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Cubical Methods

HoTT/UF was originally justified by semantics in Kan simplicial sets,
inherently classical

Problem: how to make this constructive?

Theorem (Bezem, Coquand, Huber, 2013)

Univalent Type Theory has a constructive model in “substructural” Kan
cubical sets (“BCH model”).

This led to development of a variety of cubical set models
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Cubical Methods

Inspired by BCH we constructed a model based on “structural” cubical
sets with connections and reversals:

Theorem (Cohen, Coquand, Huber, M., 2015)

Univalent Type Theory has a constructive model in De Morgan Kan
cubical sets (“CCHM model”).

We also developed a cubical type theory in which we can prove and
compute with the univalence theorem

Variations: distributive lattice cubes (“Dedekind model”) and connection
algebra cubes (“OP model”)...
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Cubical Methods

In parallel with the developments in Sweden many people at CMU were
working on models based on cartesian cubical sets

These cubical sets have some nice properties compared to CCHM cubical
sets (Awodey, 2016)

The crucial idea for constructing univalent universes in cartesian cubical
sets was found by Angiuli, Favonia, and Harper (AFH, 2017) when
working on computational cartesian cubical type theory. This then led to:

Theorem (Angiuli, Brunerie, Coquand, Favonia, Harper, Licata, 2017)

Univalent Type Theory has a constructive model in cartesian Kan cubical
sets (“ABCFHL model”).
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Higher inductive types

Many of these models support universes closed under HITs:

CCHM style cubes: Coquand, Huber, M. (2018)

Cartesian cubes: Cavallo, Harper (2018)

BCH: as far as I know not known even for S1, problems related to
Path(A) := I( A

In summary: we get many cubical set models of HoTT/UF

This work: how are these cubical set models related?
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Cubical Type Theory

What makes a type theory “cubical”?

Add a formal interval I:

r, s ::= 0 | 1 | i

Extend the contexts to include interval variables:

Γ ::= • | Γ, x : A | Γ, i : I
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Proof theory

Γ, i : I ` J
Γ ` J (ε/i)

face

Γ ` J
Γ, i : I ` J

weakening

Γ, i : I, j : I ` J
Γ, j : I, i : I ` J

exchange

Γ, i : I, j : I ` J
Γ, i : I ` J (j/i)

contraction

Semantics

Γ Γ, i : I
diε

Γ, i : I Γ
σi

Γ, j : I, i : I Γ, i : I, j : I
τi,j

Γ, i : I Γ, i : I, j : I
δi,j
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Cubical Type Theory

All cubical set models have face maps, degeneracies and symmetries

BCH does not have contraction/diagonals, making it substructural

The cartesian models have contraction/diagonals, making them a good
basis for cubical type theory

We can also consider additional structure on I:

r, s ::= 0 | 1 | i | r ∧ s | r ∨ s | ¬r

Axioms: connection algebra (OP model), distributive lattice (Dedekind
model), De Morgan algebra (CCHM model), Boolean algebra...

Varieties of Cubical Sets - Buchholtz, Morehouse (2017)
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Kan operations / fibrations

To get a model of HoTT/UF we also need to equip all types with Kan
operations: any open box can be filled

Given (r, s) ∈ I× I we add operations:

Γ, i : I ` A Γ ` r : I Γ ` s : I
Γ ` ϕ : Φ Γ, ϕ, i : I ` u : A Γ ` u0 : A(r/i)[ϕ 7→ u(r/i)]

Γ ` comr→s
i A [ϕ 7→ u]u0 : A(s/i)[ϕ 7→ u(s/i), (r = s) 7→ u0]

Semantically this corresponds to fibration structures

The choice of which (r, s) to include varies between the different models
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Cube shapes / generating cofibrations

Another parameter: which shapes of open boxes are allowed (Φ)

Semantically this corresponds to specifying the generating cofibrations,
typically these are classified by maps into Φ where Φ is taken to be a
subobject of Ω

The crucial idea for supporting univalent universes in AFH was to include
“diagonal cofibrations” – semantically this corresponds to including
∆I : I→ I× I as a generating cofibration
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Cubical set models of HoTT/UF

Structural I operations Kan operations Diag. cofib.

BCH 0 → r, 1 → r

CCHM X ∧, ∨, ¬ (DM alg.) 0 → 1

Dedekind X ∧, ∨ (dist. lattice) 0 → 1, 1 → 0

OP X ∧, ∨ (conn. alg.) 0 → 1, 1 → 0

AFH, ABCFHL X r → s X

This work: cartesian cubical set model without diagonal cofibrations

Key idea: don’t require the (r = s) condition in com strictly, but only up
to a path
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Cubical set models of HoTT/UF

Question: which of these cubical set models give rise to model structures
where the fibrations correspond to the Kan operations?

Theorem (Sattler, 2017): constructive model structure using ideas from
the cubical models for CCHM, Dedekind and OP models

Theorem (Awodey, Coquand-Sattler): model structure for cartesian
cubical sets based on AFH/ABCFHL/unbiased fibrations with diagonal
cofibrations

This work: generalize this to the setting without connections and
diagonal cofibrations
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Orton-Pitts internal language model

We present our model in the internal language of �
∧

following

Axioms for Modelling Cubical Type Theory in a Topos
Orton, Pitts (2017)

We also formalize it in Agda and for univalent universes we rely on1

Internal Universes in Models of Homotopy Type Theory
Licata, Orton, Pitts, Spitters (2018)

In fact, none of the constructions rely on the subobject classifier Ω : �
∧

, so
we work with an axiomatization in the internal language of a LCCC C with
a hierarchy of internal universes U0 : U1...2

1Disclaimer: only on paper so far, not yet formalized.
2This is similar to setup in ABCFHL.
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The interval I

The axiomatization begin with an interval type

I : U 0 : I 1 : I

satisfying

ax1 : (P : I→ U)→ ((i : I)→ P i ] ¬(P i))→
((i : I)→ P i) ] ((i : I)→ ¬(P i))

ax2 : ¬(0 = 1)
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Cofibrant propositions

We also assume a universe à la Tarski of generating cofibrant propositions

Φ : U [ ] : Φ→ hProp

with operations

( ≈ 0) : I→ Φ ∨ : Φ→ Φ→ Φ

( ≈ 1) : I→ Φ ∀ : (I→ Φ)→ Φ

satisfying

ax3 : (i : I)→ [ (i ≈ 0) ] = (i = 0)

ax4 : (i : I)→ [ (i ≈ 1) ] = (i = 1)

ax5 : (ϕψ : Φ)→ [ϕ ∨ ψ ] = [ϕ ] ∨ [ψ ]

ax6 : (ϕ : Φ) (A : [ϕ ]→ U) (B : U) (s : (u : [ϕ ])→ A u ∼= B)→
Σ(B′ : U),Σ(s′ : B′ ∼= B), (u : [ϕ ])→ (A u, s u) = (B′, s′)

ax7 : (ϕ : I→ Φ)→ [∀ϕ ] = (i : I)→ [ϕ i ]
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Partial elements

A partial element of A is a term f : [ϕ ]→ A

Given such a partial element f and an element x : A, we define the
extension relation

f ↗ x , (u : [ϕ ])→ f u = x

We write

A[ϕ 7→ f ] , Σ(x : A), f ↗ x

Given f : [ϕ ]→ Path(A) and r : I we write

f · r , λu.f u r : [ϕ ]→ A r
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Weak composition

Given r : I, A : I→ U , ϕ : Φ, f : [ϕ ]→ Path(A) and
x0 : (A r)[ϕ 7→ f · i], a weak composition structure is given by two
operations

wcom : (s : I)→ (A s)[ϕ 7→ f · s]
wcom : fst (wcom r) ∼ fstx0

satisfying (i : I)→ f · r ↗ wcom i.

A weak fibration (A,α) over Γ : U is a family A : Γ→ U equipped with

isFib A , (r : I) (p : I→ Γ) (ϕ : Φ) (f : [ϕ ]→ (i : I)→ A(p i))

(x0 : A(p r)[ϕ 7→ f · r])→WComp r (A ◦ p) ϕ f x0

A. Mörtberg August 12, 2019 17 / 26



Weak composition

Given r : I, A : I→ U , ϕ : Φ, f : [ϕ ]→ Path(A) and
x0 : (A r)[ϕ 7→ f · i], a weak composition structure is given by two
operations

wcom : (s : I)→ (A s)[ϕ 7→ f · s]
wcom : fst (wcom r) ∼ fstx0

satisfying (i : I)→ f · r ↗ wcom i.

A weak fibration (A,α) over Γ : U is a family A : Γ→ U equipped with

isFib A , (r : I) (p : I→ Γ) (ϕ : Φ) (f : [ϕ ]→ (i : I)→ A(p i))

(x0 : A(p r)[ϕ 7→ f · r])→WComp r (A ◦ p) ϕ f x0
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Example: weak composition

Given u0 and u1 at (j ≈ 0) and (j ≈ 1) together with x0 at (i ≈ r), the
weak composition and path from r to i is

i
j

k

u0 u1

x0

7→
u0 u1

x0
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AFH fibrations

Inspired by AFH and ABCFHL we can define

isAFHFib A , (r : I)(p : I→ Γ)(ϕ : Φ)(f : [ϕ ]→ (i : I)→ A(p i))

(x0 : A(p r)[ϕ 7→ f · r])→ AFHComp r (A ◦ p) ϕ f x0

If we assume diagonal cofibrations

( ≈ ) : I→ I→ Φ

ax∆ : (r s : I)→ [ (r ≈ s) ] = (r = s)

then we can prove

Theorem

Given Γ : U and A : Γ→ U , we have isAFHFib A iff we have isFib A.
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CCHM fibrations

Inspired by OP we can define:

isCCHMFib A , (ε : {0, 1})(p : I→ Γ)(ϕ : Φ)(f : [ϕ ]→ (i : I)→ A(p i))

(x0 : A(p ε)[ϕ 7→ f · r])→ CCHMComp ε (A ◦ p) ϕ f x0

If we assume a connection algebra

u, t : I→ I→ I
axu : (r : I)→ (0 u r = 0 = r u 0) ∧ (1 u r = r = r u 1)

axt : (r : I)→ (0 t r = r = r t 0) ∧ (1 t r = 1 = r t 1)

then we can prove

Theorem

Given Γ : U and A : Γ→ U , we have isCCHMFib A iff we have isFib A.
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A model of HoTT/UF based on weak fibrations

Using ax1 − ax5 we can prove that isFib is closed under Σ, Π, Path and
that natural numbers are fibrant if C has a NNO

Following OP we can use ax6 to define Glue types and using ax7 we can
prove that they are also fibrant (by far the most complicated part)3

Theorem (Universe construction, LOPS)

If I is tiny, then we can construct a universe U with a fibration El that is
classifying in the sense of LOPS Theorem 5.2.

3This corresponds to the EEP.
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Cofibration-trivial fibration awfs

Cofibrant propositions [− ] : Φ→ hProp correspond to a monomorphism

> : Φtrue� Φ

where Φtrue , Σ(ϕ : Φ), [ϕ ] = 1

Definition (Generating cofibrations)

Let m : A→ B be a map in C. We say that m is a generating cofibration
if it is a pullback of >.

Get (C,F t) awfs by a version of the small object argument
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Trivial cofibration-fibration awfs
Theorem (Weak fibrations and fibrations)

f is a weak fibration iff it has the fibred right lifting property against the
map LI×Φ(∆) ×̂I×Φ> in C/(I× Φ)

We say that m : A→ B has the weak left lifting property against
f : X → Y if there is a diagonal map as in

A X

B Y

a

m
∼

f

b

Theorem (Weak fibrations and weak LLP)

f is a weak fibration iff for every object B, every map r : 1B → IB and
generating cofibration m : A→ B in C, r has the weak left lifting property
against ˆhomB(B∗(m), f).
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A model structure based on weak fibrations

We now adapt Sattler’s theorem in order to obtain a full model structure.

Theorem (Model structure)

Suppose that C satisfies axioms ax1–ax5 and that every fibration is
U-small for some universe of small fibrations where the underlying object U
is fibrant. Let (C,F t) and (Ct, F ) be the awfs defined above, then C and
F form the cofibrations and fibrations of a model structure on C.

Theorem

The class Ct is as small as possible subject to

1 For every object B, the map δB0 : B → B × I belongs to Ct.

2 C and Ct form the cofibrations and trivial cofibrations of a model
structure.
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Summary

We have:

Constructed a model of HoTT/UF that generalizes the earlier cubical
set models, except for the BCH model

Mostly formalized in Agda

Adapted Sattler’s model structure construction to this setting

Future work:

Formalize the universe construction and model structure in Agda-[

What about BCH? Is it inherently different or does it fit into this
generalization?

Relationship between model structures and the standard one on Kan
simplicial sets?
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Thank you for your attention!

https://github.com/mortberg/gen-cart/blob/master/conference-paper.pdf
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