Sub(Set)

CtxL Set

“Propositions-as-objects-of-C” semantics are obtained from the
non-posetal version.



20/30

Fibrational semantics

Semantics are given by morphisms of fibrations into a “standard
fibration”.

PfL Sub(Set)

CtxL Set

“Propositions-as-objects-of-C” semantics are obtained from the
non-posetal version.



20/30

Fibrational semantics

Semantics are given by morphisms of fibrations into a “standard
fibration”.

PfL C→

CtxL C

cod

“Propositions-as-objects-of-C” semantics are obtained from the
non-posetal version.



21/30

Freeness

The fibration
PfL
↓

CtxL

is free, in two senses. It is the free

“Heyting-fibration” over CtxL, and CtxL is the free f.p. category
with an L-structure.

PfL E

CtxL B

L



21/30

Freeness

The fibration
PfL
↓

CtxL

is free, in two senses.

It is the free

“Heyting-fibration” over CtxL, and CtxL is the free f.p. category
with an L-structure.

PfL E

CtxL B

L



21/30

Freeness

The fibration
PfL
↓

CtxL

is free, in two senses. It is the free

“Heyting-fibration” over CtxL

, and CtxL is the free f.p. category
with an L-structure.

PfL E

CtxL B

L



21/30

Freeness

The fibration
PfL
↓

CtxL

is free, in two senses. It is the free

“Heyting-fibration” over CtxL, and CtxL is the free f.p. category
with an L-structure.

PfL E

CtxL B

L



21/30

Freeness

The fibration
PfL
↓

CtxL

is free, in two senses. It is the free

“Heyting-fibration” over CtxL, and CtxL is the free f.p. category
with an L-structure.

PfL E

CtxL B

L



21/30

Freeness

The fibration
PfL
↓

CtxL

is free, in two senses. It is the free

“Heyting-fibration” over CtxL, and CtxL is the free f.p. category
with an L-structure.

PfL E

CtxL B

L



21/30

Freeness

The fibration
PfL
↓

CtxL

is free, in two senses. It is the free

“Heyting-fibration” over CtxL, and CtxL is the free f.p. category
with an L-structure.

PfL E

CtxL B

L



21/30

Freeness

The fibration
PfL
↓

CtxL

is free, in two senses. It is the free

“Heyting-fibration” over CtxL, and CtxL is the free f.p. category
with an L-structure.

PfL E

CtxL B

L



22/30

Invariance

Again, we have a “categorical” freeness property, and this gives us
isomorphism invariance.

PfL E

CtxL B

L



22/30

Invariance

Again, we have a “categorical” freeness property

, and this gives us
isomorphism invariance.

PfL E

CtxL B

L



22/30

Invariance

Again, we have a “categorical” freeness property, and this gives us
isomorphism invariance.

PfL E

CtxL B

L



22/30

Invariance

Again, we have a “categorical” freeness property, and this gives us
isomorphism invariance.

PfL E

CtxL B

L



22/30

Invariance

Again, we have a “categorical” freeness property, and this gives us
isomorphism invariance.

PfL E

CtxL B

L

∼=



22/30

Invariance

Again, we have a “categorical” freeness property, and this gives us
isomorphism invariance.

PfL E

CtxL B

L
∼ =

∼=



22/30

Invariance

Again, we have a “categorical” freeness property, and this gives us
isomorphism invariance.

PfL E

CtxL B

L
∼ =

∼ =

∼=



23/30

Homotopical semantics, fibrationally

What is the correct “target fibration” for the homotopical
semantics?

Guess: cod
sSet→

↓
sSet

. Almost, but interpretation of equality is wrong!

Equality in a fibration is given by a universal property:

>A EqA

A A× A
∆A

i.e.
> =⇒ P(a, a)

a1 = a2 =⇒ P(a1, a2)

In a codomain fibration cod
C→

↓
C

, this is satisfied by the diagonal

∆A : A→ A× A.



23/30

Homotopical semantics, fibrationally

What is the correct “target fibration” for the homotopical
semantics?

Guess: cod
sSet→

↓
sSet

. Almost, but interpretation of equality is wrong!

Equality in a fibration is given by a universal property:

>A EqA

A A× A
∆A

i.e.
> =⇒ P(a, a)

a1 = a2 =⇒ P(a1, a2)

In a codomain fibration cod
C→

↓
C

, this is satisfied by the diagonal

∆A : A→ A× A.



23/30

Homotopical semantics, fibrationally

What is the correct “target fibration” for the homotopical
semantics?

Guess: cod
sSet→

↓
sSet

.

Almost, but interpretation of equality is wrong!

Equality in a fibration is given by a universal property:

>A EqA

A A× A
∆A

i.e.
> =⇒ P(a, a)

a1 = a2 =⇒ P(a1, a2)

In a codomain fibration cod
C→

↓
C

, this is satisfied by the diagonal

∆A : A→ A× A.



23/30

Homotopical semantics, fibrationally

What is the correct “target fibration” for the homotopical
semantics?

Guess: cod
sSet→

↓
sSet

. Almost, but interpretation of equality is wrong!

Equality in a fibration is given by a universal property:

>A EqA

A A× A
∆A

i.e.
> =⇒ P(a, a)

a1 = a2 =⇒ P(a1, a2)

In a codomain fibration cod
C→

↓
C

, this is satisfied by the diagonal

∆A : A→ A× A.



23/30

Homotopical semantics, fibrationally

What is the correct “target fibration” for the homotopical
semantics?

Guess: cod
sSet→

↓
sSet

. Almost, but interpretation of equality is wrong!

Equality in a fibration is given by a universal property:

>A EqA

A A× A
∆A

i.e.
> =⇒ P(a, a)

a1 = a2 =⇒ P(a1, a2)

In a codomain fibration cod
C→

↓
C

, this is satisfied by the diagonal

∆A : A→ A× A.



23/30

Homotopical semantics, fibrationally

What is the correct “target fibration” for the homotopical
semantics?

Guess: cod
sSet→

↓
sSet

. Almost, but interpretation of equality is wrong!

Equality in a fibration is given by a universal property:

>A EqA

A A× A
∆A

i.e.
> =⇒ P(a, a)

a1 = a2 =⇒ P(a1, a2)

In a codomain fibration cod
C→

↓
C

, this is satisfied by the diagonal

∆A : A→ A× A.



23/30

Homotopical semantics, fibrationally

What is the correct “target fibration” for the homotopical
semantics?

Guess: cod
sSet→

↓
sSet

. Almost, but interpretation of equality is wrong!

Equality in a fibration is given by a universal property:

P

>A EqA

A A× A
∆A

i.e.
> =⇒ P(a, a)

a1 = a2 =⇒ P(a1, a2)

In a codomain fibration cod
C→

↓
C

, this is satisfied by the diagonal

∆A : A→ A× A.



23/30

Homotopical semantics, fibrationally

What is the correct “target fibration” for the homotopical
semantics?

Guess: cod
sSet→

↓
sSet

. Almost, but interpretation of equality is wrong!

Equality in a fibration is given by a universal property:

P

>A EqA

A A× A
∆A

i.e.
> =⇒ P(a, a)

a1 = a2 =⇒ P(a1, a2)

In a codomain fibration cod
C→

↓
C

, this is satisfied by the diagonal

∆A : A→ A× A.



23/30

Homotopical semantics, fibrationally

What is the correct “target fibration” for the homotopical
semantics?

Guess: cod
sSet→

↓
sSet

. Almost, but interpretation of equality is wrong!

Equality in a fibration is given by a universal property:

P

>A EqA

A A× A
∆A

i.e.
> =⇒ P(a, a)

a1 = a2 =⇒ P(a1, a2)

In a codomain fibration cod
C→

↓
C

, this is satisfied by the diagonal

∆A : A→ A× A.



23/30

Homotopical semantics, fibrationally

What is the correct “target fibration” for the homotopical
semantics?

Guess: cod
sSet→

↓
sSet

. Almost, but interpretation of equality is wrong!

Equality in a fibration is given by a universal property:

P

>A EqA

A A× A
∆A

i.e.
> =⇒ P(a, a)

a1 = a2 =⇒ P(a1, a2)

In a codomain fibration cod
C→

↓
C

, this is satisfied by the diagonal

∆A : A→ A× A.



24/30

Homotopical semantics, fibrationally

The path space has this universal property “up to homotopy”(∗).

E

X X I

X X × X

c

∆X

Idea: replace cod
sSet→

↓
sSet

with a fibration whose fibers are the

homotopy categories of sSet/X . It works! I.e., it is still a
Heyting-fibration, with equality given by path spaces. (In fact, this
works with Top as well!)



24/30

Homotopical semantics, fibrationally

The path space has this universal property “up to homotopy”(∗).

E

X X I

X X × X

c

∆X

Idea: replace cod
sSet→

↓
sSet

with a fibration whose fibers are the

homotopy categories of sSet/X . It works! I.e., it is still a
Heyting-fibration, with equality given by path spaces. (In fact, this
works with Top as well!)



24/30

Homotopical semantics, fibrationally

The path space has this universal property “up to homotopy”(∗).

E

X X I

X X × X

c

∆X

Idea:

replace cod
sSet→

↓
sSet

with a fibration whose fibers are the

homotopy categories of sSet/X . It works! I.e., it is still a
Heyting-fibration, with equality given by path spaces. (In fact, this
works with Top as well!)



24/30

Homotopical semantics, fibrationally

The path space has this universal property “up to homotopy”(∗).

E

X X I

X X × X

c

∆X

Idea: replace cod
sSet→

↓
sSet

with a fibration whose fibers are the

homotopy categories of sSet/X .

It works! I.e., it is still a
Heyting-fibration, with equality given by path spaces. (In fact, this
works with Top as well!)



24/30

Homotopical semantics, fibrationally

The path space has this universal property “up to homotopy”(∗).

E

X X I

X X × X

c

∆X

Idea: replace cod
sSet→

↓
sSet

with a fibration whose fibers are the

homotopy categories of sSet/X . It works!

I.e., it is still a
Heyting-fibration, with equality given by path spaces. (In fact, this
works with Top as well!)



24/30

Homotopical semantics, fibrationally

The path space has this universal property “up to homotopy”(∗).

E

X X I

X X × X

c

∆X

Idea: replace cod
sSet→

↓
sSet

with a fibration whose fibers are the

homotopy categories of sSet/X . It works! I.e., it is still a
Heyting-fibration,

with equality given by path spaces. (In fact, this
works with Top as well!)



24/30

Homotopical semantics, fibrationally

The path space has this universal property “up to homotopy”(∗).

E

X X I

X X × X

c

∆X

Idea: replace cod
sSet→

↓
sSet

with a fibration whose fibers are the

homotopy categories of sSet/X . It works! I.e., it is still a
Heyting-fibration, with equality given by path spaces.

(In fact, this
works with Top as well!)



24/30

Homotopical semantics, fibrationally

The path space has this universal property “up to homotopy”(∗).

E

X X I

X X × X

c

∆X

Idea: replace cod
sSet→

↓
sSet

with a fibration whose fibers are the

homotopy categories of sSet/X . It works! I.e., it is still a
Heyting-fibration, with equality given by path spaces. (In fact, this
works with Top as well!)



25/30

Homotopy invariance

How can we express homotopy invariance with this setup?

PfL Ho(sSet→)

CtxL sSet

M̃

Ñ
M

N

(Partial) answer: M
?−→ N is a pseudo-natural transformation into

the homotopy 2-category of simplicial sets.

M(A) N(A)

M(B) N(B)

hA

M(f ) N(f )
∼=

hB



25/30

Homotopy invariance
How can we express homotopy invariance with this setup?

PfL Ho(sSet→)

CtxL sSet

M̃

Ñ
M

N

(Partial) answer: M
?−→ N is a pseudo-natural transformation into

the homotopy 2-category of simplicial sets.

M(A) N(A)

M(B) N(B)

hA

M(f ) N(f )
∼=

hB



25/30

Homotopy invariance
How can we express homotopy invariance with this setup?

PfL Ho(sSet→)

CtxL sSet

M̃

Ñ
M

N

(Partial) answer: M
?−→ N is a pseudo-natural transformation into

the homotopy 2-category of simplicial sets.

M(A) N(A)

M(B) N(B)

hA

M(f ) N(f )
∼=

hB



25/30

Homotopy invariance
How can we express homotopy invariance with this setup?

PfL Ho(sSet→)

CtxL sSet

M̃

Ñ
M

N

(Partial) answer: M
?−→ N is a pseudo-natural transformation into

the homotopy 2-category of simplicial sets.

M(A) N(A)

M(B) N(B)

hA

M(f ) N(f )
∼=

hB



25/30

Homotopy invariance
How can we express homotopy invariance with this setup?

PfL Ho(sSet→)

CtxL sSet

M̃

Ñ
M

N

?

(Partial) answer: M
?−→ N is a pseudo-natural transformation into

the homotopy 2-category of simplicial sets.

M(A) N(A)

M(B) N(B)

hA

M(f ) N(f )
∼=

hB



25/30

Homotopy invariance
How can we express homotopy invariance with this setup?

PfL Ho(sSet→)

CtxL sSet

M̃

Ñ

?

M

N

?

(Partial) answer: M
?−→ N is a pseudo-natural transformation into

the homotopy 2-category of simplicial sets.

M(A) N(A)

M(B) N(B)

hA

M(f ) N(f )
∼=

hB



25/30

Homotopy invariance
How can we express homotopy invariance with this setup?

PfL Ho(sSet→)

CtxL sSet

M̃

Ñ

?

M

N

?

(Partial) answer:

M
?−→ N is a pseudo-natural transformation into

the homotopy 2-category of simplicial sets.

M(A) N(A)

M(B) N(B)

hA

M(f ) N(f )
∼=

hB



25/30

Homotopy invariance
How can we express homotopy invariance with this setup?

PfL Ho(sSet→)

CtxL sSet

M̃

Ñ

?

M

N

?

(Partial) answer: M
?−→ N is a pseudo-natural transformation into

the homotopy 2-category of simplicial sets.

M(A) N(A)

M(B) N(B)

hA

M(f ) N(f )
∼=

hB



25/30

Homotopy invariance
How can we express homotopy invariance with this setup?

PfL Ho(sSet→)

CtxL sSet

M̃

Ñ

?

M

N

?

(Partial) answer: M
?−→ N is a pseudo-natural transformation into

the homotopy 2-category of simplicial sets.

M(A) N(A)

M(B) N(B)

hA

M(f ) N(f )
∼=

hB



26/30

1-discrete 2-fibrations

Fibrations arise as pullbacks of a universal fibration over Catop.

C

B

C

Here, Ĉ is a pseudofunctor and Cat is considered as a 2-category.
This still makes sense when B is also a 2-category.
The resulting notion is that of a 1-discrete 2-fibration, in which C
is (also) also a 2-category.

The pseudo-functor sSet→ Catop associated to
Ho(sSet→)

↓
sSet

extends

to the 2-category sSet, hence this fibration extends to a 1D2F.



26/30

1-discrete 2-fibrations

Fibrations arise as pullbacks

of a universal fibration over Catop.

C

B

C

Here, Ĉ is a pseudofunctor and Cat is considered as a 2-category.
This still makes sense when B is also a 2-category.
The resulting notion is that of a 1-discrete 2-fibration, in which C
is (also) also a 2-category.

The pseudo-functor sSet→ Catop associated to
Ho(sSet→)

↓
sSet

extends

to the 2-category sSet, hence this fibration extends to a 1D2F.



26/30

1-discrete 2-fibrations

Fibrations arise as pullbacks of a universal fibration over Catop.

C

B

C

Here, Ĉ is a pseudofunctor and Cat is considered as a 2-category.
This still makes sense when B is also a 2-category.
The resulting notion is that of a 1-discrete 2-fibration, in which C
is (also) also a 2-category.

The pseudo-functor sSet→ Catop associated to
Ho(sSet→)

↓
sSet

extends

to the 2-category sSet, hence this fibration extends to a 1D2F.



26/30

1-discrete 2-fibrations

Fibrations arise as pullbacks of a universal fibration over Catop.

C

B

C

Here, Ĉ is a pseudofunctor and Cat is considered as a 2-category.
This still makes sense when B is also a 2-category.
The resulting notion is that of a 1-discrete 2-fibration, in which C
is (also) also a 2-category.

The pseudo-functor sSet→ Catop associated to
Ho(sSet→)

↓
sSet

extends

to the 2-category sSet, hence this fibration extends to a 1D2F.



26/30

1-discrete 2-fibrations

Fibrations arise as pullbacks of a universal fibration over Catop.

C Catop
∗

B Catop

C

Here, Ĉ is a pseudofunctor and Cat is considered as a 2-category.
This still makes sense when B is also a 2-category.
The resulting notion is that of a 1-discrete 2-fibration, in which C
is (also) also a 2-category.

The pseudo-functor sSet→ Catop associated to
Ho(sSet→)

↓
sSet

extends

to the 2-category sSet, hence this fibration extends to a 1D2F.



26/30

1-discrete 2-fibrations

Fibrations arise as pullbacks of a universal fibration over Catop.

C Catop
∗

B Catop

C
y

Ĉ

Here, Ĉ is a pseudofunctor and Cat is considered as a 2-category.
This still makes sense when B is also a 2-category.
The resulting notion is that of a 1-discrete 2-fibration, in which C
is (also) also a 2-category.

The pseudo-functor sSet→ Catop associated to
Ho(sSet→)

↓
sSet

extends

to the 2-category sSet, hence this fibration extends to a 1D2F.



26/30

1-discrete 2-fibrations

Fibrations arise as pullbacks of a universal fibration over Catop.

C Catop
∗

B Catop

C
y

Ĉ

Here, Ĉ is a pseudofunctor

and Cat is considered as a 2-category.
This still makes sense when B is also a 2-category.
The resulting notion is that of a 1-discrete 2-fibration, in which C
is (also) also a 2-category.

The pseudo-functor sSet→ Catop associated to
Ho(sSet→)

↓
sSet

extends

to the 2-category sSet, hence this fibration extends to a 1D2F.



26/30

1-discrete 2-fibrations

Fibrations arise as pullbacks of a universal fibration over Catop.

C Catop
∗

B Catop

C
y

Ĉ

Here, Ĉ is a pseudofunctor and Cat is considered as a 2-category.

This still makes sense when B is also a 2-category.
The resulting notion is that of a 1-discrete 2-fibration, in which C
is (also) also a 2-category.

The pseudo-functor sSet→ Catop associated to
Ho(sSet→)

↓
sSet

extends

to the 2-category sSet, hence this fibration extends to a 1D2F.



26/30

1-discrete 2-fibrations

Fibrations arise as pullbacks of a universal fibration over Catop.

C Catop
∗

B Catop

C
y

Ĉ

Here, Ĉ is a pseudofunctor and Cat is considered as a 2-category.
This still makes sense

when B is also a 2-category.
The resulting notion is that of a 1-discrete 2-fibration, in which C
is (also) also a 2-category.

The pseudo-functor sSet→ Catop associated to
Ho(sSet→)

↓
sSet

extends

to the 2-category sSet, hence this fibration extends to a 1D2F.



26/30

1-discrete 2-fibrations

Fibrations arise as pullbacks of a universal fibration over Catop.

C Catop
∗

B Catop

C
y

Ĉ

Here, Ĉ is a pseudofunctor and Cat is considered as a 2-category.
This still makes sense when B is also a 2-category.

The resulting notion is that of a 1-discrete 2-fibration, in which C
is (also) also a 2-category.

The pseudo-functor sSet→ Catop associated to
Ho(sSet→)

↓
sSet

extends

to the 2-category sSet, hence this fibration extends to a 1D2F.



26/30

1-discrete 2-fibrations

Fibrations arise as pullbacks of a universal fibration over Catop.

C Catop
∗

B Catop

C
y

Ĉ

Here, Ĉ is a pseudofunctor and Cat is considered as a 2-category.
This still makes sense when B is also a 2-category.
The resulting notion

is that of a 1-discrete 2-fibration, in which C
is (also) also a 2-category.

The pseudo-functor sSet→ Catop associated to
Ho(sSet→)

↓
sSet

extends

to the 2-category sSet, hence this fibration extends to a 1D2F.



26/30

1-discrete 2-fibrations

Fibrations arise as pullbacks of a universal fibration over Catop.

C Catop
∗

B Catop

C
y

Ĉ

Here, Ĉ is a pseudofunctor and Cat is considered as a 2-category.
This still makes sense when B is also a 2-category.
The resulting notion is that of a 1-discrete 2-fibration

, in which C
is (also) also a 2-category.

The pseudo-functor sSet→ Catop associated to
Ho(sSet→)

↓
sSet

extends

to the 2-category sSet, hence this fibration extends to a 1D2F.



26/30

1-discrete 2-fibrations

Fibrations arise as pullbacks of a universal fibration over Catop.

C Catop
∗

B Catop

C
y

Ĉ

Here, Ĉ is a pseudofunctor and Cat is considered as a 2-category.
This still makes sense when B is also a 2-category.
The resulting notion is that of a 1-discrete 2-fibration, in which C
is (also) also a 2-category.

The pseudo-functor sSet→ Catop associated to
Ho(sSet→)

↓
sSet

extends

to the 2-category sSet, hence this fibration extends to a 1D2F.



26/30

1-discrete 2-fibrations

Fibrations arise as pullbacks of a universal fibration over Catop.

C Catop
∗

B Catop

C
y

Ĉ

Here, Ĉ is a pseudofunctor and Cat is considered as a 2-category.
This still makes sense when B is also a 2-category.
The resulting notion is that of a 1-discrete 2-fibration, in which C
is (also) also a 2-category.

The pseudo-functor sSet→ Catop

associated to
Ho(sSet→)

↓
sSet

extends

to the 2-category sSet, hence this fibration extends to a 1D2F.



26/30

1-discrete 2-fibrations

Fibrations arise as pullbacks of a universal fibration over Catop.

C Catop
∗

B Catop

C
y

Ĉ

Here, Ĉ is a pseudofunctor and Cat is considered as a 2-category.
This still makes sense when B is also a 2-category.
The resulting notion is that of a 1-discrete 2-fibration, in which C
is (also) also a 2-category.

The pseudo-functor sSet→ Catop associated to
Ho(sSet→)

↓
sSet

extends

to the 2-category sSet, hence this fibration extends to a 1D2F.



26/30

1-discrete 2-fibrations

Fibrations arise as pullbacks of a universal fibration over Catop.

C Catop
∗

B Catop

C
y

Ĉ

Here, Ĉ is a pseudofunctor and Cat is considered as a 2-category.
This still makes sense when B is also a 2-category.
The resulting notion is that of a 1-discrete 2-fibration, in which C
is (also) also a 2-category.

The pseudo-functor sSet→ Catop associated to
Ho(sSet→)

↓
sSet

extends

to the 2-category sSet

, hence this fibration extends to a 1D2F.



26/30

1-discrete 2-fibrations

Fibrations arise as pullbacks of a universal fibration over Catop.

C Catop
∗

B Catop

C
y

Ĉ

Here, Ĉ is a pseudofunctor and Cat is considered as a 2-category.
This still makes sense when B is also a 2-category.
The resulting notion is that of a 1-discrete 2-fibration, in which C
is (also) also a 2-category.

The pseudo-functor sSet→ Catop associated to
Ho(sSet→)

↓
sSet

extends

to the 2-category sSet, hence this fibration extends to a 1D2F.



27/30

Homotopy invariance

The desired homotopy-invariance property then amounts to the
existence of a pseudo-natural equivalence α̃

over a given
pseudo-natural equivalence α.

PfL Ho(sSet→)

CtxL sSet

M̃

Ñ
M

N

This can again be shown from the freeness property of
PfL
↓

CtxL

.



27/30

Homotopy invariance

The desired homotopy-invariance property

then amounts to the
existence of a pseudo-natural equivalence α̃

over a given
pseudo-natural equivalence α.

PfL Ho(sSet→)

CtxL sSet

M̃

Ñ
M

N

This can again be shown from the freeness property of
PfL
↓

CtxL

.



27/30

Homotopy invariance

The desired homotopy-invariance property then amounts to the
existence of a pseudo-natural equivalence α̃

over a given
pseudo-natural equivalence α.

PfL Ho(sSet→)

CtxL sSet

M̃

Ñ
M

N

This can again be shown from the freeness property of
PfL
↓

CtxL

.



27/30

Homotopy invariance

The desired homotopy-invariance property then amounts to the
existence of a pseudo-natural equivalence α̃

over a given
pseudo-natural equivalence α.

PfL Ho(sSet→)

CtxL sSet

M̃

Ñ
M

N

This can again be shown from the freeness property of
PfL
↓

CtxL

.



27/30

Homotopy invariance

The desired homotopy-invariance property then amounts to the
existence of a pseudo-natural equivalence α̃

over a given
pseudo-natural equivalence α.

PfL Ho(sSet→)

CtxL sSet

M̃

Ñ
M

N

α '

This can again be shown from the freeness property of
PfL
↓

CtxL

.



27/30

Homotopy invariance

The desired homotopy-invariance property then amounts to the
existence of a pseudo-natural equivalence α̃

over a given
pseudo-natural equivalence α.

PfL Ho(sSet→)

CtxL sSet

M̃

Ñ

α̃ '

M

N

α '

This can again be shown from the freeness property of
PfL
↓

CtxL

.



27/30

Homotopy invariance

The desired homotopy-invariance property then amounts to the
existence of a pseudo-natural equivalence α̃ over a given
pseudo-natural equivalence α.

PfL Ho(sSet→)

CtxL sSet

M̃

Ñ

α̃ '

M

N

α '

This can again be shown from the freeness property of
PfL
↓

CtxL

.



27/30

Homotopy invariance

The desired homotopy-invariance property then amounts to the
existence of a pseudo-natural equivalence α̃ over a given
pseudo-natural equivalence α.

PfL Ho(sSet→)

CtxL sSet

M̃

Ñ

α̃ '

M

N

α '

This can again be shown from the freeness property of
PfL
↓

CtxL

.



28/30

Outline

1 A diagram

2 Propositions as spaces

3 Properties

4 Fibrational semantics

5 The abstract invariance theorem



29/30

The abstract invariance theorem

This argument depended heavily on the special nature of the
category sSet.

(The isomorphism invariance property, by contrast,
does not.) To put the proof in the proper, general context, we
should

• Show that for any Heyting fibration
E
↓
B

, there is natural

2-categorical structure on B

• (and that this recovers the usual one on sSet and Top)

• Show that the associated pseudofunctor B→ Catop is a
pseudo-functor of 2-categories (thus giving us a 1D2F)

• We can do it! In fact, we need much less than a Heyting
fibration (a “∧=-fibration” is good enough)

• The 2-categorical structure on B is given by the “internal”
notion of homotopy/equality



29/30

The abstract invariance theorem

This argument depended heavily on the special nature of the
category sSet. (The isomorphism invariance property

, by contrast,
does not.) To put the proof in the proper, general context, we
should

• Show that for any Heyting fibration
E
↓
B

, there is natural

2-categorical structure on B

• (and that this recovers the usual one on sSet and Top)

• Show that the associated pseudofunctor B→ Catop is a
pseudo-functor of 2-categories (thus giving us a 1D2F)

• We can do it! In fact, we need much less than a Heyting
fibration (a “∧=-fibration” is good enough)

• The 2-categorical structure on B is given by the “internal”
notion of homotopy/equality



29/30

The abstract invariance theorem

This argument depended heavily on the special nature of the
category sSet. (The isomorphism invariance property, by contrast,

does not.) To put the proof in the proper, general context, we
should

• Show that for any Heyting fibration
E
↓
B

, there is natural

2-categorical structure on B

• (and that this recovers the usual one on sSet and Top)

• Show that the associated pseudofunctor B→ Catop is a
pseudo-functor of 2-categories (thus giving us a 1D2F)

• We can do it! In fact, we need much less than a Heyting
fibration (a “∧=-fibration” is good enough)

• The 2-categorical structure on B is given by the “internal”
notion of homotopy/equality



29/30

The abstract invariance theorem

This argument depended heavily on the special nature of the
category sSet. (The isomorphism invariance property, by contrast,
does not.)

To put the proof in the proper, general context, we
should

• Show that for any Heyting fibration
E
↓
B

, there is natural

2-categorical structure on B

• (and that this recovers the usual one on sSet and Top)

• Show that the associated pseudofunctor B→ Catop is a
pseudo-functor of 2-categories (thus giving us a 1D2F)

• We can do it! In fact, we need much less than a Heyting
fibration (a “∧=-fibration” is good enough)

• The 2-categorical structure on B is given by the “internal”
notion of homotopy/equality



29/30

The abstract invariance theorem

This argument depended heavily on the special nature of the
category sSet. (The isomorphism invariance property, by contrast,
does not.) To put the proof in the proper, general context, we
should

• Show that for any Heyting fibration
E
↓
B

, there is natural

2-categorical structure on B

• (and that this recovers the usual one on sSet and Top)

• Show that the associated pseudofunctor B→ Catop is a
pseudo-functor of 2-categories (thus giving us a 1D2F)

• We can do it! In fact, we need much less than a Heyting
fibration (a “∧=-fibration” is good enough)

• The 2-categorical structure on B is given by the “internal”
notion of homotopy/equality



29/30

The abstract invariance theorem

This argument depended heavily on the special nature of the
category sSet. (The isomorphism invariance property, by contrast,
does not.) To put the proof in the proper, general context, we
should

• Show that for any Heyting fibration
E
↓
B

, there is natural

2-categorical structure on B

• (and that this recovers the usual one on sSet and Top)

• Show that the associated pseudofunctor B→ Catop is a
pseudo-functor of 2-categories (thus giving us a 1D2F)

• We can do it! In fact, we need much less than a Heyting
fibration (a “∧=-fibration” is good enough)

• The 2-categorical structure on B is given by the “internal”
notion of homotopy/equality



29/30

The abstract invariance theorem

This argument depended heavily on the special nature of the
category sSet. (The isomorphism invariance property, by contrast,
does not.) To put the proof in the proper, general context, we
should

• Show that for any Heyting fibration
E
↓
B

, there is natural

2-categorical structure on B

• (and that this recovers the usual one on sSet and Top)

• Show that the associated pseudofunctor B→ Catop is a
pseudo-functor of 2-categories (thus giving us a 1D2F)

• We can do it! In fact, we need much less than a Heyting
fibration (a “∧=-fibration” is good enough)

• The 2-categorical structure on B is given by the “internal”
notion of homotopy/equality



29/30

The abstract invariance theorem

This argument depended heavily on the special nature of the
category sSet. (The isomorphism invariance property, by contrast,
does not.) To put the proof in the proper, general context, we
should

• Show that for any Heyting fibration
E
↓
B

, there is natural

2-categorical structure on B

• (and that this recovers the usual one on sSet and Top)

• Show that the associated pseudofunctor B→ Catop is a
pseudo-functor of 2-categories

(thus giving us a 1D2F)

• We can do it! In fact, we need much less than a Heyting
fibration (a “∧=-fibration” is good enough)

• The 2-categorical structure on B is given by the “internal”
notion of homotopy/equality



29/30

The abstract invariance theorem

This argument depended heavily on the special nature of the
category sSet. (The isomorphism invariance property, by contrast,
does not.) To put the proof in the proper, general context, we
should

• Show that for any Heyting fibration
E
↓
B

, there is natural

2-categorical structure on B

• (and that this recovers the usual one on sSet and Top)

• Show that the associated pseudofunctor B→ Catop is a
pseudo-functor of 2-categories (thus giving us a 1D2F)

• We can do it! In fact, we need much less than a Heyting
fibration (a “∧=-fibration” is good enough)

• The 2-categorical structure on B is given by the “internal”
notion of homotopy/equality



29/30

The abstract invariance theorem

This argument depended heavily on the special nature of the
category sSet. (The isomorphism invariance property, by contrast,
does not.) To put the proof in the proper, general context, we
should

• Show that for any Heyting fibration
E
↓
B

, there is natural

2-categorical structure on B

• (and that this recovers the usual one on sSet and Top)

• Show that the associated pseudofunctor B→ Catop is a
pseudo-functor of 2-categories (thus giving us a 1D2F)

• We can do it!

In fact, we need much less than a Heyting
fibration (a “∧=-fibration” is good enough)

• The 2-categorical structure on B is given by the “internal”
notion of homotopy/equality



29/30

The abstract invariance theorem

This argument depended heavily on the special nature of the
category sSet. (The isomorphism invariance property, by contrast,
does not.) To put the proof in the proper, general context, we
should

• Show that for any Heyting fibration
E
↓
B

, there is natural

2-categorical structure on B

• (and that this recovers the usual one on sSet and Top)

• Show that the associated pseudofunctor B→ Catop is a
pseudo-functor of 2-categories (thus giving us a 1D2F)

• We can do it! In fact, we need much less than a Heyting
fibration

(a “∧=-fibration” is good enough)

• The 2-categorical structure on B is given by the “internal”
notion of homotopy/equality



29/30

The abstract invariance theorem

This argument depended heavily on the special nature of the
category sSet. (The isomorphism invariance property, by contrast,
does not.) To put the proof in the proper, general context, we
should

• Show that for any Heyting fibration
E
↓
B

, there is natural

2-categorical structure on B

• (and that this recovers the usual one on sSet and Top)

• Show that the associated pseudofunctor B→ Catop is a
pseudo-functor of 2-categories (thus giving us a 1D2F)

• We can do it! In fact, we need much less than a Heyting
fibration (a “∧=-fibration” is good enough)

• The 2-categorical structure on B is given by the “internal”
notion of homotopy/equality



29/30

The abstract invariance theorem

This argument depended heavily on the special nature of the
category sSet. (The isomorphism invariance property, by contrast,
does not.) To put the proof in the proper, general context, we
should

• Show that for any Heyting fibration
E
↓
B

, there is natural

2-categorical structure on B

• (and that this recovers the usual one on sSet and Top)

• Show that the associated pseudofunctor B→ Catop is a
pseudo-functor of 2-categories (thus giving us a 1D2F)

• We can do it! In fact, we need much less than a Heyting
fibration (a “∧=-fibration” is good enough)

• The 2-categorical structure on B is given by the “internal”
notion of homotopy/equality



30/30

Thank you for your attention!

For more information, see:

• Homotopies in Grothendieck fibrations (arXiv:1905.10690)

• First-order homotopical logic (forthcoming)


	A diagram
	Propositions as spaces
	Properties
	Fibrational semantics
	The abstract invariance theorem

