Universal Algebra in HoTT

Andreas Lynge and Bas Spitters

Aarhus University

August 13, 2019

Introduction

- Universal algebra is a general study of algebraic structures.
 The results in universal algebra apply to all "algebras", e.g. groups, rings, modules.
- We have formalized a part of universal algebra in the HoTT library for Coq, including the three isomorphism theorems.
- Based on the math-classes library.
- Type theoretic universal algebra often relies on setoids.
- We avoid setoids in the HoTT library, quotient sets are HITs.

Group

Example (Group)

A group is an h-set G : Set with

- unit e : G
- multiplication $\cdot : G \to G \to G$
- inversion $(-)^{-1}: G \to G$
- satisfying certain equations, e.g. $x \cdot x^{-1} = e$ for all x : G.

Group acting on a set

Example (Group)

A group is an h-set G: Set with

- unit e : G
- multiplication $\cdot: G \to G \to G$
- inversion $(-)^{-1}: G \to G$
- satisfying certain equations, e.g. $x \cdot x^{-1} = e$ for all x : G.

Example (Group acting on a set)

A group acting on a set is a group G and an h-set S with

- action $\alpha: G \to S \to S$
- $\alpha(x \cdot y) = \alpha(x) \circ \alpha(y)$
- $\alpha(e) = \mathrm{id}_S$

Signature

Definition (Signature)

A signature σ : Signature consists of

- $\mathsf{Sort}(\sigma) : \mathcal{U}$
- Symbol(σ) : \mathcal{U}
- for each $u : \mathsf{Symbol}(\sigma)$, $\sigma_u : \mathsf{Sort}(\sigma) \times \mathsf{List}(\mathsf{Sort}(\sigma))$.

Algebra

Definition (Signature)

A signature σ : Signature consists of

- Sort(σ) : \mathcal{U}
- Symbol(σ) : \mathcal{U}
- for each $u : \mathsf{Symbol}(\sigma)$, $\sigma_u : \mathsf{Sort}(\sigma) \times \mathsf{List}(\mathsf{Sort}(\sigma))$.

Definition (Algebra)

An algebra A : Algebra (σ) for σ : Signature consists of

- for each $s : Sort(\sigma)$, $A_s : Set$
- for each u: Symbol (σ) , u^A : $A_{s_1} \to A_{s_2} \to \cdots \to A_{s_n}$, where $(s_1, [s_2, \ldots, s_n]) :\equiv \sigma_u$.

Example (Group acting on a set)

A group G acting on a set S,

- unit e : G
- multiplication $\cdot: G \to G \to G$
- inversion $(-)^{-1}: G \to G$
- action $\alpha: G \to S \to S$.
- Sort $(\sigma) \equiv \{g, s\}$
- Symbol(σ) \equiv {u, m, i, a}
- $u^A : A_{\sigma}$ is unit
- $m^A: A_g \to A_g \to A_g$ is multiplication
- $i^A: A_g \to A_g$ is inversion
- Carriers $A_g :\equiv G$ and $A_s :\equiv S$, and operations

- is an algebra A: Algebra (σ) for σ : Signature with

 - $\sigma_{ij} \equiv (g, []), \ \sigma_{m} \equiv (g, [g, g]), \ \sigma_{ij} \equiv (g, [g]), \ \sigma_{a} \equiv (g, [s, s]).$
 - $a^A: A_{\sigma} \to A_{\varsigma} \to A_{\varsigma}$ is the action.

Let A, B, C: Algebra (σ) .

Homomorphism

Let A, B, C: Algebra (σ) .

Definition (Homomorphism)

A homomorphism $f: A \rightarrow B$ consists of

- $f_s: A_s \to B_s$ for all $s: Sort(\sigma)$
- $f_{s_t}(u^A(x_1,\ldots,x_n)) = u^B(f_{s_1}(x_1),\ldots,f_{s_n}(x_n)),$ for all $u: \mathsf{Symbol}(\sigma).$

Isomorphism

Let A, B, C: Algebra (σ) .

Definition (Homomorphism)

A homomorphism $f: A \rightarrow B$ consists of

- $f_s: A_s \to B_s$ for all $s: Sort(\sigma)$
- $f_{s_t}(u^A(x_1,\ldots,x_n)) = u^B(f_{s_1}(x_1),\ldots,f_{s_n}(x_n)),$ for all $u: \mathsf{Symbol}(\sigma).$

Definition (Isomorphism)

An isomorphism is a homomorphism $f: A \to B$ where $f_s: A_s \to B_s$ is an equivalence for all $s: Sort(\sigma)$.

Isomorphic

Let A, B, C: Algebra (σ) .

Definition (Homomorphism)

A homomorphism $f: A \rightarrow B$ consists of

- $f_s: A_s \to B_s$ for all $s: Sort(\sigma)$
- $f_{s_t}(u^A(x_1,\ldots,x_n)) = u^B(f_{s_1}(x_1),\ldots,f_{s_n}(x_n)),$ for all $u: \mathsf{Symbol}(\sigma).$

Definition (Isomorphism)

An isomorphism is a homomorphism $f: A \to B$ where $f_s: A_s \to B_s$ is an equivalence for all $s: \operatorname{Sort}(\sigma)$.

Definition (Isomorphic)

Write $A \cong B$ for there is an isomorphism $A \to B$.

Isomorphic implies equal

Theorem (Isomrophic implies equal)

If
$$A \cong B$$
 then $A = B$.

• Coquand and Danielsson, Isomorphism is equality.

Lemma

Theorem (Isomrophic implies equal)

If $A \cong B$ then A = B.

· Coquand and Danielsson, Isomorphism is equality.

Lemma

Suppose

- $X, Y : Sort(\sigma) \rightarrow Set$
- $\alpha: X_{s_1} \to \cdots \to X_{s_n} \to X_t$ and $\beta: Y_{s_1} \to \cdots \to Y_{s_n} \to Y_t$
- $f: \prod_s X_s \simeq Y_s$
- $f_t(\alpha(x_1,\ldots,x_n)) = \beta(f_{s_1}(x_1),\ldots,f_{s_n}(x_n)).$

Then

$$\operatorname{transport}^{(\lambda Z.\ Z_{s_1} \to \cdots \to Z_{s_n} \to Z_t)} \underbrace{(\operatorname{funext}(\operatorname{ua} \circ f))}_{X=Y}(\alpha) = \beta$$

Precategory of algebras

Lemma (Precategory of algebras)

There is a precategory $\sigma ext{-}\mathbf{Alg}$ of $\mathsf{Algebra}(\sigma)$ and homomorphisms,

- $(1_A)_s \equiv \lambda x. \ x$, $s : Sort(\sigma)$
- $(gf)_s \equiv g_s \circ f_s$, $f: A \to B, g: B \to C$

Equal is equivalent to isomorphic

Lemma (Precategory of algebras)

There is a precategory $\sigma\text{-}\mathbf{Alg}$ of $\mathsf{Algebra}(\sigma)$ and homomorphisms,

- $(1_A)_s \equiv \lambda x. \ x$, $s : Sort(\sigma)$
- $(gf)_s \equiv g_s \circ f_s$, $f: A \to B, g: B \to C$

Theorem (Equal is equivalent to isomorphic)

The function $(A = B) \rightarrow (A \cong B)$ is an equivalence.

Univalent category of algebras

Lemma (Precategory of algebras)

There is a precategory σ -Alg of Algebra (σ) and homomorphisms,

- $(1_A)_s \equiv \lambda x. \ x$, $s : Sort(\sigma)$
- $(gf)_s \equiv g_s \circ f_s$, $f: A \to B, g: B \to C$

Theorem (Equal is equivalent to isomorphic)

The function $(A = B) \rightarrow (A \cong B)$ is an equivalence.

Theorem (Univalent category of algebras)

The precategory σ -Alg is a univalent category.

- HoTT book, http://homotopytypetheory.org/book.
- Arhens and Lumsdaine, Displayed Categories.

Congruence

Definition (Congruence)

A congruence on A is a family of mere equivalence relations

$$\Theta:\prod_{s}(A_{s} o A_{s} o \mathsf{Prop})$$
 where

$$\Theta_{s_1}(x_1, y_1) \times \cdots \times \Theta_{s_n}(x_n, y_n)$$
 implies

$$\Theta_{s_t} (u^A(x_1, \dots, x_n), u^A(y_1, \dots, y_n))$$
 for all $u : \mathsf{Symbol}(\sigma)$.

Quotient algebra

Definition (Congruence)

A congruence on A is a family of mere equivalence relations

$$\Theta:\prod_{s}(A_{s} \to A_{s} \to \mathsf{Prop})$$
 where

$$\Theta_{s_1}(x_1,y_1) \times \cdots \times \Theta_{s_n}(x_n,y_n)$$
 implies

$$\Theta_{s_t}(u^A(x_1,\ldots,x_n),u^A(y_1,\ldots,y_n))$$
 for all $u:\mathsf{Symbol}(\sigma).$

Definition (Quotient algebra)

Let $\Theta:\prod_s(A_s\to A_s\to {\sf Prop})$ be a congruence. The quotient algebra A/Θ consists of

- $(A/\Theta)_s := A_s/\Theta_s$, the set-quotient
- operations $u^{A/\Theta} (q_1(x_1), \ldots, q_n(x_n)) = q_t (u^A(x_1, \ldots, x_n))$, where $q_i : A_{s_i} \to A_{s_i}/\Theta_{s_i}$ are the set-quotient constructors.

Suppose $\Theta: \prod_s (A_s \to A_s \to \mathsf{Prop})$ is a congruence.

Quotient homomorphism

Suppose $\Theta: \prod_s (A_s \to A_s \to \mathsf{Prop})$ is a congruence.

Lemma (Quotient homomorphism)

There is a homomorphism $\rho: A \to A/\Theta$, pointwise $A_s \to A_s/\Theta_s$.

Quotient universal property

Suppose $\Theta: \prod_s (A_s \to A_s \to \mathsf{Prop})$ is a congruence.

Lemma (Quotient homomorphism)

There is a homomorphism $\rho: A \to A/\Theta$, pointwise $A_s \to A_s/\Theta_s$.

Lemma (Quotient universal property)

Precomposition with $\rho: A \to A/\Theta$ induces an equivalence $(A/\Theta \to B) \simeq \sum_{f:A \to B} \operatorname{resp}(f),$ where $\operatorname{resp}(f) :\equiv \prod_{s:\operatorname{Sort}(\sigma)} \prod_{x,y:A_s} \left(\Theta_s(x,y) \to f_s(x) = f_s(y)\right).$

Let $f: A \to B$ such that resp(f). Then there is a unique $p: A/\Theta \to B$ satisfying f = pq.

Coequalizers in σ -**Alg** are quotient algebras.

Product algebra

Product algebra

Let $F:I \to \mathsf{Algebra}(\sigma)$. The product algebra $\times_i F(i)$ has carriers $(\times_i F(i))_s \equiv \prod_i (F(i))_s$

There are projection homomorphisms $\pi_j : \times_i F(i) \to F(j)$. Products in σ -**Alg** are product algebras.

Subalgebra

Product algebra

Let $F:I \to \mathsf{Algebra}(\sigma)$. The product algebra $\times_i F(i)$ has carriers $(\times_i F(i))_s \equiv \prod_i (F(i))_s$

There are projection homomorphisms $\pi_j : \times_i F(i) \to F(j)$. Products in σ -**Alg** are product algebras.

Subalgebra

Let
$$P: \prod_s (A_s \to \mathsf{Prop})$$
 such that, for any $u: \mathsf{Symbol}(\sigma)$, $P_{s_1}(x_1) \times \cdots \times P_{s_n}(x_n)$ implies $P_{n+1}(u^A(x_1, \dots, x_n))$, where $(s_1, [s_2, \dots, s_{n+1}]) \equiv \sigma_u$. Then there is a subalgebra $A\&P$ with carriers $(A\&P)_s \equiv \sum_{x:A_s} P_s(x)$

There exists an inclusion homomorphism $(A\&P) \to A$. Equalizers in σ -**Alg** are subalgebras.

First isomorphism theorem

Theorem (First isomorphism/identification theorem)

Let $f: A \rightarrow B$ be a homomorphism.

- $\ker(f)(s, x, y) := (f_s(x) = f_s(y))$ is a congruence.
- $\operatorname{inim}(f)(s,y) := \|\sum_{x} (f_s(x) = y)\|$ is closed under operations, so it induces a subalgebra $B\& \operatorname{inim}(f)$ of B.
- There exists an isomorphism $A/\ker(f) \to B\& \operatorname{inim}(f)$.

First identification theorem

Theorem (First isomorphism/identification theorem)

Let $f: A \rightarrow B$ be a homomorphism.

- $\ker(f)(s, x, y) := (f_s(x) = f_s(y))$ is a congruence.
- $\operatorname{inim}(f)(s,y) := \|\sum_{x} (f_s(x) = y)\|$ is closed under operations, so it induces a subalgebra $B\& \operatorname{inim}(f)$ of B.
- There exists an isomorphism $A/\ker(f) \to B\& \operatorname{inim}(f)$.
- Therefore $A/\ker(f) = B\& \operatorname{inim}(f)$.

The category of algebras is regular

Theorem (First isomorphism/identification theorem)

Let $f: A \rightarrow B$ be a homomorphism.

- $\ker(f)(s, x, y) := (f_s(x) = f_s(y))$ is a congruence.
- $\operatorname{inim}(f)(s,y) := \|\sum_{x} (f_s(x) = y)\|$ is closed under operations, so it induces a subalgebra $B\& \operatorname{inim}(f)$ of B.
- There exists an isomorphism $A/\ker(f) \to B\& \operatorname{inim}(f)$.
- Therefore A/ker(f) = B& inim(f).

Category σ -**Alg** is regular,

- $f: A \to B$ image factorizes $A \to B\& \operatorname{inim}(f) \hookrightarrow B$
- · images are pullback stable.
- σ-Alg is complete

Conclusion and future work

- Type theoretic universal algebra without setoids.
- Port free algebras from math-classes.
- Define variety (equational theory), a subtype of Algebra (σ) satisfying equational laws involving operations.
- Birkhoff's HSP theorem.
- A verified computer algebra library.