
Toward a Cubical Type Theory Univalent by
Definition

Hugo Moeneclaey,
ENS Paris-Saclay

joint work with:

Hugo Herbelin,
INRIA

HoTT 2019

1

Summary

Introduction: Cubical Type Theory and Parametricity

Sketching our theory

2

Summary

Introduction: Cubical Type Theory and Parametricity

Sketching our theory

3

Computing with univalence

Features of Cubical Type Theory [Cohen, Coquand, Huber,
Mörtberg 2016]

Apart from an abstract interval, it has:

I Connections allowing to degenerate a path to a square.

I Reversal allowing to go through a path backward.

I Kan compositions generalizing the concatenation of paths.

I Glue types, necessary to prove univalence.

Theorem [Huber 2018]

Cubical Type Theory enjoys canonicity.

4

In this talk

We present an ongoing attempt to build a variant of Cubical Type
Theory where we have univalence by definition:

(A =U B) ≡ (A ' B)

We mainly use ideas from parametricity.

5

Parametricity

Intuition

Terms built in type theory depend nicely on their type inputs.

Formally: terms send related inputs to related outputs
[Reynolds 83].

Applications: Theorems for free! [Wadler 89]

Deduce a result on a polymorphic term from its type.

6

An example of parametricity

Assume given X0,X1 : U and X∗ : X0 → X1 → U .

Definition

For any simple type A built from X we extend X∗ to:

A∗ : A[X/X0]→ A[X/X1]→ U

by:

(A× B)∗((a, a′), (b, b′)) ≡ A∗(a, a
′)× B∗(b, b

′)

(A→ B)∗(f , g) ≡ (x0 : A0)→ (x1 : A1)

→ A∗(x0, x1)→ B∗(f (x0), g(x1))

7

Parametricity result

For any simple type A built from X and a such that:

` a : A

there exists a∗ such that:

` a∗ : A∗(a[X/X0], a[X/X1])

Can be extended to PTS and inductive types [Bernardy, Jansson,
Paterson 2010], the crucial point being:

U∗(A,B) ≡ A→ B → U

8

Internal parametricity

Parametricity is external, but it can be internalized.

Parametric Type Theory [Bernardy, Coquand, Moulin 2015]

Strikingly similar to Cubical Type Theory.
We denote by x ∼A y the analogue to path types. We have the
relativity axiom, in this case:

(A ∼U B) ∼= (A→ B → U)

where ∼= stands for definitional isomorphism.

They use predicates rather than relations.

9

Parametricity and higher dimensional type theory

Ideas flow both ways:

Examples

I [Cavalo, Harper 2018] presents a type theory both Parametric
and Higher-dimensional. Relativity is formulated as:

(A ∼U B) ' (A→ B → U)

I [Altenkirch, Kaposi 2017] presents ideas toward a higher
dimensional type theory without interval, inspired by
parametricity.

I [Tabareau, Tanter, Sozeau 2017] implements ideas from
parametricity in order to mechanize the transfer of some
libraries along equivalences in Coq.

10

Examples with extensionality

I In Observational Type Theory [Altenkirch, McBride, Swierstra
2007] identity types are defined by induction on a a closed
universe.

I XTT [Angiuli, Gratzer, Sterling 2019] uses cubical techniques,
but two paths with the same endpoints are definitionally equal.

11

Summary

Introduction: Cubical Type Theory and Parametricity

Sketching our theory

12

A core type theory

We start with all the rules for a type theory with:

I Σ and Π with η-rules.

I A hierarchy of universes, all denoted U .

13

Heterogeneous path types

We denote =λi .A by =A when i does not occur in A.

Definition

We add heterogeneous path types:

Γ ` ε : X =U Y
Γ ` =ε : X → Y → U

Γ, i ` t : A

Γ ` λi .t : t[i/0] =λi .A t[i/1]

Γ, i , Γ′ ` p : s =ε t

Γ, i , Γ′ ` p(i) : ε(i)

For p : a0 =ε a1, we define (p(i))[i/u] as au[i/u] where u ∈ {0, 1}.

14

Equivalences

Definition

An equivalence ε : A ' B consists of a relation R : A→ B → U
with contractible fibers. In particular we have:

I Functions −→ε : A→ B and
−→−→ε : (x : A)→ R(x ,−→ε (x)).

I Functions ←−ε : B → A and
←−←−ε : (y : B)→ R(←−ε (y), y).

We add:

(X =U Y) ≡ (X ' Y)

We identify =ε with the underlying relation of ε : A =U B.

15

Computing with path types: some examples

For product types we add:

(a, b) =λi .A×B (a′, b′) ≡ (a =λi .A a′)× (b =λi .B b′)
−−−−−−→
λi .A× B(a, b) ≡

(−−→
λi .A(a),

−−→
λi .B(b)

)
−−−−−−→−−−−−−→
λi .A× B(a, b) ≡

(−−→−−→
λi .A(a),

−−→−−→
λi .B(b)

)
(λi .c).1 ≡ λi .(c.1)

(p, q)(i) ≡ (p(i), q(i))

16

For function types we add:

f =λi .A→B g ≡ (x0 : A[i/0])→ (x1 : A[i/1])

→ x0 =λi .A x1 → f (x0) =λi .B g(x1)
−−−−−−→
λi .A→ B(f) ≡

−−→
λi .B ◦ f ◦

←−−
λi .A

(λi .f)(a0, a1, a∗) ≡ λi .f (a∗(i))

(λa0, a1, a∗. t)(i) ≡ ?

17

Computing with path types: regularity

When i does not occur in A, we add:

−−→
λi .A ≡ λ(x : A). x
−−→−−→
λi .A ≡ λ(x : A). reflx

Warning

This is not known to be consistent with univalence.

18

Toward full computation

How to add type formers

For any type former T , we need to give computation rules for:

I Components of the equivalence λi .T (A,B), for example:

t1 =λi .T (A,B) t2 ≡ C (t1, t2, λi .A, λi .B)

I elim=(λi .t) with elim= eliminator of C .

I cons=(t)(i) with cons= constructor of C .

We have all rules for Σ and Π, except for:

(λa0, a1, a∗. t)(i)

These rules respect regularity.

19

A guess for normal forms

We write Equiv(ε) for the second projection of ε : A =U B.
We write 〈 , · · · , 〉 for the constructor of equivalences.

Definition

We define the set neutral terms N and values V by induction:

N := x | N(i) | N.1 | N.2 | N(V) |
=λi .N | Equiv(λi .N) | 〈V , · · · ,V 〉(i)

V := N | λi .V | (V ,V) | λx .V |
Σ(x : V).V | Π(x : V).V | U

20

Toward interpretation

How to justify this theory?

Iterated parametricity

We hope for a translation similar to parametricity, but with:

U∗(A,B) ≡ A ' B

Then this translation should be iterated once per dimension name.

21

Further work

I We need to solve the problem with Π-types.

I We need to give an interpretation. Is regularity consistent?

I What about confluence, normalization, canonicity?

I What about inductive types? And higher inductive types?

I Can we internalize parametricity similarly?

I Can we internalize other principles this way?

22

	Introduction: Cubical Type Theory and Parametricity
	Sketching our theory

