Contextual categories as monoids in a category of collections (Work in progress)

Chaitanya Leena Subramaniam¹ Peter LeFanu Lumsdaine²

¹IRIF, Université Paris Diderot

²Dept. of Mathematics, Stockholm University

HoTT 2019, Pittsburgh

Goal: A "nice" definition of dependently typed theory

We want to give a good, algebraic description of a **theory** expressed in the **language** of Martin-Löf's framework of dependent types.

Goal: A "nice" definition of dependently typed theory

We want to give a good, algebraic description of a **theory** expressed in the **language** of Martin-Löf's framework of dependent types.

Problem

A theory is a *syntactic* object, and these don't obviously have a nice algebraic definition.

Well-known syntactic definitions of what such a theory should be are GATs [Car78] and FOLDS signatures [Pal16].

Disclaimer

We don't consider any *type formers* (Id, Π , U, etc.) in our theories — i.e. the syntactic category of a "dependently typed theory" will simply be a contextual category with no additional structure.

(Eventually, we'd like to add them one by one.)

We'd like:

- A good category with a nice description (not explicitly involving any syntax).
- But each of whose objects corresponds canonically to a syntactic dependently typed theory (and the same for morphisms).

A motivating example is the category of symmetric Set-operads, which correspond to certain algebraic theories.

Our proposal for a category of theories

Recall

A contextual category is a small category C "resembling" the syntactic category of a dependently typed theory.

Our proposal for a category of theories

Our proposed definition

A theory is an I-contextual category, where I is a finitely branching inverse category (I is the *type signature* of the theory).

The category $\operatorname{CxlCat}(I)$ of these embeds into the category of contextual categories under the *free contextual category on* I.

$$\operatorname{CxlCat}(I) \longrightarrow C(I)/\operatorname{CxlCat}$$

Nice features

- CxlCat(I) is the category of monoids in a presheaf category of "I-coloured collections" (analogous to operads and polynomial monads).
- From any T ∈ CxlCat(I), we can recover a syntax that presents it (its underlying collection).

Drawback

May not encompass all generalised algebraic theories.

Goals of this talk

1. Justify the following:

A **dependently typed theory** or *I*-**contextual category** is the data of

- 1. a finitely branching inverse category \boldsymbol{I}
- 2. and a finitary monad on Set^{I} .

Goals of this talk

1. Justify the following:

A **dependently typed theory** or *I*-**contextual category** is the data of

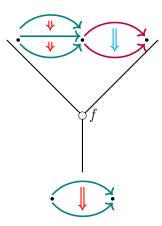
- 1. a finitely branching inverse category \boldsymbol{I}
- 2. and a finitary monad on Set^{I} .

Example/particular case

A multisorted Lawvere theory is the data of

- 1. a set S (always a fin. branching inverse category)
- 2. and a finitary monad on Set^S .

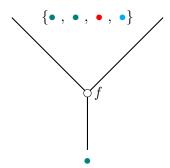
2. To convey the picture:



Every operation in a dependently typed theory takes a finite cell complex as input, and outputs a cell.

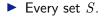
(This is related to Burroni-Leinster T-operads.)

Example/particular case



An operation in a multisorted Lawvere theory takes a finite coproduct of points as input, and outputs a point.

Examples of inverse categories



Examples of inverse categories

- \blacktriangleright Every set S.
- Every Reedy category has a (wide non-full) inverse subcategory (e.g. Δ^{op}₊)

Examples of inverse categories

► Every set S.

 Every Reedy category has a (wide non-full) inverse subcategory (e.g. Δ^{op}₊)

 $\begin{array}{c} G_1 \\ s \\ \downarrow t \\ G_0 \end{array}$

$$\mathbb{G}^{\mathrm{op}} = \begin{array}{c} s \bigsqcup_{t} t \\ G_2 \\ s \bigsqcup_{t} t \\ G_1 \\ s \bigsqcup_{t} t \\ G_0 \end{array}$$

÷

 \mathbb{O}^{op} (opetopes).

Every multisorted Lawvere theory.

Every multisorted Lawvere theory.

▶ The identity monads on Graph , $\operatorname{Set}^{\mathbb{G}^{\operatorname{op}}}$, $\operatorname{Set}^{\mathbb{O}^{\operatorname{op}}}$, $\operatorname{Set}^{\Delta_{+}^{\operatorname{op}}}$.

• Every multisorted Lawvere theory.

- ▶ The identity monads on Graph , $\operatorname{Set}^{\mathbb{G}^{\operatorname{op}}}$, $\operatorname{Set}^{\mathbb{G}^{\operatorname{op}}}$, $\operatorname{Set}^{\Delta_{+}^{\operatorname{op}}}$.
- ► The free-category monad on Graph.

• Every multisorted Lawvere theory.

- ▶ The identity monads on Graph , $\operatorname{Set}^{\mathbb{G}^{\operatorname{op}}}$, $\operatorname{Set}^{\mathbb{Q}^{\operatorname{op}}}$, $\operatorname{Set}^{\Delta_{+}^{\operatorname{op}}}$.
- ► The free-category monad on Graph.
- The free-strict- ω -category monad on $\operatorname{Set}^{\mathbb{G}^{\operatorname{op}}}$.

• Every multisorted Lawvere theory.

- ▶ The identity monads on Graph , $\operatorname{Set}^{\mathbb{G}^{\operatorname{op}}}$, $\operatorname{Set}^{\mathbb{O}^{\operatorname{op}}}$, $\operatorname{Set}^{\Delta_{+}^{\operatorname{op}}}$.
- ► The free-category monad on Graph.
- The free-strict- ω -category monad on Set^{\mathbb{G}^{op}}.
- ▶ The free-*weak*- ω -category monad on Set^{\mathbb{G}^{op}}.

• Every multisorted Lawvere theory.

▶ The identity monads on Graph , $\operatorname{Set}^{\mathbb{G}^{\operatorname{op}}}$, $\operatorname{Set}^{\mathbb{Q}^{\operatorname{op}}}$, $\operatorname{Set}^{\Delta_{+}^{\operatorname{op}}}$.

▶ The free-category monad on Graph.

- The free-strict- ω -category monad on Set^{\mathbb{G}^{op}}.
- ▶ The free-*weak*- ω -category monad on Set^{\mathbb{G}^{op}}.
- ► For $T : Set^I \to Set^I$ a finitary cartesian monad, every *T*-operad (à la Burroni-Leinster).
- And many more...

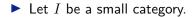
Syntactic example

Let $I = \{G_2 \Rightarrow G_1 \Rightarrow G_0\}$ with the (co)globular relations. Then I corresponds to the following type signature.

$$\vdash G_0 \qquad x,y: G_0 \vdash G_1(x,y) \qquad x,y: G_0, f,g: G_1(x,y) \vdash G_2(f,g)$$

The theory of 2-categories (or even of bicategories) is a collection of terms and definitional equalities expressible in this type signature.

Preliminaries



- Let I be a small category.
- Fin(I) is the category of finitely presentable covariant presheaves on I. Denote the dense inclusion Fin(I) → Set^I by E.

- Let I be a small category.
- Fin(I) is the category of finitely presentable covariant presheaves on I. Denote the dense inclusion Fin(I) → Set^I by E.
- Recall that Fin(I) is the finite-colimit completion of I^{op}.
 When I is a set, Fin(I) is the also the finite-coproduct completion of I.

Cartesian collections

The presheaf category

$$\operatorname{Coll}_I := \operatorname{Set}^{I \times \operatorname{Fin}(I)}$$

is called the category of *I*-collections.

(Intuition: $F \in \operatorname{Coll}_I$ should be thought of as a *term signature* for each *context* $\Gamma \in \operatorname{Fin}(I)$ and each *sort* $i \in I$, $F(i, \Gamma)$ is the set of operations with input Γ and output sort i.)

Composition of cartesian collections

I-collections can be composed via **substitution**:

$$G \circ F(i, \Gamma) := \int^{\Theta \in \operatorname{Fin}(I)} G(i, \Theta) \times \operatorname{Set}^{I}(\Theta, F(-, \Gamma)).$$

 $(\operatorname{Coll}_{I}, \circ, E)$ is a (non-symmetric) monoidal category, where $E : \operatorname{Fin}(I) \hookrightarrow \operatorname{Set}^{I}$.

Cartesian collections and endofunctors on Set^I

The functor $\operatorname{Lan}_E(-) : \operatorname{Coll}_I \to [\operatorname{Set}^I, \operatorname{Set}^I]$ of left Kan extension along $E : \operatorname{Fin}(I) \hookrightarrow \operatorname{Set}^I$ is (1) fully faithful and (2) monoidal.

 $\operatorname{Lan}_E(F \circ G) \cong \operatorname{Lan}_E F \circ \operatorname{Lan}_E G \quad ; \quad \operatorname{Lan}_E E \cong \operatorname{id} \quad (2)$

Consequence

$$\operatorname{Lan}_E - : \operatorname{Mon}(\operatorname{Coll}_I, \circ, E) \hookrightarrow \operatorname{Mnd}(\operatorname{Set}^I)$$

The category of monoids in $Coll_I$ is a full subcategory of the category of monads on Set^I . It is none other than the category of finitary monads on Set^I .

Consequence

$$\operatorname{Lan}_E - : \operatorname{Mon}(\operatorname{Coll}_I, \circ, E) \hookrightarrow \operatorname{Mnd}(\operatorname{Set}^I)$$

The category of monoids in Coll_I is a full subcategory of the category of monads on Set^I . It is none other than the category of finitary monads on Set^I .

Remarks

▶ We have only used that *I* is a small category.

Mon(Coll_I, ∘, E) is also known as the category of monads with arities (Weber) or Lawvere theories with arities (Melliès) for the arities E : Fin(I) → Set^I. Contextual categories as monoids in collections

Inverse categories

Definition

An inverse category is:

- a small category I,
- ▶ whose objects are graded by "dimension" $dim : Ob(I) \rightarrow Ord$,
- such that non-identity morphisms strictly decrease dimension,
- and that has no infinite strictly descending chains.

Inverse categories

Definition

An inverse category is:

- a small category I,
- ▶ whose objects are graded by "dimension" $dim : Ob(I) \rightarrow Ord$,
- such that non-identity morphisms strictly decrease dimension,
- and that has no infinite strictly descending chains.

I is **finitely branching** if the tree $i/_I$ generated by every $i \in I$ is finite.

Main observation

Proposition (L.S., LeFanu Lumsdaine)

Let I be a finitely branching inverse category. Then $Fin(I)^{op}$ is equivalent to a contextual category C(I) (the free contextual category on I).

Main observation

Proposition (L.S., LeFanu Lumsdaine)

Let I be a finitely branching inverse category. Then $Fin(I)^{op}$ is equivalent to a contextual category C(I) (the free contextual category on I).

(Note: The structure of a contextual category *does not* transfer across an equivalence of categories.)

Main observation

Proposition (L.S., LeFanu Lumsdaine)

Let I be a finitely branching inverse category. Then $Fin(I)^{op}$ is equivalent to a contextual category C(I) (the free contextual category on I).

(Note: The structure of a contextual category *does not* transfer across an equivalence of categories.)

Particular case: I is a set, then Fin(I)^{op} is the free finite-product category on I.

1. Note that:

▶ The Yoneda embedding factors as $\mathbf{y}: I^{\mathrm{op}} \hookrightarrow \mathrm{Fin}(I) \hookrightarrow \mathrm{Set}^{I}$.

- 1. Note that:
 - The Yoneda embedding factors as $\mathbf{y}: I^{\mathrm{op}} \hookrightarrow \mathrm{Fin}(I) \hookrightarrow \mathrm{Set}^{I}$.
 - ► The boundary inclusions ∂i → yi are finitely presentable (since i/I is finite).

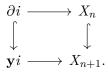
- 1. Note that:
 - The Yoneda embedding factors as $\mathbf{y}: I^{\mathrm{op}} \hookrightarrow \mathrm{Fin}(I) \hookrightarrow \mathrm{Set}^{I}$.
 - ► The boundary inclusions ∂i → yi are finitely presentable (since i/I is finite).
 - Every finite cell complex in Set^I is finitely presentable.

- 1. Note that:
 - The Yoneda embedding factors as $\mathbf{y}: I^{\mathrm{op}} \hookrightarrow \mathrm{Fin}(I) \hookrightarrow \mathrm{Set}^{I}$.
 - ► The boundary inclusions ∂i → yi are finitely presentable (since i/I is finite).
 - Every finite cell complex in Set¹ is finitely presentable.
 - Every $X \in Fin(I)$ can be written as a finite cell complex.

2. Define a **cell context** to be a finite sequence

$$\emptyset \to X_1 \to X_2 \to \ldots \to X$$

of chosen pushouts of boundary inclusions:



Definition

The category Cell_I has as objects the cell contexts and as morphisms, $\operatorname{Cell}_I(\emptyset \ldots \to X, \emptyset \ldots \to Y) := \operatorname{Set}^I(X, Y).$

Clearly, $\operatorname{Cell}_I \simeq \operatorname{Fin}(I)$.

3. Not hard to see that $C(I) := \operatorname{Cell}_{I}^{\operatorname{op}}$ is a contextual category. (In fact, it is the *free contextual category on* I.) \Box

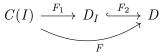
Remarks

- A collection $X \in \operatorname{Coll}_I \simeq \operatorname{Set}^{I \times \operatorname{Cell}_I}$ is now *literally* an *I*-sorted term signature.
- C(I) has all finite limits.

I-contextual categories

Definition

An *I*-contextual category is a morphism of contextual categories $F: C(I) \rightarrow D$ such that in the (identity-on-objects, fully faithful) factorisation



 $F_2: D_I \hookrightarrow D$ exhibits D as the *contextual completion* of D_I .

A morphism of I-contextual categories is a morphism in the coslice C(I)/CxlCat.

Theorem (L.S., LeFanu Lumsdaine)

The following categories are equivalent:

- 1. The category $\operatorname{CxlCat}(I)$ of *I*-contextual categories.
- The category Mon(Coll_I, ∘, E) of monoids in I-sorted cartesian collections.
- 3. The category of finitary monads on Set^{I} .

Proof.

Make use of the theory of Lawvere theories with arities [Mel10], [BMW12].

Summary, current and future work

- We introduce *I*-contextual categories as algebraic objects (monoids in collections) with an underlying dependently typed theory.
- We are working on a *linear* variant of this, and hoping to get a definition of *dependently coloured symmetric operad/linear dependently typed theory*.
- The "base change" properties of *I*-contextual categories remain to be understood.
- ▶ We would eventually like to add Id-types to this formalism.

Clemens Berger, Paul-André Mellies, and Mark Weber.

Monads with arities and their associated theories.

Journal of Pure and Applied Algebra, 216(8-9):2029–2048, 2012.

JW Cartmell.

Generalised algebraic theories and contextual categories. PhD thesis, University of Oxford, 1978.

📔 Michael Makkai.

First order logic with dependent sorts, with applications to category theory.

1995.

Paul-André Mellies.

Segal condition meets computational effects.

In 2010 25th Annual IEEE Symposium on Logic in Computer Science, pages 150–159. IEEE, 2010.

Erik Palmgren.

Categories with families, folds and logic enriched type theory.

arXiv preprint arXiv:1605.01586, 2016.