Good Fibrations through the Modal Prism

David Jaz Myers

Johns Hopkins University

August 15, 2019

Homotopy theory is the study of the ways things can be identified:

"The algebra of the ambiguity in how things are identified."

Homotopy theory is the study of the ways things can be identified:

"The algebra of the ambiguity in how things are identified."

Algebraic Topology is the study of the connectivity of space:

"We may identify points by giving continuous paths between them."

Homotopy theory is the study of the ways things can be identified:

"The algebra of the ambiguity in how things are identified."

Algebraic Topology is the study of the connectivity of space:

"We may identify points by giving continuous paths between them."

• Book HoTT is a great language to do homotopy theory, but there is no way to say that one type is *the homotopy type* of another type:

Homotopy theory is the study of the ways things can be identified:

"The algebra of the ambiguity in how things are identified."

Algebraic Topology is the study of the connectivity of space:

"We may identify points by giving continuous paths between them."

 Book HoTT is a great language to do homotopy theory, but there is no way to say that one type is *the homotopy type* of another type:

In Book HoTT, we can do homotopy theory, but not algebraic topology.

Homotopy theory is the study of the ways things can be identified:

"The algebra of the ambiguity in how things are identified."

Algebraic Topology is the study of the connectivity of space:

"We may identify points by giving continuous paths between them."

• Book HoTT is a great language to do homotopy theory, but there is no way to say that one type is *the homotopy type* of another type:

In Book HoTT, we can do homotopy theory, but not algebraic topology.

 To fix this, Shulman adds a system of (co)modalities including the shape modality ∫ which sends a type to its homotopy type. (Real Cohesive HoTT)

• In this talk, we'll see a modal notion of *fibration*, suitable for synthetic algebraic topology.

- In this talk, we'll see a modal notion of *fibration*, suitable for synthetic algebraic topology.
- We find this notion of modal fibration by looking at at functions through the *modal prism*.

- In this talk, we'll see a modal notion of *fibration*, suitable for synthetic algebraic topology.
- We find this notion of modal fibration by looking at at functions through the *modal prism*.
- Finally, we'll see a trick for showing that maps are ∫-fibrations.
- We'll use this trick to calculate the fundamental group of the circle without using higher inductive types, and classify the *n*-fold covers of the circle.

(Monadic) Modalities

A *modality* is a way of changing what it means to identify two elements.

• A type X is !-modal if $(-)^!$: X \rightarrow !X is an equivalence.

(Monadic) Modalities

A *modality* is a way of changing what it means to identify two elements.

- A type X is !-modal if $(-)^!$: X \rightarrow ! X is an equivalence.
- When mapping out of !X into a modal type Z, it suffices to map out of X.

(Monadic) Modalities

A *modality* is a way of changing what it means to identify two elements.

- A type X is !-modal if $(-)^!$: X \rightarrow ! X is an equivalence.
- When mapping out of !X into a modal type Z, it suffices to map out of X.

In particular, for any function f : X → Y we get a function
 ! f : ! X → ! Y and a naturality square:

The map $f : X \to Y$ is

- !-modal if (-)! is an equivalence
- !-connected if ! fib_f(y) is contractible

UFP, RSS

The map $f : X \to Y$ is

- !-modal if $(-)^!$ is an equivalence
- !-*connected* if ! fib_f(y) is contractible
- !-*étale* if δ is an equivalence
- a !-equivalence if fib_{!f}(y[!]) is contractible

UFP, RSS

 $S\infty$, W, R, RW

The map $f : X \to Y$ is

- !-modal if (-)! is an equivalence
- !-connected if ! fib_f(y) is contractible
- !-*étale* if δ is an equivalence
- a !-equivalence if fib_{! f}(y[!]) is contractible

 a !-fibration if γ is an equivalence for all y : Y. $\left. \begin{array}{l} \text{UFP, RSS} \\ \\ \text{S∞, W, R, RW} \end{array} \right.$

Modal Fibrations

lf

 $\mathsf{fib}_\mathsf{f} \to \mathsf{E} \xrightarrow{\mathsf{f}} \mathsf{B}$

is a fiber sequence, then γ is the comparison map

Modal Fibrations

lf

$$\mathsf{fib}_\mathsf{f} \to \mathsf{E} \xrightarrow{\mathsf{f}} \mathsf{B}$$

is a fiber sequence, then γ is the comparison map

A map $f : E \rightarrow B$ is a !-fibration if and only if ! preserves all its fibers.

An J-fibration resembles the classical Dold-Thom notion of quasi-fibration.

The Fundamental Group of the Circle

If we knew that the map $(\cos, \sin): \mathbb{R} \to \mathbb{S}^1$ were a J-fibration, then the fiber sequence

 $\mathbb{Z} \to \mathbb{R} \to \mathbb{S}^1$

would give us a fiber sequence on homotopy types:

 $\int \mathbb{Z} \to \int \mathbb{R} \to \int \mathbb{S}^1.$

The Fundamental Group of the Circle

If we knew that the map $(\cos, \sin): \mathbb{R} \to \mathbb{S}^1$ were a J-fibration, then the fiber sequence

$$\mathbb{Z} o \mathbb{R} o \mathbb{S}^1$$

would give us a fiber sequence on homotopy types:

 $\mathbb{Z} \to * \to \int \mathbb{S}^1.$

This calculates the loop space of the circle without using higher inductive types.

Theorem For a map $f : X \rightarrow Y$, the following are equivalent: • f is a !-fibration.

Theorem

For a map $f : X \rightarrow Y$, the following are equivalent:

- f is a !-fibration,
- The two factorizations of f agree,
- The !-modal factor of f is !-étale,
- The !-equivalence factor of f is !-connected,

Theorem

For a map $f : X \rightarrow Y$, the following are equivalent:

- f is a !-fibration,
- 2 The two factorizations of f agree,
- The !-modal factor of f is !-étale,
- The !-equivalence factor of f is !-connected,
- I preserves all pullbacks along f,

Theorem

For a map $f : X \rightarrow Y$, the following are equivalent:

- f is a !-fibration,
- 2 The two factorizations of f agree,
- The !-modal factor of f is !-étale,
- The !-equivalence factor of f is !-connected,
- I preserves all pullbacks along f,
- f has "!-locally constant !-fibers".

Corollary

!-fibrations are closed under composition and pullback.

Corollary

!-fibrations are closed under composition and pullback.

Corollary

The pullback of a !-equivalence along a !-fibration is a !-equivalence.

Corollary

!-fibrations are closed under composition and pullback.

Corollary

The pullback of a !-equivalence along a !-fibration is a !-equivalence.

Corollary

For a modality !, the following are equivalent:

! is lex – it preserves all pullbacks,

Corollary

!-fibrations are closed under composition and pullback.

Corollary

The pullback of a !-equivalence along a !-fibration is a !-equivalence.

Corollary

For a modality !, the following are equivalent:

- ! is lex it preserves all pullbacks,
- every map is a !-fibration
- **③** The object classifier $Type_* \rightarrow Type$ is a !-fibration.

Corollary

!-fibrations are closed under composition and pullback.

Corollary

The pullback of a !-equivalence along a !-fibration is a !-equivalence.

Corollary

For a modality !, the following are equivalent:

- ! is lex it preserves all pullbacks,
- every map is a !-fibration
- **③** The object classifier $Type_* \rightarrow Type$ is a !-fibration.
- If each map in a family is a !-fibration, then the total map is a !-fibration,
- So For any map, the connecting map tot(γ) between its factorizations is a !-fibration.

How do we know that $(\cos, \sin) : \mathbb{R} \to \mathbb{S}^1$ is a \int -fibration?

How do we know that $(\cos, \sin) : \mathbb{R} \to \mathbb{S}^1$ is a \int -fibration?

A map f is a !-fibration if and only if it has "!-locally constant !-fibers".

How do we know that $(\cos, \sin) : \mathbb{R} \to \mathbb{S}^1$ is a \int -fibration?

A map f is a !-fibration if and only if it has "!-locally constant !-fibers".

Theorem

A map $f : X \to Y$ is a !-fibration if and only if ! fib_f factors through ! Y:

How do we know that $(\cos, \sin) : \mathbb{R} \to \mathbb{S}^1$ is a \int -fibration?

A map f is a !-fibration if and only if it has "!-locally constant !-fibers".

Theorem

A map $f : X \to Y$ is a !-fibration if and only if ! fib_f factors through ! Y:

$$\begin{array}{c} Y \xrightarrow{\mathsf{fib}_{\mathsf{f}}} \mathsf{Type} \\ -)^{!} \downarrow & \qquad \qquad \downarrow ! \\ ! Y \xrightarrow{} \mathsf{Type}_{!} \end{array}$$

If f is a !-fibration, then we take $fib_{!f} : !Y \rightarrow Type_{!}$ as the factorization.

Showing Maps are ∫-Fibrations

The shape modality \int has a right adjoint comodality $\flat,$ so we can use a trick.

Lemma

If X :: Type is *locally discrete* (\int -separated), then for x :: X,

 $\textbf{BAut}_X(x):\equiv (y:X)\times \|x=y\|$

is discrete.

Showing Maps are ∫-Fibrations

The shape modality \int has a right adjoint comodality $\flat,$ so we can use a trick.

Lemma

If X :: Type is *locally discrete* (\int -separated), then for x :: X,

 $\textbf{BAut}_X(x):\equiv (y:X)\times \|x=y\|$

is discrete.

Corollary

If G :: Type is a discrete (∞ -)group, then BG is also discrete.

Showing Maps are ∫-Fibrations

The shape modality \int has a right adjoint comodality \flat , so we can use a trick.

Lemma

If X :: Type is *locally discrete* (\int -separated), then for x :: X,

 $\textbf{BAut}_X(x) :\equiv (y:X) \times \|x = y\|$

is discrete.

Corollary

If G :: Type is a discrete (∞ -)group, then BG is also discrete.

Corollary If G :: Type is an $(\infty$ -)group, then **B** [G = [**B**G.

As a corollary, functions whose fibers have merely constant homotopy type are fibrations.

Theorem Let $f : E \to B$. If there is a $F :: Type_{\int}$ such that for all b : B, we have $||F = \int fib_{f}(b)||$, then f is a $\int -fibration$.

As a corollary, functions whose fibers have merely constant homotopy type are fibrations.

Theorem

Let $f : E \to B$. If there is a $F :: Type_{\int}$ such that for all b : B, we have $||F = \int fib_f(b)||$, then f is a \int -fibration.

Proof.

 Since F is a crisp element of a locally discrete type, BAut(F) is discrete.

As a corollary, functions whose fibers have merely constant homotopy type are fibrations.

Theorem

Let $f : E \to B$. If there is a $F :: Type_{\int}$ such that for all b : B, we have $||F = \int fib_f(b)||$, then f is a \int -fibration.

Proof.

- Since F is a crisp element of a locally discrete type, BAut(F) is discrete.
- By hypothesis, $\int fib_f : B \to Type_{\int}$ factors through BAut(F) and so also through $(-)^{\int} : B \to \int B$.

As a corollary, functions whose fibers have merely constant homotopy type are fibrations.

Theorem

Let $f : E \to B$. If there is a $F :: Type_{\int}$ such that for all b : B, we have $||F = \int fib_f(b)||$, then f is a \int -fibration.

Proof.

- Since F is a crisp element of a locally discrete type, BAut(F) is discrete.
- By hypothesis, $\int fib_f : B \to Type_{\int}$ factors through BAut(F) and so also through $(-)^{\int} : B \to \int B$.
- So, $\int fib_f$ is locally constant, and therefore f is a \int -fibration.

Examples of ∫-Fibrations

Theorem

Let $f : E \to B$. If there is a $F :: Type_{\int}$ such that for all b : B, we have $||F = \int fib_f(b)||$, then f is a \int -fibration.

Motto

If you were comfortable writing

$$"\mathsf{F} \to \mathsf{E} \xrightarrow{\mathsf{f}} \mathsf{B}",$$

or talking about "the fiber F", then f is a fibration.

Examples of ∫-Fibrations

Theorem

Let $f : E \to B$. If there is a $F :: Type_{\int}$ such that for all b : B, we have $||F = \int fib_f(b)||$, then f is a \int -fibration.

Motto

If you were comfortable writing

$$"\mathsf{F} \to \mathsf{E} \xrightarrow{\mathsf{f}} \mathsf{B}",$$

or talking about "the fiber F", then f is a fibration.

• $(\cos, \sin) : \mathbb{R} \to \mathbb{S}^1$, with $\mathsf{F} :\equiv \mathbb{Z}$,

- The Hopf fibration $h:\mathbb{S}^3\to\mathbb{S}^2,$ with $F:\equiv\int\mathbb{S}^1,$ and other Hopf-style fibrations,
- The Serre fibration $s: \mathbf{SO}(3) \to \mathbb{S}^2$, with $F :\equiv \int \mathbf{SO}(2)$

Definition (Wellen)

A covering is a \int_1 -étale map $c : E \to B$ whose fibers are sets, where \int_1 is the modality whose modal types are discrete groupoids.

Definition (Wellen)

A covering is a \int_1 -étale map $c : E \to B$ whose fibers are sets, where \int_1 is the modality whose modal types are discrete groupoids.

Corollary

Let $c : E \to B$. If there is a $F :: Set_{\int}$ such that for all b : B, we have $||F = fib_f(b)||$, then c is a covering.

Definition (Wellen)

A covering is a \int_1 -étale map c : $E \to B$ whose fibers are sets, where \int_1 is the modality whose modal types are discrete groupoids.

Corollary

Let $c : E \to B$. If there is a $F :: Set_{\int}$ such that for all b : B, we have $||F = fib_f(b)||$, then c is a covering.

Definition

An *n*-fold covering $c : E \rightarrow B$ is a map whose fibers have *n* elements.

Definition (Wellen)

A covering is a \int_1 -étale map $c : E \to B$ whose fibers are sets, where \int_1 is the modality whose modal types are discrete groupoids.

Corollary

Let $c : E \to B$. If there is a $F :: Set_{\int}$ such that for all b : B, we have $\|F = fib_f(b)\|$, then c is a covering.

Definition

An *n*-fold covering $c : E \rightarrow B$ is a map whose fibers have *n* elements.

Question

What are the *n*-fold covers of the circle \mathbb{S}^1 ?

• An *n*-fold cover with an identification of a fiber with $\{1, \ldots, n\}$ is a pointed map $C : S^1 \to BAut(n)$.

- An *n*-fold cover with an identification of a fiber with $\{1, \ldots, n\}$ is a pointed map $C : \mathbb{S}^1 \cdot \to BAut(n)$.
- Since {1,...,n} is discrete, so is BAut(n) and therefore C factors uniquely through ∫S¹.

- An *n*-fold cover with an identification of a fiber with {1,...,n} is a pointed map C : S¹ · → BAut(n).
 Since {1,...,n} is discrete, so is BAut(n) and there
 - fore C factors uniquely through $\int S^1$.

But ∫S¹ is a B Z, so this corresponds to a homomorphism φ : Z → Aut(n): a permutation of n elements.

• It looks as though the connected components of the total space correspond to the cycle type of the permutation. Can we prove this?

• It looks as though the connected components of the total space correspond to the cycle type of the permutation. Can we prove this?

• It looks as though the connected components of the total space correspond to the cycle type of the permutation. Can we prove this?

• The cycle type is the set of orbits of the action of φ on the fiber, or

 $\|(\mathsf{t}:\int\mathbb{S}^1)\times \mathbf{B}\varphi(\mathsf{t})\|_0.$

The square is a pullback and the bottom map \int -connected, so the top map is as well.

The square is a pullback and the bottom map \int -connected, so the top map is as well. Therefore, we get an equivalence

 $\int ((s:\mathbb{S}^1) \times C(s)) \simeq (u:\int \mathbb{S}^1) \times \mathbf{B}\varphi(u)$

and so an equivalence on their 0-truncations.

References

[UFP] Homotopy Type Theory, Univalent Foundations Project, 2013
 [RSS] Modalities in HoTT, Rijke, Shulman, Spitters, 2017,
 [S∞] Differential Cohomology in a Cohesive ∞-Topos, Schreiber, 2013,

[Sb] Brouwer's Fixed Point Theorem in Real-Cohesive HoTT. Shulman, 2018

[W] Formalizing Cartan Geometry in Modal HoTT, Wellen, 2017

[R] Classifying Types, Rijke, 2018

[RW] Modal Descent, Rijke, Wellen, TBD

[CORS] *Localization in HoTT*, Christensen, Opie, Rijke, Scoccola, 2018

Just

Lemma

If X :: Type is *locally discrete* (*f*-separated), then for x :: X,

 $\mathbf{BAut}_{\mathsf{X}}(\mathsf{x}) :\equiv (\mathsf{y} : \mathsf{X}) \times \|\mathsf{x} = \mathsf{y}\|$

is discrete.