Contextual categories as monoids in a category of

collections

(Work in progress)

Chaitanya Leena Subramaniam?!

Peter LeFanu Lumsdaine?

LIRIF, Université Paris Diderot

2Dept. of Mathematics, Stockholm University

HoTT 2019, Pittsburgh

1/27

Goal: A “nice” definition of dependently typed theory

We want to give a good, algebraic description of a theory

expressed in the language of Martin-L6f's framework of dependent

types.

2/ 27

Goal: A “nice” definition of dependently typed theory

We want to give a good, algebraic description of a theory

expressed in the language of Martin-L6f's framework of dependent

types.

Problem

A theory is a syntactic object, and these don't obviously have a
nice algebraic definition.

Well-known syntactic definitions of what such a theory should be
are GATs [Car78] and FOLDS signatures [Pall16].

2/ 27

Disclaimer
We don't consider any type formers (Id, II, U, etc.) in our theories

— i.e. the syntactic category of a “dependently typed theory” will

simply be a contextual category with no additional structure.

(Eventually, we'd like to add them one by one.)

3/27

We'd like:

» A good category with a nice description (not explicitly

involving any syntax).

» But each of whose objects corresponds canonically to a
syntactic dependently typed theory (and the same for

morphisms).

A motivating example is the category of symmetric Set-operads,

which correspond to certain algebraic theories.

4/ 21

Our proposal for a category of theories

Recall
A contextual category is a small category C' “resembling” the

syntactic category of a dependently typed theory.

5/ 27

Our proposal for a category of theories

Our proposed definition

A theory is an I-contextual category, where [is a finitely

branching inverse category (I is the type signature of the theory).

The category CxICat(I) of these embeds into the category of

contextual categories under the free contextual category on I.

exICat(I) —— C(I)/CxICat

5/ 27

Nice features

» CxlCat([]) is the category of monoids in a presheaf category
of “I-coloured collections” (analogous to operads and

polynomial monads).

» From any T € CxlCat([), we can recover a syntax that

presents it (its underlying collection).

Drawback

May not encompass all generalised algebraic theories.

6/ 27

Goals of this talk

1. Justify the following:

A dependently typed theory or I-contextual category is the
data of

1. a finitely branching inverse category 1

2. and a finitary monad on Set’.

727

Goals of this talk

1. Justify the following:

A dependently typed theory or I-contextual category is the
data of

1. a finitely branching inverse category 1

2. and a finitary monad on Set’.

Example/particular case

A multisorted Lawvere theory is the data of
1. aset S (always a fin. branching inverse category)
2. and a finitary monad on Set?.

727

2. To convey the picture:
Every operation in a dependently typed

theory takes a finite cell complex as in-

put, and outputs a cell.

(This is related to Burroni-Leinster T-

operads.)

8 /27

Example/particular case

An operation in a multisorted Lawvere
theory takes a finite coproduct of points

as input, and outputs a point.

9/ 27

Examples of inverse categories

> Every set S.

10/ 27

Examples of inverse categories

> Every set S.

» Every Reedy category has a (wide non-full) inverse

subcategory (e.g. A%)

10/ 27

Examples of inverse categories

> Every set S.

» Every Reedy category has a (wide non-full) inverse
subcategory (e.g. A%)
>

s| |t
G G
Sut GP= ||, O°P (opetopes).
Go o
s| |t
Gy

10/ 27

Examples of dependently typed theories

» Every multisorted Lawvere theory.

11/ 27

Examples of dependently typed theories

» Every multisorted Lawvere theory.

» The identity monads on Graph, Set®”, Set®™, Set®T .

11/ 27

Examples of dependently typed theories

» Every multisorted Lawvere theory.
» The identity monads on Graph, Set®”, Set®™, Set®T .

» The free-category monad on Graph.

11/ 27

Examples of dependently typed theories

» Every multisorted Lawvere theory.
» The identity monads on Graph, Set®”, Set®™, Set®T .
» The free-category monad on Graph.

» The free-strict-w-category monad on Set&”.

11/ 27

Examples of dependently typed theories

Every multisorted Lawvere theory.

The identity monads on Graph, Set®”, 8et®”, Set®T .

tG

>

>

» The free-category monad on Graph.

» The free-strict-w-category monad on Se
>

The free-weak-w-category monad on Set®™".

11/ 27

Examples of dependently typed theories

Every multisorted Lawvere theory.

The identity monads on Graph, Set®”, et SetAY
The free-category monad on Graph.
The free-strict-w-category monad on Set&”.

The free-weak-w-category monad on Set®™".

vV v v v v Y

For T : Set! — Set! a finitary cartesian monad, every

T-operad (a la Burroni-Leinster).

» And many more...

11/ 27

Syntactic example

Let I = {Gy = G1 = Go} with the (co)globular relations. Then I

corresponds to the following type signature.
}_GO T, y: G()I_Gl(ﬂf,y) r,y: GOafag: G1($,y)|—G2(f,g)

The theory of 2-categories (or even of bicategories) is a collection
of terms and definitional equalities expressible in this type

signature.

12 /27

Preliminaries

13 /27

» Let I be a small category.

14 / 27

» Let I be a small category.

» Fin(/) is the category of finitely presentable covariant
presheaves on I. Denote the dense inclusion Fin(I) < Set!
by E.

14 / 27

» Let I be a small category.

» Fin(/) is the category of finitely presentable covariant
presheaves on I. Denote the dense inclusion Fin(I) < Set!
by E.

» Recall that Fin(7) is the finite-colimit completion of I°P.
When [is a set, Fin(I) is the also the finite-coproduct

completion of I.

14 / 27

Cartesian collections

The presheaf category
Coll; := Set”<Fin(l)
is called the category of I-collections.
(Intuition: F' € Coll; should be thought of as a term signature —

for each context I' € Fin([) and each sort i € I, F(i,I') is the set

of operations with input I" and output sort ¢.)

15 / 27

Composition of cartesian collections

I-collections can be composed via substitution:

©€Fin(J)
GoF(i,T) = / G(i,0) x Set! (0, F(—,T)).

(Colly, 0, F) is a (non-symmetric) monoidal category, where
E : Fin(I) < Set?.

16 / 27

. . I
Cartesian collections and endofunctors on Set

The functor Lang(—) : Coll; — [SetI,SetI] of left Kan extension
along E : Fin(I) < Set! is (1) fully faithful and (2) monoidal.

Fin(7 o get!

s /F (1)

Set!

Lang(Fo G) = Lang FolLang G ; LangFE = id (2)

17 /27

Consequence
Lang — : Mon(Colly, 0, E) < Mnd(Set?)

The category of monoids in Coll; is a full subcategory of the
category of monads on Set’. It is none other than the category of

finitary monads on Set’.

18 / 27

Consequence
Lang — : Mon(Colly, 0, E) < Mnd(Set?)

The category of monoids in Coll; is a full subcategory of the
category of monads on Set’. It is none other than the category of

finitary monads on Set’.

Remarks

> We have only used that [is a small category.

» Mon(Colly, o, F)is also known as the category of monads with
arities (Weber) or Lawvere theories with arities (Mellies) for
the arities E : Fin(I) — Set?.

18 / 27

Contextual categories as monoids in collections

19 /27

Inverse categories

Definition

An inverse category is:
» a small category I,
» whose objects are graded by “dimension” dim : Ob(I) — Ord,
» such that non-identity morphisms strictly decrease dimension,

» and that has no infinite strictly descending chains.

20 / 27

Inverse categories

Definition

An inverse category is:
» a small category I,
» whose objects are graded by “dimension” dim : Ob(I) — Ord,
» such that non-identity morphisms strictly decrease dimension,
» and that has no infinite strictly descending chains.

I is finitely branching if the tree i/; generated by every i € [is

finite.

20 / 27

Main observation

Proposition (L.S., LeFanu Lumsdaine)

Let I be a finitely branching inverse category. Then Fin(I)°P is
equivalent to a contextual category C(I) (the free contextual

category on I).

21/ 27

Main observation

Proposition (L.S., LeFanu Lumsdaine)

Let I be a finitely branching inverse category. Then Fin(I)°P is
equivalent to a contextual category C(I) (the free contextual
category on I).

(Note: The structure of a contextual category does not transfer

across an equivalence of categories.)

21/ 27

Main observation

Proposition (L.S., LeFanu Lumsdaine)

Let I be a finitely branching inverse category. Then Fin(I)°P is
equivalent to a contextual category C(I) (the free contextual
category on I).

(Note: The structure of a contextual category does not transfer

across an equivalence of categories.)

» Particular case: [is a set, then Fin(I)°P is the free

finite-product category on 1.

21/ 27

Proof:
1. Note that:

» The Yoneda embedding factors as y : I°P < Fin(I) < Set!.

22 /27

Proof:
1. Note that:

» The Yoneda embedding factors as y : I°P < Fin(I) < Set!.

» The boundary inclusions 97 < yi are finitely presentable
(since /1 is finite).

22 /27

Proof:
1. Note that:

» The Yoneda embedding factors as y : I°P < Fin(I) < Set!.

» The boundary inclusions 97 < yi are finitely presentable
(since /1 is finite).

> Every finite cell complex in Set! is finitely presentable.

22 /27

Proof:
1. Note that:

» The Yoneda embedding factors as y : I°P < Fin(I) < Set!.

» The boundary inclusions 97 < yi are finitely presentable
(since /1 is finite).

> Every finite cell complex in Set! is finitely presentable.

» Every X € Fin(I) can be written as a finite cell complex.

22 /27

2. Define a cell context to be a finite sequence
=X = Xo—...> X

of chosen pushouts of boundary inclusions:

01 —— X,

L

yi — Xn—f—l‘

Definition
The category Cell; has as objects the cell contexts and as
morphisms, Cell; (... = X,0... = V) := Set’(X, V).

Clearly, Cell; ~ Fin([I).

23 /27

3. Not hard to see that C(I) := Cell}” is a contextual category.

(In fact, it is the free contextual category on 1.) []
Remarks

> A collection X € Coll; ~ Set’* 1 is now literally an

I-sorted term signature.

» (C(I) has all finite limits.

24 /27

I-contextual categories

Definition
An I-contextual category is a morphism of contextual categories
F: C(I) — D such that in the (identity-on-objects, fully faithful)

factorisation

i
F

Fy : Dy < D exhibits D as the contextual completion of Dj.

A morphism of I-contextual categories is a morphism in the coslice

C(I)/exICat.

25 / 27

Theorem (L.S., LeFanu Lumsdaine)
The following categories are equivalent:
1. The category CxICat(I) of I-contextual categories.

2. The category Mon(Colly, o, E) of monoids in I-sorted

cartesian collections.

3. The category of finitary monads on Set’.

Proof.
Make use of the theory of Lawvere theories with arities [Mel10],
[BMW12]. O

26 / 27

Summary, current and future work

> We introduce I-contextual categories as algebraic objects
(monoids in collections) with an underlying dependently typed
theory.

» We are working on a linear variant of this, and hoping to get a
definition of dependently coloured symmetric operad/linear
dependently typed theory.

> The “base change"” properties of I-contextual categories

remain to be understood.

» We would eventually like to add Id-types to this formalism.

27 /27

Clemens Berger, Paul-André Mellies, and Mark Weber.
Monads with arities and their associated theories.

Journal of Pure and Applied Algebra, 216(8-9):2029-2048,
2012.

JW Cartmell.

Generalised algebraic theories and contextual categories.
PhD thesis, University of Oxford, 1978.

Michael Makkai.

First order logic with dependent sorts, with applications to
category theory.

1995.

Paul-André Mellies.

Segal condition meets computational effects.

27 /27

In 2010 25th Annual IEEE Symposium on Logic in Computer
Science, pages 150-159. IEEE, 2010.

[d Erik Palmgren.
Categories with families, folds and logic enriched type theory.
arXiv preprint arXiv:1605.01586, 2016.

27 /27

	Introduction
	Preliminaries
	Contextual categories as monoids in collections

