
Contextual categories as monoids in a category of
collections

(Work in progress)

Chaitanya Leena Subramaniam1

Peter LeFanu Lumsdaine2

1IRIF, Université Paris Diderot

2Dept. of Mathematics, Stockholm University

HoTT 2019, Pittsburgh

1 / 27



Goal: A “nice” definition of dependently typed theory

We want to give a good, algebraic description of a theory
expressed in the language of Martin-Löf’s framework of dependent
types.

Problem
A theory is a syntactic object, and these don’t obviously have a
nice algebraic definition.
Well-known syntactic definitions of what such a theory should be
are GATs [Car78] and FOLDS signatures [Pal16].

2 / 27



Goal: A “nice” definition of dependently typed theory

We want to give a good, algebraic description of a theory
expressed in the language of Martin-Löf’s framework of dependent
types.

Problem
A theory is a syntactic object, and these don’t obviously have a
nice algebraic definition.
Well-known syntactic definitions of what such a theory should be
are GATs [Car78] and FOLDS signatures [Pal16].

2 / 27



Disclaimer
We don’t consider any type formers (Id, Π, U, etc.) in our theories
— i.e. the syntactic category of a “dependently typed theory” will
simply be a contextual category with no additional structure.

(Eventually, we’d like to add them one by one.)

3 / 27



We’d like:

▶ A good category with a nice description (not explicitly
involving any syntax).

▶ But each of whose objects corresponds canonically to a
syntactic dependently typed theory (and the same for
morphisms).

A motivating example is the category of symmetric Set-operads,
which correspond to certain algebraic theories.

4 / 27



Our proposal for a category of theories

Recall
A contextual category is a small category C “resembling” the
syntactic category of a dependently typed theory.

Our proposed definition
A theory is an I -contextual category, where I is a finitely
branching inverse category (I is the type signature of the theory).

The category CxlCat(I ) of these embeds into the category of
contextual categories under the free contextual category on I .

CxlCat(I ) C (I )/CxlCat

5 / 27



Our proposal for a category of theories

Recall
A contextual category is a small category C “resembling” the
syntactic category of a dependently typed theory.

Our proposed definition
A theory is an I -contextual category, where I is a finitely
branching inverse category (I is the type signature of the theory).

The category CxlCat(I ) of these embeds into the category of
contextual categories under the free contextual category on I .

CxlCat(I ) C (I )/CxlCat

5 / 27



Nice features

▶ CxlCat(I ) is the category of monoids in a presheaf category
of “I -coloured collections” (analogous to operads and
polynomial monads).

▶ From any T ∈ CxlCat(I ), we can recover a syntax that
presents it (its underlying collection).

Drawback
May not encompass all generalised algebraic theories.

6 / 27



Goals of this talk

1. Justify the following:
A dependently typed theory or I -contextual category is the
data of

1. a finitely branching inverse category I

2. and a finitary monad on SetI .

Example/particular case
A multisorted Lawvere theory is the data of

1. a set S (always a fin. branching inverse category)

2. and a finitary monad on SetS .

7 / 27



Goals of this talk

1. Justify the following:
A dependently typed theory or I -contextual category is the
data of

1. a finitely branching inverse category I

2. and a finitary monad on SetI .

Example/particular case
A multisorted Lawvere theory is the data of

1. a set S (always a fin. branching inverse category)

2. and a finitary monad on SetS .

7 / 27



2. To convey the picture:

f

Every operation in a dependently typed
theory takes a finite cell complex as in-
put, and outputs a cell.

(This is related to Burroni-Leinster T -
operads.)

8 / 27



Example/particular case

{• , • , • , •}

f

•

An operation in a multisorted Lawvere
theory takes a finite coproduct of points
as input, and outputs a point.

9 / 27



Examples of inverse categories

▶ Every set S .

▶ Every Reedy category has a (wide non-full) inverse
subcategory (e.g. ∆op

+ )

▶

G1

G0

s t Gop =

...

G2

G1

G0

s t

s t

s t

Oop (opetopes).

10 / 27



Examples of inverse categories

▶ Every set S .

▶ Every Reedy category has a (wide non-full) inverse
subcategory (e.g. ∆op

+ )

▶

G1

G0

s t Gop =

...

G2

G1

G0

s t

s t

s t

Oop (opetopes).

10 / 27



Examples of inverse categories

▶ Every set S .

▶ Every Reedy category has a (wide non-full) inverse
subcategory (e.g. ∆op

+ )

▶

G1

G0

s t Gop =

...

G2

G1

G0

s t

s t

s t

Oop (opetopes).

10 / 27



Examples of dependently typed theories

▶ Every multisorted Lawvere theory.

▶ The identity monads on Graph, SetGop
, SetOop

, Set∆
op
+ .

▶ The free-category monad on Graph.

▶ The free-strict-ω-category monad on SetGop .

▶ The free-weak-ω-category monad on SetGop .

▶ For T : SetI → SetI a finitary cartesian monad, every
T -operad (à la Burroni-Leinster).

▶ And many more...

11 / 27



Examples of dependently typed theories

▶ Every multisorted Lawvere theory.

▶ The identity monads on Graph, SetGop
, SetOop

, Set∆
op
+ .

▶ The free-category monad on Graph.

▶ The free-strict-ω-category monad on SetGop .

▶ The free-weak-ω-category monad on SetGop .

▶ For T : SetI → SetI a finitary cartesian monad, every
T -operad (à la Burroni-Leinster).

▶ And many more...

11 / 27



Examples of dependently typed theories

▶ Every multisorted Lawvere theory.

▶ The identity monads on Graph, SetGop
, SetOop

, Set∆
op
+ .

▶ The free-category monad on Graph.

▶ The free-strict-ω-category monad on SetGop .

▶ The free-weak-ω-category monad on SetGop .

▶ For T : SetI → SetI a finitary cartesian monad, every
T -operad (à la Burroni-Leinster).

▶ And many more...

11 / 27



Examples of dependently typed theories

▶ Every multisorted Lawvere theory.

▶ The identity monads on Graph, SetGop
, SetOop

, Set∆
op
+ .

▶ The free-category monad on Graph.

▶ The free-strict-ω-category monad on SetGop .

▶ The free-weak-ω-category monad on SetGop .

▶ For T : SetI → SetI a finitary cartesian monad, every
T -operad (à la Burroni-Leinster).

▶ And many more...

11 / 27



Examples of dependently typed theories

▶ Every multisorted Lawvere theory.

▶ The identity monads on Graph, SetGop
, SetOop

, Set∆
op
+ .

▶ The free-category monad on Graph.

▶ The free-strict-ω-category monad on SetGop .

▶ The free-weak-ω-category monad on SetGop .

▶ For T : SetI → SetI a finitary cartesian monad, every
T -operad (à la Burroni-Leinster).

▶ And many more...

11 / 27



Examples of dependently typed theories

▶ Every multisorted Lawvere theory.

▶ The identity monads on Graph, SetGop
, SetOop

, Set∆
op
+ .

▶ The free-category monad on Graph.

▶ The free-strict-ω-category monad on SetGop .

▶ The free-weak-ω-category monad on SetGop .

▶ For T : SetI → SetI a finitary cartesian monad, every
T -operad (à la Burroni-Leinster).

▶ And many more...

11 / 27



Syntactic example

Let I = {G2 ⇒ G1 ⇒ G0} with the (co)globular relations. Then I
corresponds to the following type signature.

⊢ G0 x, y : G0 ⊢ G1(x, y) x, y : G0, f , g : G1(x, y) ⊢ G2(f , g)

The theory of 2-categories (or even of bicategories) is a collection
of terms and definitional equalities expressible in this type
signature.

12 / 27



Preliminaries

13 / 27



▶ Let I be a small category.

▶ Fin(I ) is the category of finitely presentable covariant
presheaves on I . Denote the dense inclusion Fin(I ) ↪→ SetI

by E .

▶ Recall that Fin(I ) is the finite-colimit completion of I op.
When I is a set, Fin(I ) is the also the finite-coproduct
completion of I .

14 / 27



▶ Let I be a small category.

▶ Fin(I ) is the category of finitely presentable covariant
presheaves on I . Denote the dense inclusion Fin(I ) ↪→ SetI

by E .

▶ Recall that Fin(I ) is the finite-colimit completion of I op.
When I is a set, Fin(I ) is the also the finite-coproduct
completion of I .

14 / 27



▶ Let I be a small category.

▶ Fin(I ) is the category of finitely presentable covariant
presheaves on I . Denote the dense inclusion Fin(I ) ↪→ SetI

by E .

▶ Recall that Fin(I ) is the finite-colimit completion of I op.
When I is a set, Fin(I ) is the also the finite-coproduct
completion of I .

14 / 27



Cartesian collections

The presheaf category

CollI := SetI×Fin(I )

is called the category of I -collections.

(Intuition: F ∈ CollI should be thought of as a term signature —
for each context Γ ∈ Fin(I ) and each sort i ∈ I , F(i,Γ) is the set
of operations with input Γ and output sort i.)

15 / 27



Composition of cartesian collections

I -collections can be composed via substitution:

G ◦ F(i,Γ) :=
∫ Θ∈Fin(I )

G(i,Θ)× SetI (Θ,F(−,Γ)).

(CollI , ◦,E) is a (non-symmetric) monoidal category, where
E : Fin(I ) ↪→ SetI .

16 / 27



Cartesian collections and endofunctors on SetI

The functor LanE(−) : CollI → [SetI , SetI ] of left Kan extension
along E : Fin(I ) ↪→ SetI is (1) fully faithful and (2) monoidal.

Fin(I ) SetI

SetI

E

F

∼=
LanE F

(1)

LanE(F ◦ G) ∼= LanE F ◦ LanE G ; LanE E ∼= id (2)

17 / 27



Consequence

LanE − : Mon(CollI , ◦,E) ↪→ Mnd(SetI )

The category of monoids in CollI is a full subcategory of the
category of monads on SetI . It is none other than the category of
finitary monads on SetI .

Remarks

▶ We have only used that I is a small category.

▶ Mon(CollI , ◦,E)is also known as the category of monads with
arities (Weber) or Lawvere theories with arities (Melliès) for
the arities E : Fin(I ) ↪→ SetI .

18 / 27



Consequence

LanE − : Mon(CollI , ◦,E) ↪→ Mnd(SetI )

The category of monoids in CollI is a full subcategory of the
category of monads on SetI . It is none other than the category of
finitary monads on SetI .

Remarks

▶ We have only used that I is a small category.

▶ Mon(CollI , ◦,E)is also known as the category of monads with
arities (Weber) or Lawvere theories with arities (Melliès) for
the arities E : Fin(I ) ↪→ SetI .

18 / 27



Contextual categories as monoids in collections

19 / 27



Inverse categories

Definition
An inverse category is:

▶ a small category I ,

▶ whose objects are graded by “dimension” dim : Ob(I ) → Ord,

▶ such that non-identity morphisms strictly decrease dimension,

▶ and that has no infinite strictly descending chains.

I is finitely branching if the tree i/I generated by every i ∈ I is
finite.

20 / 27



Inverse categories

Definition
An inverse category is:

▶ a small category I ,

▶ whose objects are graded by “dimension” dim : Ob(I ) → Ord,

▶ such that non-identity morphisms strictly decrease dimension,

▶ and that has no infinite strictly descending chains.

I is finitely branching if the tree i/I generated by every i ∈ I is
finite.

20 / 27



Main observation

Proposition (L.S., LeFanu Lumsdaine)
Let I be a finitely branching inverse category. Then Fin(I )op is
equivalent to a contextual category C (I ) (the free contextual
category on I ).

(Note: The structure of a contextual category does not transfer
across an equivalence of categories.)

▶ Particular case: I is a set, then Fin(I )op is the free
finite-product category on I .

21 / 27



Main observation

Proposition (L.S., LeFanu Lumsdaine)
Let I be a finitely branching inverse category. Then Fin(I )op is
equivalent to a contextual category C (I ) (the free contextual
category on I ).

(Note: The structure of a contextual category does not transfer
across an equivalence of categories.)

▶ Particular case: I is a set, then Fin(I )op is the free
finite-product category on I .

21 / 27



Main observation

Proposition (L.S., LeFanu Lumsdaine)
Let I be a finitely branching inverse category. Then Fin(I )op is
equivalent to a contextual category C (I ) (the free contextual
category on I ).

(Note: The structure of a contextual category does not transfer
across an equivalence of categories.)

▶ Particular case: I is a set, then Fin(I )op is the free
finite-product category on I .

21 / 27



Proof:
1. Note that:

▶ The Yoneda embedding factors as y : I op ↪→ Fin(I ) ↪→ SetI .

▶ The boundary inclusions ∂i ↪→ yi are finitely presentable
(since i/I is finite).

▶ Every finite cell complex in SetI is finitely presentable.

▶ Every X ∈ Fin(I ) can be written as a finite cell complex.

22 / 27



Proof:
1. Note that:

▶ The Yoneda embedding factors as y : I op ↪→ Fin(I ) ↪→ SetI .

▶ The boundary inclusions ∂i ↪→ yi are finitely presentable
(since i/I is finite).

▶ Every finite cell complex in SetI is finitely presentable.

▶ Every X ∈ Fin(I ) can be written as a finite cell complex.

22 / 27



Proof:
1. Note that:

▶ The Yoneda embedding factors as y : I op ↪→ Fin(I ) ↪→ SetI .

▶ The boundary inclusions ∂i ↪→ yi are finitely presentable
(since i/I is finite).

▶ Every finite cell complex in SetI is finitely presentable.

▶ Every X ∈ Fin(I ) can be written as a finite cell complex.

22 / 27



Proof:
1. Note that:

▶ The Yoneda embedding factors as y : I op ↪→ Fin(I ) ↪→ SetI .

▶ The boundary inclusions ∂i ↪→ yi are finitely presentable
(since i/I is finite).

▶ Every finite cell complex in SetI is finitely presentable.

▶ Every X ∈ Fin(I ) can be written as a finite cell complex.

22 / 27



2. Define a cell context to be a finite sequence

∅ → X1 → X2 → . . . → X

of chosen pushouts of boundary inclusions:

∂i Xn

yi Xn+1.

Definition
The category CellI has as objects the cell contexts and as
morphisms, CellI (∅ . . . → X , ∅ . . . → Y ) := SetI (X ,Y ).

Clearly, CellI ≃ Fin(I ).

23 / 27



3. Not hard to see that C (I ) := Cellop
I is a contextual category.

(In fact, it is the free contextual category on I .)

Remarks

▶ A collection X ∈ CollI ≃ SetI×CellI is now literally an
I -sorted term signature.

▶ C (I ) has all finite limits.

24 / 27



I -contextual categories

Definition
An I -contextual category is a morphism of contextual categories
F : C (I ) → D such that in the (identity-on-objects, fully faithful)
factorisation

C (I ) DI DF1

F

F2

F2 : DI ↪→ D exhibits D as the contextual completion of DI .

A morphism of I -contextual categories is a morphism in the coslice
C (I )/CxlCat.

25 / 27



Theorem (L.S., LeFanu Lumsdaine)
The following categories are equivalent:

1. The category CxlCat(I ) of I -contextual categories.

2. The category Mon(CollI , ◦,E) of monoids in I -sorted
cartesian collections.

3. The category of finitary monads on SetI .

Proof.
Make use of the theory of Lawvere theories with arities [Mel10],
[BMW12].

26 / 27



Summary, current and future work

▶ We introduce I -contextual categories as algebraic objects
(monoids in collections) with an underlying dependently typed
theory.

▶ We are working on a linear variant of this, and hoping to get a
definition of dependently coloured symmetric operad/linear
dependently typed theory.

▶ The “base change” properties of I -contextual categories
remain to be understood.

▶ We would eventually like to add Id-types to this formalism.

27 / 27



Clemens Berger, Paul-André Mellies, and Mark Weber.
Monads with arities and their associated theories.
Journal of Pure and Applied Algebra, 216(8-9):2029–2048,
2012.
JW Cartmell.
Generalised algebraic theories and contextual categories.
PhD thesis, University of Oxford, 1978.

Michael Makkai.
First order logic with dependent sorts, with applications to
category theory.
1995.
Paul-André Mellies.
Segal condition meets computational effects.

27 / 27



In 2010 25th Annual IEEE Symposium on Logic in Computer
Science, pages 150–159. IEEE, 2010.

Erik Palmgren.
Categories with families, folds and logic enriched type theory.
arXiv preprint arXiv:1605.01586, 2016.

27 / 27


	Introduction
	Preliminaries
	Contextual categories as monoids in collections

