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Motivation

Equivalence principle
Two equivalent structures must share the same structural
properties.

Our goal
To define a large class of structures and a notion of equivalence
between them validating the equivalence principle.

Joint work with Benedikt Ahrens, Michael Shulman, and Dimitris
Tsementzis.

Based on First Order Logic with Dependent Sorts, Makkai, 1995.

Generalizing Univalent categories and the Rezk completion, Ahrens,
Kapulkin, Shulman, 2015.
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Lower structure identity principles in UF

Theorem
Given two mere propositions P and Q,

(P=hProp Q) = (P� Q)

Corollary
If P and Q are equivalent mere propositions, then they share the same
structural properties.

For any X : hProp ` S(X) :U ,

(P� Q)→ (S(P) = S(Q)).
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Lower structure identity principles in UF

Theorem (Coquand-Danielsson 2013)
Given two monoids M and N,

(M =Mon N) = (M ∼= N).

Corollary
If M and N are isomorphic monoids, then they share the same
structural properties.

For any X : Mon ` S(X) :U ,

(M ∼= N)→ (S(M) = S(N)).
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A structure identity principle for categories in UF
A category C is given by
• a type C0 :U of objects
• for any a,b :C0, a set C (a,b) :U of morphisms
• operations: identity & composition

1a :C (a,a)
(◦)a,b,c :C (b, c)→C (a,b)→C (a, c)

• axioms: unitality & associativity

1 ◦ f = f f ◦ 1= f (h ◦ g) ◦ f = h ◦ (g ◦ f)

A univalent category is a category C such that

(a= b)→ (a∼= b)

is an equivalence for all a,b :C0.
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A structure identity principle for categories in UF

Theorem (Ahrens-Kapulkin-Shulman 2015)
For categories C and D, let C ' D denote the type of functors
from C to D that are equivalences.

If C and D are univalent, then

(C =UCat D) = (C ' D).

Corollary
If C and D are equivalent univalent categories, then they share the
same structural properties.

For any X : UCat ` P(X) :U ,

(C ' D)→ (P(C ) = P(D)).
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Goal

Conjecture
Given a signature L , and two L -univalent L -structures M and N,
then

(M = N) = (M 'L N)

Need notions of
• signatures L
• L -structures
• L -equivalence of L -structures
• L -univalence of L -structures
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Two-level type theory

Working in the two-level type theory of Annenkov-Capriotti-Kraus.
• Universes U ,→U s

• U implements univalent type theory.
• Every type T :U s is equipped with a strict equality type
a≡T b with the usual rules for the identity type, but which
also satisfies UIP.
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First-order logic with dependent sorts

Inverse category
An inverse category is a strict category I and a function
ρ : I → Natop whose fibers are discrete.

The height of an inverse category (I ,ρ) is the maximum value
of ρ.

Signatures
Signatures are inverse categories of finite height.

Lcat :=

T

�� ����

I

��
A

����

O
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Lcat-structures

We can define the data of a category C to be
• A type CO :U
• A family CA :CO×CO→U
• A family C I :

∏

(x:CO)CA(x,x)→U
• A family C T :

∏

(x,y,z:CO)CA(x,y)→
CA(y, z)→CA(x, z)→U

T

�� ����

I

��
A

����

O

Here:
• Think of C I, C T as the predicates ‘is an identity’, ‘is a
composite’.

• Lcat-univalence will imply that C I, C T are pointwise
propositions.

• Lcat-univalence will imply that CA is pointwise a set.
• Lcat-univalence will imply that CO is a 1-type.
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Equality
To the data, we add axioms such as
• “There is a composite of every composable pair of arrows.”

∀(x,y, z : O).∀(f : A(x,y)).∀(g : A(y, z)).∃(h : A(x, z)).T(x,y, z, f ,g,h)

• “Composites are unique.”

∀(x,y, z : O).∀(f : A(x,y)).∀(g : A(y, z)).∀(h,h′ : A(x, z)).
T(x,y, z, f ,g,h)→ T(x,y, z, f ,g,h′)→ (h= h′)

So we need to add an equality ‘predicate’:

Lcat+e :=

T

�� ����

I

��

E

����

A

����

O
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Lcat+e-structures

We can define the data of a category C to be
• A type CO :U
• A family CA :CO×CO→U
• A family C I :

∏

(x:CO)CA(x,x)→U
• A family C T :

∏

(x,y,z:CO)CA(x,y)→
CA(y, z)→CA(x, z)→U

• A family
C E :
∏

(x,y:CO)CA(x,y)→CA(x,y)→U

T

�� ����

I

��

E

����

A

����

O

Here:
• Lcat+e-univalence will imply that C E is a proposition.
• Lcat+e-univalence + axioms making E into an equivalence
relation and congruence will imply that (f = g) =C E(f ,g).
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1-univalent FOLDS-categories
A 1-univalent FOLDS-category consists of an Lcat+e-structure
• CO :U
• CA :CO×CO→U
• C I :
∏

(x:CO)CA(x,x)→U
• C T :
∏

(x,y,z:CO)CA(x,y)→CA(y, z)→CA(x, z)→U
• C E :
∏

(x,y:CO)CA(x,y)→CA(x,y)→U
such that
• C Ix(f), C Tx,y,z(f ,g,h), and C Ex,y(f ,g) are propositions
• CA(x,y) is a set,
• C Ex,y(f ,g) = (f = g),

and the axioms of a category are satisfied.

Lemma
The type of 1-univalent FOLDS-cats is equivalent to the type of
(pre)categories.
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Univalent FOLDS-categories

Goal
To state the univalence condition

(a= b) = (a∼= b)

for categories in terms of the the FOLDS structure.

Given a,b :CO, we can define an isomorphism a∼= b using the
Yoneda Lemma:
• For each x :CO, an equality φx• :CA(x,a) =CA(x,b).
• For each x,y :CO, f :CA(x,y), g :CA(y,a), and h :CA(x,a),
we have

C Tx,y,a(f ,g,h) =C Tx,y,b(f ,φy•(g),φx•(h))

(φy•(g) ◦ f = φx•(g ◦ f))
This is a bit ad hoc and not symmetric.
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FOLDS isomorphism for categories
Instead, can define a∼= b to consist of the following equalities
between all the types of our signature with a and b substituted in
all possible ways:
• For each x :CO, an equality φx• :CA(x,a) =CA(x,b).
• For each z :CO, an equality φ•z :CA(a, z) =CA(b, z).
• An equality φ•• :CA(a,a) =CA(b,b).
• The following equalities for all appropriate w,x,y, z, f ,g,h:

Tx,y,a(f ,g,h) = Tx,y,b(f ,φy•(g),φx•(h))
Tx,a,z(f ,g,h) = Tx,b,z(φx•(f),φ•z(g),h)
Ta,z,w(f ,g,h) = Tb,z,w(φ•z(f),g,φ•w(h))
Tx,a,a(f ,g,h) = Tx,b,b(φx•(f),φ••(g),φx•(h))
Ta,x,a(f ,g,h) = Tb,x,b(φ•x(f),φx•(g),φ••(h))
Ta,a,x(f ,g,h) = Tb,b,x(φ••(f),φ•x(g),φ•x(h))
Ta,a,a(f ,g,h) = Tb,b,b(φ••(f),φ••(g),φ••(h))

Ia,a(f) = Ib,b(φ••(f))
Ex,a(f ,g) = Ex,b(φx•(f),φx•(g))
Ea,x(f ,g) = Eb,x(φ•x(f),φ•x(g))
Ea,a(f ,g) = Eb,b(φ••(f),φ••(g))

“Everything above a,b thinks that a and b are the same.”
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Univalent FOLDS categories

Theorem
In any 1-univalent FOLDS category, the type of isomorphisms a∼= b
just defined is equivalent to the type of ordinary isomorphisms a∼= b.

Definition
A univalent FOLDS category is a 1-univalent FOLDS category such
that for all a,b :CO, the canonical map

(a= b)→ (a∼= b)

is an equivalence.

Theorem
A 1-univalent FOLDS category is univalent if and only if its
corresponding precategory is a univalent category.
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Univalence

• 1-univalence can be defined in the same
way.

• For example, we required C Tx,y,a(f ,g,h)
to be a proposition.

• For any c,d :C Tx,y,a(f ,g,h), everything
above c,d ‘thinks’ c and d are the same,
trivially.

• So c∼= d, and C T being univalent means
that (c= d) = (c∼= d).

• C T being univalent means that each
C Tx,y,a(f ,g,h) is a proposition.

• ...

T

�� ����

I

��

E

����

A

����

O
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Categorical equivalences

For univalent FOLDS categories C ,D, we had an equivalence.

(C = D)' (C ' D)

We can also generalize categorical equivalences:
• A very surjective morphism F :C � D of Lcat+e-structures
consists of surjections
• FO :CO� DO
• FA :
∏

x,y:COCA(x,y)� DA(FOx,FOy)
• FT :
∏

x,y,z:CO,f :CA(x,y),g:CA(y,z),h:CA(x,z)C T(f ,g,h)�
DT(FAf ,FAg,FAh)

• ...

Theorem
If C and D are univalent,

(C � D)' (C ' D)
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The framework
We can generalize this to any inverse category.

We generalize it further.

Signatures
We define signatures inductively to be a sequence of strict
categories Sig : Nats→ sCat.
• Sig(0) :=U
• Sig(n+ 1) consists of a signature Z of level 0, and for every
Z-structure S : Z→U , a derivative DS : Sig(n).

• Lcat+e : Sig(2)
• The 0-part is ∗.
• The derivative gives us a 1-signature for every type O. The
0-part of this 1-signature is O×O.

We can also define structures, isomorphism, univalence, and very
surjective morphisms following the example of categories.
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Envisioned results

Almost-theorem
Consider L -structures M,N for some signature L such that M is
univalent. Then

(M� N) = (M = N)

Conjecture
For a signature L : Sig(n), the type of univalent L-structures is of
h-level n+ 1.
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Thank you!
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