Set-theoretic remarks on a possible definition of elementary ∞ -topos

Giulio Lo Monaco

Masaryk University

HoTT, 2019 Pittsburgh, Pennsylvania

16 August 2019

An ∞ -category \mathcal{X} is called a geometric ∞ -topos if there is a small ∞ -category \mathcal{C} and an adjunction

$$\mathcal{P}(\mathcal{C}) \xrightarrow[i]{} \overset{L}{\underset{i}{\overset{\perp}{\longrightarrow}}} \mathcal{X}$$

where i is full and faithful, $L \circ i$ is accessible and L preserves all finite limits.

An ∞ -category \mathcal{X} is called a geometric ∞ -topos if there is a small ∞ -category \mathcal{C} and an adjunction

$$\mathcal{P}(\mathcal{C}) \xrightarrow[i]{L} \mathcal{X}$$

where i is full and faithful, $L \circ i$ is accessible and L preserves all finite limits.

In particular, every geometric ∞ -topos is presentable.

Let $f: X \to Y$ a morphism in an ∞ -category \mathcal{E} with pullbacks.

- Let $f: X \to Y$ a morphism in an ∞ -category \mathcal{E} with pullbacks.
 - A dependent sum along f is a left adjoint of the base change $f^* : \mathcal{E}_{/Y} \to \mathcal{E}_{/X}$.

< 3 > < 3 >

Let $f: X \to Y$ a morphism in an ∞ -category \mathcal{E} with pullbacks.

- A dependent sum along f is a left adjoint of the base change $f^* : \mathcal{E}_{/Y} \to \mathcal{E}_{/X}$.
- A dependent product along f, if it exists, is a right adjoint to the base change f^{*} : C_{/Y} → C_{/X}.

< 3 > < 3 > 3

Let $f: X \to Y$ a morphism in an ∞ -category \mathcal{E} with pullbacks.

- A dependent sum along f is a left adjoint of the base change $f^* : \mathcal{E}_{/Y} \to \mathcal{E}_{/X}$.
- A dependent product along *f*, if it exists, is a right adjoint to the base change *f*^{*} : *E*_{/Y} → *E*_{/X}.

Let $f: X \to Y$ a morphism in an ∞ -category \mathcal{E} with pullbacks.

- A dependent sum along f is a left adjoint of the base change $f^* : \mathcal{E}_{/Y} \to \mathcal{E}_{/X}$.
- A dependent product along f, if it exists, is a right adjoint to the base change f^{*} : E_{/Y} → E_{/X}.

Remark

Dependent sums always exist by universal property of pullbacks.

Let $f: X \to Y$ a morphism in an ∞ -category \mathcal{E} with pullbacks.

- A dependent sum along f is a left adjoint of the base change $f^* : \mathcal{E}_{/Y} \to \mathcal{E}_{/X}$.
- A dependent product along f, if it exists, is a right adjoint to the base change f^{*} : E_{/Y} → E_{/X}.

Remark

Dependent sums always exist by universal property of pullbacks.

Proposition

In a geometric ∞ -topos all dependent products exist.

Let S be a class of morphisms in an ∞ -category \mathcal{E} , which is closed under pullbacks.

A classifier for the class S is a morphism $t: \overline{U} \to U$ such that for every object X the operation of pulling back defines an equivalence of ∞ -groupoids

 $\operatorname{Map}(X, U) \simeq (\mathcal{E}^{\mathcal{S}}_{/X})^{\sim}$

An elementary $\infty\text{-topos} \text{ is an } \infty\text{-category } \mathcal E \text{ such that }$

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

э

4

An elementary ∞ -topos is an ∞ -category $\mathcal E$ such that

- E has all finite limits and colimits.
- **2** \mathcal{E} is locally Cartesian closed.
- **③** The class of all monomorphisms in \mathcal{E} admits a classifier.

An elementary ∞ -topos is an ∞ -category $\mathcal E$ such that

- E has all finite limits and colimits.
- **2** \mathcal{E} is locally Cartesian closed.
- **③** The class of all monomorphisms in \mathcal{E} admits a classifier.
- Solution For each morphism f in E there is a class of morphisms S ∋ f such that S has a classifier and is closed under finite limits and colimits taken in overcategories and under dependent sums and products.

An elementary ∞ -topos is an ∞ -category $\mathcal E$ such that

- E has all finite limits and colimits.
- **2** \mathcal{E} is locally Cartesian closed.
- **③** The class of all monomorphisms in \mathcal{E} admits a classifier.
- Solution For each morphism f in E there is a class of morphisms S ∋ f such that S has a classifier and is closed under finite limits and colimits taken in overcategories and under dependent sums and products.

We will only focus on a subaxiom of (4):

Definition

We say that a class of morphisms S satisfies (DepProd) if it has a classifier and it is closed under dependent products

Given a small family $(f_i : \mathcal{K}_i \to \mathcal{L}_i)_{i \in I}$ of accessible functors between presentable ∞ -categories, there are arbitrarily large cardinals κ such that all functors f_i 's preserve κ -compact objects.

Given a small family $(f_i : \mathcal{K}_i \to \mathcal{L}_i)_{i \in I}$ of accessible functors between presentable ∞ -categories, there are arbitrarily large cardinals κ such that all functors f_i 's preserve κ -compact objects.

Example

We may assume that κ-compact objects in a presheaf
 ∞-category are precisely the objectwise κ-compact presheaves.

Given a small family $(f_i : \mathcal{K}_i \to \mathcal{L}_i)_{i \in I}$ of accessible functors between presentable ∞ -categories, there are arbitrarily large cardinals κ such that all functors f_i 's preserve κ -compact objects.

Example

- We may assume that κ-compact objects in a presheaf
 ∞-category are precisely the objectwise κ-compact presheaves.
- Given a diagram shape R, we may assume that κ-compact objects are stable under R-limits.

.

Given a small family $(f_i : \mathcal{K}_i \to \mathcal{L}_i)_{i \in I}$ of accessible functors between presentable ∞ -categories, there are arbitrarily large cardinals κ such that all functors f_i 's preserve κ -compact objects.

Example

- We may assume that κ-compact objects in a presheaf
 ∞-category are precisely the objectwise κ-compact presheaves.
- Given a diagram shape R, we may assume that κ-compact objects are stable under R-limits.
- We may assume that many such properties hold for the same cardinal.

同 ト イ ヨ ト イ ヨ ト

A morphism $f : X \to Y$ in an ∞ -category is said to be relatively κ -compact if for every κ -compact object Z and every diagram

the object W is also κ -compact.

A morphism $f : X \to Y$ in an ∞ -category is said to be relatively κ -compact if for every κ -compact object Z and every diagram

the object W is also κ -compact.

Theorem (Rezk)

In a geometric ∞ -topos, there are arbitrarily large cardinals κ such that the class S_{κ} of relatively κ -compact morphisms has a classifier.

Theorem

Fixing a Grothendieck universe \mathcal{U} , every geometric ∞ -topos satisfies (DepProd) if and only if there are unboundedly many inaccessible cardinals below the cardinality of \mathcal{U} .

伺 ト く ヨ ト く ヨ ト

Theorem

Fixing a Grothendieck universe U, every geometric ∞ -topos satisfies (DepProd) if and only if there are unboundedly many inaccessible cardinals below the cardinality of U.

First, prove \Leftarrow .

We want to use Rezk's theorem to find universes in the form S_{κ} . We will need uniformization and the hypothesis to find suitable κ 's.

(*) *) *) *)

Theorem

Fixing a Grothendieck universe U, every geometric ∞ -topos satisfies (DepProd) if and only if there are unboundedly many inaccessible cardinals below the cardinality of U.

First, prove \Leftarrow .

We want to use Rezk's theorem to find universes in the form S_{κ} . We will need uniformization and the hypothesis to find suitable κ 's.

Step 1. In the ∞ -category S of spaces, if κ is inaccessible then κ -compact objects are stable under exponentiation.

伺 と く ヨ と く ヨ と

$$F^{G}(C) = \int_{D \in C} \operatorname{Map}(\operatorname{Map}(D, C) \times G(D), F(D))$$

伺 ト く ヨ ト く ヨ ト

э

$$F^{G}(C) = \int_{D \in C} Map(Map(D, C) \times G(D), F(D))$$

By uniformization, we may choose a cardinal κ such that:

κ-compactness is detected objectwise

$$F^{G}(C) = \int_{D \in C} Map(Map(D, C) \times G(D), F(D))$$

- κ-compactness is detected objectwise
- all representables are κ -compact

$$F^{G}(C) = \int_{D \in C} Map(Map(D, C) \times G(D), F(D))$$

- κ-compactness is detected objectwise
- all representables are κ -compact
- κ -compact spaces are stable under binary products

$$F^{G}(C) = \int_{D \in C} Map(Map(D, C) \times G(D), F(D))$$

- κ-compactness is detected objectwise
- all representables are κ -compact
- κ -compact spaces are stable under binary products
- κ-compact spaces are stable under exponentiation (Step 1)

$$F^{G}(C) = \int_{D \in C} Map(Map(D, C) \times G(D), F(D))$$

- κ-compactness is detected objectwise
- all representables are κ -compact
- κ-compact spaces are stable under binary products
- κ-compact spaces are stable under exponentiation (Step 1)
- κ -compact spaces are stable under C-ends

$$F^{G}(C) = \int_{D \in C} Map(Map(D, C) \times G(D), F(D))$$

- κ-compactness is detected objectwise
- all representables are κ -compact
- κ-compact spaces are stable under binary products
- κ-compact spaces are stable under exponentiation (Step 1)
- κ -compact spaces are stable under C-ends
- $\Rightarrow \kappa$ -compact presheaves are stable under exponentiation.

Step 3. Given an adjunction

$$\mathcal{P}(\mathcal{C}) \xrightarrow[i]{} \stackrel{L}{\longleftarrow} \mathcal{X}$$

making \mathcal{X} a geometric ∞ -topos, choose κ such that (Step 2) holds in $\mathcal{P}(\mathcal{C})$.

伺 とくき とくき とうき

Step 3. Given an adjunction

$$\mathcal{P}(\mathcal{C}) \xrightarrow[i]{} \stackrel{L}{\longleftarrow} \mathcal{X}$$

making \mathcal{X} a geometric ∞ -topos, choose κ such that (Step 2) holds in $\mathcal{P}(\mathcal{C})$.

The properties of $L \dashv i$ will transfer stability of κ -compact objects under exponentiation to \mathcal{X} .

御 と くき とくき とうき

$$\prod_{X} p = Z^X \times_{X^X} \{p\}$$

伺 と く ヨ と く ヨ と …

$$\prod_{X} p = Z^X \times_{X^X} \{p\}$$

Choose κ such that (Step 3) holds and κ -compact objects are stable under pullbacks

(*) *) *) *)

$$\prod_{X} p = Z^X \times_{X^X} \{p\}$$

Choose κ such that (Step 3) holds and κ -compact objects are stable under pullbacks \Rightarrow relatively κ -compact morphisms are stable under dependent products along terminal morphisms.

$$\prod_{X} p = Z^X \times_{X^X} \{p\}$$

Choose κ such that (Step 3) holds and κ -compact objects are stable under pullbacks \Rightarrow relatively κ -compact morphisms are stable under dependent products along terminal morphisms.

Step 5. For generic dependent products, decompose the codomain as a colimit of compact objects Y_i 's and then choose κ such that (Step 4) holds in all ∞ -toposes $\mathcal{X}_{/Y_i}$.

伺 と く ヨ と く ヨ と …

Main result

Now prove \Rightarrow .

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

æ

伺 と く ヨ と く ヨ と …

For a discrete space X, the terminal morphism $X \to *$ is contained in a class S having a classifier $t : \overline{U} \to U$ such that

For a discrete space X, the terminal morphism $X \to *$ is contained in a class S having a classifier $t : \overline{U} \to U$ such that

(B) (B) (B)

For a discrete space X, the terminal morphism $X \to *$ is contained in a class S having a classifier $t : \overline{U} \to U$ such that

• Assume that all fibers of t are discrete.

For a discrete space X, the terminal morphism $X \to *$ is contained in a class S having a classifier $t : \overline{U} \to U$ such that

- Assume that all fibers of t are discrete.
- For each point in U, its fiber along t can be regarded as a set.

(B) (B) (B)

Giulio Lo Monaco Set-theoretic remarks on a possible definition of elementary ∞ -te

▲ロト ▲暦 ▶ ▲ 臣 ▶ ▲ 臣 ● ● ● ●

- ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ● � � � �

• $\kappa > |X|$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- $\kappa > |X|$.
- For $\lambda, \mu < \kappa$, closure under dependent products $\Rightarrow \mu^{\lambda} < \kappa$.

• $\kappa > |X|$.

• For $\lambda, \mu < \kappa$, closure under dependent products $\Rightarrow \mu^{\lambda} < \kappa$.

• In non-trivial cases, $\sum_{i \in I} \alpha_i \leq \prod_{i \in I} \alpha_i$

- $\kappa > |X|$.
- For $\lambda, \mu < \kappa$, closure under dependent products $\Rightarrow \mu^{\lambda} < \kappa$.
- In non-trivial cases, $\sum_{i \in I} \alpha_i \leq \prod_{i \in I} \alpha_i \Rightarrow \kappa$ is regular.

<u>Geometric</u> ⊊ elementary

伺 ト く ヨ ト く ヨ ト

э

We call a cardinal μ 1-inaccessible if it is inaccessible and there are unboundedly many inaccessibles below it.

.⊒ ▶ ∢

We call a cardinal μ 1-inaccessible if it is inaccessible and there are unboundedly many inaccessibles below it.

Assume the existence of a 1-inaccessible cardinal μ inside the Grothendieck universe.

We call a cardinal μ 1-inaccessible if it is inaccessible and there are unboundedly many inaccessibles below it.

Assume the existence of a 1-inaccessible cardinal μ inside the Grothendieck universe.

Given a geometric $\infty\text{-topos}\ \mathcal{X}$, take

 $\mathcal{X}^{\mu} \subset \mathcal{X}.$

We call a cardinal μ 1-inaccessible if it is inaccessible and there are unboundedly many inaccessibles below it.

Assume the existence of a 1-inaccessible cardinal μ inside the Grothendieck universe.

Given a geometric ∞ -topos $\mathcal X$, take

$$\mathcal{X}^{\mu} \subset \mathcal{X}.$$

 $\Rightarrow \mathcal{X}^{\mu}$ is not a geometric ∞ -topos (it doesn't have all small colimits), but it is an elementary ∞ -topos.

Thank you!

<ロ> <同> <同> < 同> < 同>

æ