A higher structure identity principle

Paige Randall North

13 August 2019

Outline

1 Motivation

2 Lower structure identity principles

3 A structure identity principle for categories

4 Example: FOLDS categories

G A higher structure identity principle based on FOLDS

Equivalence principle

Two equivalent structures must share the same structural properties.

Equivalence principle

Two equivalent structures must share the same structural properties.

Our goal

To define a large class of *structures* and a notion of *equivalence* between them validating the equivalence principle.

Equivalence principle

Two equivalent structures must share the same structural properties.

Our goal

To define a large class of *structures* and a notion of *equivalence* between them validating the equivalence principle.

Joint work with Benedikt Ahrens, Michael Shulman, and Dimitris Tsementzis.

Equivalence principle

Two equivalent structures must share the same structural properties.

Our goal

To define a large class of *structures* and a notion of *equivalence* between them validating the equivalence principle.

Joint work with Benedikt Ahrens, Michael Shulman, and Dimitris Tsementzis.

Based on First Order Logic with Dependent Sorts, Makkai, 1995.

Equivalence principle

Two equivalent structures must share the same structural properties.

Our goal

To define a large class of *structures* and a notion of *equivalence* between them validating the equivalence principle.

Joint work with Benedikt Ahrens, Michael Shulman, and Dimitris Tsementzis.

Based on First Order Logic with Dependent Sorts, Makkai, 1995.

Generalizing *Univalent categories and the Rezk completion*, Ahrens, Kapulkin, Shulman, 2015.

Outline

1 Motivation

2 Lower structure identity principles

3 A structure identity principle for categories

4 Example: FOLDS categories

6 A higher structure identity principle based on FOLDS

Lower structure identity principles in UF

Theorem

Given two mere propositions P and Q,

$$(P =_{\mathsf{hProp}} Q) = (P \leftrightarrows Q)$$

Corollary

If P and Q are equivalent mere propositions, then they share the same structural properties.

For any X : hProp $\vdash S(X)$: \mathcal{U} ,

 $(P \leftrightarrows Q) \to (S(P) = S(Q)).$

Lower structure identity principles in UF

Theorem (Coquand-Danielsson 2013)

Given two monoids M and N,

$$(M =_{\mathsf{Mon}} N) = (M \cong N).$$

Corollary

If M and N are isomorphic monoids, then they share the same structural properties.

For any X : Mon $\vdash S(X)$: \mathcal{U} ,

 $(M \cong N) \to (S(M) = S(N)).$

Outline

1 Motivation

2 Lower structure identity principles

3 A structure identity principle for categories

4 Example: FOLDS categories

6 A higher structure identity principle based on FOLDS

A structure identity principle for categories in UF

A category \mathscr{C} is given by

- a type \mathscr{C}_{o} : \mathscr{U} of **objects**
- for any $a, b : \mathcal{C}_0$, a set $\mathcal{C}(a, b) : \mathcal{U}$ of **morphisms**
- operations: identity & composition

$$1_a: \mathscr{C}(a,a)$$
$$(\circ)_{a,b,c}: \mathscr{C}(b,c) \to \mathscr{C}(a,b) \to \mathscr{C}(a,c)$$

• axioms: unitality & associativity

$$1 \circ f = f$$
 $f \circ 1 = f$ $(h \circ g) \circ f = h \circ (g \circ f)$

A structure identity principle for categories in UF

A category \mathscr{C} is given by

- a type \mathscr{C}_{o} : \mathscr{U} of **objects**
- for any $a, b : \mathcal{C}_0$, a set $\mathcal{C}(a, b) : \mathcal{U}$ of **morphisms**
- operations: identity & composition

 $1_a: \mathscr{C}(a,a)$ $(\circ)_{a,b,c}: \mathscr{C}(b,c) \to \mathscr{C}(a,b) \to \mathscr{C}(a,c)$

• axioms: unitality & associativity

$$1 \circ f = f$$
 $f \circ 1 = f$ $(h \circ g) \circ f = h \circ (g \circ f)$

A univalent category is a category \mathscr{C} such that

$$(a = b) \rightarrow (a \cong b)$$

is an equivalence for all $a, b : \mathscr{C}_0$.

A structure identity principle for categories in UF

Theorem (Ahrens-Kapulkin-Shulman 2015)

For categories \mathscr{C} and \mathscr{D} , let $\mathscr{C} \simeq \mathscr{D}$ denote the type of functors from \mathscr{C} to \mathscr{D} that are equivalences.

If \mathscr{C} and \mathscr{D} are univalent, then

$$(\mathscr{C} =_{\mathsf{UCat}} \mathscr{D}) = (\mathscr{C} \simeq \mathscr{D}).$$

Corollary

If $\mathscr C$ and $\mathscr D$ are equivalent univalent categories, then they share the same structural properties.

For any $X : \mathsf{UCat} \vdash P(X) : \mathscr{U}$,

$$(\mathscr{C}\simeq \mathscr{D})\to (P(\mathscr{C})=P(\mathscr{D})).$$

Goal

Conjecture

Given a signature \mathcal{L} , and two \mathcal{L} -univalent \mathcal{L} -structures M and N, then

$$(M=N)=(M\simeq_{\mathscr{L}}N)$$

Need notions of

- signatures ${\mathscr L}$
- *L*-structures
- \mathscr{L} -equivalence of \mathscr{L} -structures
- \mathcal{L} -univalence of \mathcal{L} -structures

Outline

1 Motivation

2 Lower structure identity principles

3 A structure identity principle for categories

4 Example: FOLDS categories

G A higher structure identity principle based on FOLDS

Two-level type theory

Working in the two-level type theory of Annenkov-Capriotti-Kraus.

- Universes $\mathscr{U} \hookrightarrow \mathscr{U}^s$
- \mathscr{U} implements univalent type theory.
- Every type $T : \mathcal{U}^s$ is equipped with a strict equality type $a \equiv_T b$ with the usual rules for the identity type, but which also satisfies UIP.

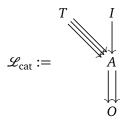
First-order logic with dependent sorts

Inverse category

An *inverse category* is a strict category \mathscr{I} and a function $\rho : \mathscr{I} \to \mathsf{Nat}^{\mathsf{op}}$ whose fibers are discrete. The *height* of an inverse category (\mathscr{I}, ρ) is the maximum value of ρ .

Signatures

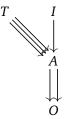
Signatures are inverse categories of finite height.



\mathcal{L}_{cat} -structures

We can define the data of a category \mathscr{C} to be

- A type *CO* : *U*
- A family $\mathscr{C}A : \mathscr{C}O \times \mathscr{C}O \to \mathscr{U}$
- A family $\mathscr{C}I: \prod_{(x:\mathscr{C}O)} \mathscr{C}A(x,x) \to \mathscr{U}$
- A family $\mathscr{C}T : \prod_{(x,y,z:\mathscr{C}O)} \mathscr{C}A(x,y) \to \mathscr{C}A(y,z) \to \mathscr{C}A(x,z) \to \mathscr{U}$



Here:

- Think of *CI*, *CT* as the *predicates* 'is an identity', 'is a composite'.
- \mathcal{L}_{cat} -*univalence* will imply that $\mathcal{C}I$, $\mathcal{C}T$ are pointwise propositions.
- \mathcal{L}_{cat} -univalence will imply that $\mathcal{C}A$ is pointwise a set.
- \mathscr{L}_{cat} -univalence will imply that $\mathscr{C}O$ is a 1-type.

Equality

To the data, we add axioms such as

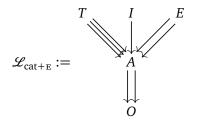
• "There is a composite of every composable pair of arrows."

 $\forall (x, y, z: O). \forall (f: A(x, y)). \forall (g: A(y, z)). \exists (h: A(x, z)). T(x, y, z, f, g, h)$

• "Composites are unique."

$$\begin{aligned} \forall (x,y,z:O). \forall (f:A(x,y)). \forall (g:A(y,z)). \forall (h,h':A(x,z)). \\ T(x,y,z,f,g,h) &\rightarrow T(x,y,z,f,g,h') \rightarrow (h=h') \end{aligned}$$

So we need to add an equality 'predicate':



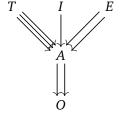
\mathcal{L}_{cat+E} -structures

We can define the data of a category \mathscr{C} to be

- A type *CO* : *U*
- A family $\mathscr{C}A : \mathscr{C}O \times \mathscr{C}O \to \mathscr{U}$
- A family $\mathscr{C}I: \prod_{(x:\mathscr{C}O)} \mathscr{C}A(x,x) \to \mathscr{U}$
- A family $\mathscr{C}T : \prod_{(x,y,z:\mathscr{C}O)} \mathscr{C}A(x,y) \to \mathscr{C}A(y,z) \to \mathscr{C}A(x,z) \to \mathscr{U}$
- A family $\mathscr{C}E: \prod_{(x,y):\mathscr{C}O)} \mathscr{C}A(x,y) \to \mathscr{C}A(x,y) \to \mathscr{U}$

Here:

- \mathcal{L}_{cat+E} -univalence will imply that $\mathcal{C}E$ is a proposition.
- \mathscr{L}_{cat+E} -univalence + axioms making *E* into an equivalence relation and congruence will imply that $(f = g) = \mathscr{C}E(f,g)$.



1-univalent FOLDS-categories

A 1-univalent FOLDS-category consists of an \mathcal{L}_{cat+E} -structure

- CO:U
- $\mathscr{C}A:\mathscr{C}O\times\mathscr{C}O\to\mathscr{U}$
- $\mathscr{C}I: \prod_{(x:\mathscr{C}O)} \mathscr{C}A(x,x) \to \mathscr{U}$ • $\mathscr{C}T: \prod_{(x,y,z:\mathscr{C}O)} \mathscr{C}A(x,y) \to \mathscr{C}A(y,z) \to \mathscr{C}A(x,z) \to \mathscr{U}$ • $\mathscr{C}E: \prod_{(x,y:\mathscr{C}O)} \mathscr{C}A(x,y) \to \mathscr{C}A(x,y) \to \mathscr{U}$

such that

- $\mathscr{C}I_x(f)$, $\mathscr{C}T_{x,y,z}(f,g,h)$, and $\mathscr{C}E_{x,y}(f,g)$ are propositions
- $\mathscr{C}A(x,y)$ is a set,
- $\mathscr{C}E_{x,y}(f,g) = (f=g),$

and the axioms of a category are satisfied.

Lemma

The type of 1-univalent FOLDS-cats is equivalent to the type of (pre)categories.

Univalent FOLDS-categories

Goal

To state the univalence condition

$$(a=b)=(a\cong b)$$

for categories in terms of the the FOLDS structure.

Given a, b : $\mathscr{C}O$, we can define an isomorphism $a \cong b$ using the Yoneda Lemma:

- For each $x : \mathscr{C}O$, an equality $\phi_{x\bullet} : \mathscr{C}A(x, a) = \mathscr{C}A(x, b)$.
- For each *x*,*y* : *CO*, *f* : *CA*(*x*,*y*), *g* : *CA*(*y*,*a*), and *h* : *CA*(*x*,*a*), we have

$$\mathscr{C}T_{x,y,a}(f,g,h) = \mathscr{C}T_{x,y,b}(f,\phi_{y\bullet}(g),\phi_{x\bullet}(h))$$

 $(\phi_{y\bullet}(g)\circ f = \phi_{x\bullet}(g\circ f))$

This is a bit ad hoc and not symmetric.

FOLDS isomorphism for categories

Instead, can define $a \cong b$ to consist of the following equalities between all the types of our signature with *a* and *b* substituted in *all* possible ways:

- For each $x : \mathscr{C}O$, an equality $\phi_{x\bullet} : \mathscr{C}A(x, a) = \mathscr{C}A(x, b)$.
- For each $z : \mathscr{C}O$, an equality $\phi_{\bullet z} : \mathscr{C}A(a, z) = \mathscr{C}A(b, z)$.
- An equality $\phi_{\bullet\bullet}$: $\mathscr{C}A(a,a) = \mathscr{C}A(b,b)$.
- The following equalities for all appropriate *w*,*x*,*y*,*z*,*f*,*g*,*h*:

$$T_{x,y,a}(f,g,h) = T_{x,y,b}(f,\phi_{y\bullet}(g),\phi_{x\bullet}(h))$$

$$T_{x,a,z}(f,g,h) = T_{x,b,z}(\phi_{x\bullet}(f),\phi_{\bullet z}(g),h)$$

$$T_{a,z,w}(f,g,h) = T_{b,z,w}(\phi_{\bullet z}(f),g,\phi_{\bullet w}(h))$$

$$T_{x,a,a}(f,g,h) = T_{x,b,b}(\phi_{x\bullet}(f),\phi_{\bullet \bullet}(g),\phi_{x\bullet}(h))$$

$$T_{a,x,a}(f,g,h) = T_{b,x,b}(\phi_{\bullet x}(f),\phi_{\bullet x}(g),\phi_{\bullet \bullet}(h))$$

$$T_{a,a,x}(f,g,h) = T_{b,b,x}(\phi_{\bullet \bullet}(f),\phi_{\bullet x}(g),\phi_{\bullet x}(h))$$

$$I_{a,a}(f) = I_{b,b}(\phi_{\bullet\bullet}(f))$$

$$E_{x,a}(f,g) = E_{x,b}(\phi_{x\bullet}(f), \phi_{x\bullet}(g))$$

$$E_{a,x}(f,g) = E_{b,x}(\phi_{\bullet x}(f), \phi_{\bullet x}(g))$$

$$E_{a,a}(f,g) = E_{b,b}(\phi_{\bullet\bullet}(f), \phi_{\bullet\bullet}(g))$$

"Everything above *a*, *b* thinks that *a* and *b* are the same."

Univalent FOLDS categories

Theorem

In any 1-univalent FOLDS category, the type of isomorphisms $a \cong b$ just defined is equivalent to the type of ordinary isomorphisms $a \cong b$.

Definition

A univalent FOLDS category is a 1-univalent FOLDS category such that for all a, b : CO, the canonical map

$$(a = b) \to (a \cong b)$$

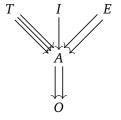
is an equivalence.

Theorem

A 1-univalent FOLDS category is univalent if and only if its corresponding precategory is a univalent category.

Univalence

- 1-univalence can be defined in the same way.
- For example, we required *CT_{x,y,a}(f,g,h)* to be a proposition.
- For any c, d: CT_{x,y,a}(f,g,h), everything above c, d 'thinks' c and d are the same, trivially.
- So $c \cong d$, and CT being univalent means that $(c = d) = (c \cong d)$.
- CT being univalent means that each $CT_{x,y,a}(f,g,h)$ is a proposition.



Categorical equivalences

For univalent FOLDS categories \mathscr{C}, \mathscr{D} , we had an equivalence.

$$(\mathscr{C} = \mathscr{D}) \simeq (\mathscr{C} \simeq \mathscr{D})$$

We can also generalize categorical equivalences:

• A very surjective morphism $F : \mathcal{C} \twoheadrightarrow \mathcal{D}$ of \mathcal{L}_{cat+E} -structures consists of surjections

$$\begin{array}{l} F_{O}: \mathscr{C}O \twoheadrightarrow \mathscr{D}O \\ F_{A}: \prod_{x,y:\mathscr{C}O} \mathscr{C}A(x,y) \twoheadrightarrow \mathscr{D}A(F_{O}x,F_{O}y) \\ F_{T}: \prod_{x,y,z:\mathscr{C}Of:\mathscr{C}A(x,y),g:\mathscr{C}A(y,z),h:\mathscr{C}A(x,z)} \mathscr{C}T(f,g,h) \\ \mathscr{D}T(F_{A}f,F_{A}g,F_{A}h) \end{array}$$

Theorem

If \mathscr{C} and \mathscr{D} are univalent,

$$(\mathscr{C} \twoheadrightarrow \mathscr{D}) \simeq (\mathscr{C} \simeq \mathscr{D})$$

 \rightarrow

Outline

1 Motivation

2 Lower structure identity principles

3 A structure identity principle for categories

4 Example: FOLDS categories

5 A higher structure identity principle based on FOLDS

The framework

We can generalize this to any inverse category.

We generalize it further.

Signatures

We define signatures inductively to be a sequence of strict categories Sig : Nat^s \rightarrow sCat.

- $Sig(o) := \mathcal{U}$
- Sig(n + 1) consists of a signature *Z* of level 0, and for every *Z*-structure $S : Z \to \mathcal{U}$, a *derivative* DS : Sig(n).
- \mathscr{L}_{cat+E} : Sig(2)
- The o-part is *.
- The derivative gives us a 1-signature for every type *O*. The o-part of this 1-signature is *O* × *O*.

We can also define structures, isomorphism, univalence, and very surjective morphisms following the example of categories.

Envisioned results

Almost-theorem

Consider $\mathcal L$ -structures M,N for some signature $\mathcal L$ such that M is univalent. Then

 $(M \twoheadrightarrow N) = (M = N)$

Conjecture

For a signature *L* : Sig(*n*), the type of univalent *L*-structures is of *h*-level n + 1.

Thank you!