Presheaves, Sets and Univalence

Andrew Pitts

HoTT 2019
WANTED

More models of

Univalent Type Theory

e.g. to better understand the phenomenon of univalence and its relationship to higher inductive types and propositional resizing
WANTED

More, and simpler, models of

Univalent Type Theory

Cf. the set-theoretic model of extensional MLTT (using everyone’s grasp of naive set theory).

Given what we know about homotopy theory, perhaps having a very simple model of UTT is a forlorn hope.

Constructive logic to the rescue?
WANTED

More, and simpler, models of

UTT

Martin-Löf Type Theory with a hierarchy of universes

\((\mathbb{U}_n \mid n \in \mathbb{N})\) [non-cumulative, Russell-style]

closed under \(\Pi, \Sigma, +, W, N_0, N_1\) and

“typal” identity types \(\text{Id}\) that make all \(\mathbb{U}_n\) univalent

Computation rule for \(\text{Id}\) may not hold definitionally,
but the corresponding identity type is inhabited

For all \(X, Y : \mathbb{U}_n\), the type

\(\text{Id}_{\mathbb{U}_n}(X, Y)\) in \(\mathbb{U}_{n+1}\)

and the type of equivalences \(X \simeq Y\)
in \(\mathbb{U}_n\)

are canonically equivalent
Two existing models of UTT

- **Voevodsky et al:**
 Simplicial sets with Kan-filling property within classical set theory with enough inaccessible cardinals.

- **Coquand et al:**
 Cubical sets with uniform-Kan-filling structure (various flavours) within intuitionistic set theory with enough Grothendieck universes.
Two existing models of UTT

▶ **Voevodsky et al:**
 Simplicial sets with Kan-filling property within classical set theory with enough inaccessible cardinals.

▶ **Coquand et al:**
 Cubical sets with uniform-Kan-filling structure (various flavours) within intuitionistic set theory with enough Grothendieck universes.

Both models are constructed starting from presheaf categories Set^{Cop} for particular small categories \mathbf{C}. Which \mathbf{C} are suitable?
Two existing models of UTT

- **Voevodsky et al:**
 Simplicial sets with Kan-filling property within classical set theory with enough inaccessible cardinals.

- **Coquand et al:**
 Cubical sets with uniform-Kan-filling structure (various flavours) within intuitionistic set theory with enough Grothendieck universes.

Both models are constructed starting from presheaf categories $\text{Set}^{\text{C}^{\text{op}}}$ for particular small categories C. Which C are suitable?

Idea: if intuitionistic set theory is the meta-theory then maybe C can be 1 i.e. can we construct models in Set ($\approx \text{Set}^{\text{1^{op}}}$)?
Historical aside

Q Are there non-trivial sets X with $X \cong X^X$?

[\leadsto straightforward models of untyped λ-calculus]
[Historical aside]

Q Are there non-trivial sets X with $X \cong X^X$?

[\(\leadsto\) straightforward models of untyped λ-calculus]

A (Dana Scott): yes, provided one works in intuitionistic rather than classical logic. Indeed there are enough such sets for a completeness theorem.
[Historical aside]

Q Are there non-trivial sets X with $X \cong X^X$?

[leadsto straightforward models of untyped λ-calculus]

A (Dana Scott): yes, provided one works in intuitionistic rather than classical logic. Indeed there are enough such sets for a completeness theorem.

Q Are there set-theoretic models of the polymorphic λ-calculus?
Q Are there non-trivial sets X with $X \cong X^X$?

[\sim\to straightforward models of untyped λ-calculus]

A (Dana Scott): yes, provided one works in intuitionistic rather than classical logic. Indeed there are enough such sets for a completeness theorem.

Q Are there set-theoretic models of the polymorphic λ-calculus?

A (\neg Reynolds, AMP): yes, provided one works in intuitionistic rather than classical logic.

[Indeed, intuitionistically there are even small, non-posetal and yet complete categories (Moggi-Hyland-Robinson-Rosolini).]
Two existing models of UTT

- **Voevodsky et al:**
 Simplicial sets with Kan-filling property
 within classical set theory with enough inaccessible cardinals.

- **Coquand et al:**
 Cubical sets with uniform-Kan-filling structure (various flavours)
 within intuitionistic set theory with enough Grothendieck universes.

Both models are constructed starting from presheaf categories Set^{Cop} for particular small categories \mathcal{C}.

Which \mathcal{C} are suitable?

Idea: if intuitionistic set theory is the meta-theory
then maybe \mathcal{C} can be 1
i.e. can we construct models in $\text{Set} \simeq \text{Set}^{1\text{op}}$?
Intuitionistic Zermelo-Fraenkel set theory with Atoms is a theory in intuitionistic first-order logic (single-sorted, with equality) whose signature contains:

- one constant \(I \) (“the set of atoms”)
- one binary relation \(x \in X \) (“\(x \) is an element of the set \(X \)”)

and the following axioms…

[written using some definitional extensions]

\(\varphi \lor \neg \varphi\) so, no Law of Excluded Middle
IZFA axioms

- **Decidability**: $\forall x, x \in I \lor x \in S$
- **Sets**: $\forall X, (\exists x, x \in X) \Rightarrow X \in S$
- **Extensionality**: $\forall X, Y \in S, (\forall x, x \in X \iff x \in Y) \Rightarrow X = Y$
- **Induction**: $(\forall X, (\forall x \in X, \varphi(x)) \Rightarrow \varphi(X)) \Rightarrow \forall X, \varphi(X)$
- various axioms asserting the existence of sets:
 - Separation
 - Collection
 - Unordered pairs
 - Union
 - Powerset
 - Infinity

$x \in S \iff \neg (x \in I)$ means “x is a set”

so if x is an atom, then for all y, $\neg(y \in x)$
IZFA+ axioms

- **Decidability:** $\forall x, x \in I \lor x \in S$
- **Sets:** $\forall X, (\exists x, x \in X) \Rightarrow X \in S$
- **Extensionality:** $\forall X, Y \in S, (\forall x, x \in X \iff x \in Y) \Rightarrow X = Y$
- **Induction:** $(\forall X, (\forall x \in X, \varphi(x)) \Rightarrow \varphi(X)) \Rightarrow \forall X, \varphi(X)$
- **Various axioms asserting the existence of sets:**
 - Separation
 - Collection
 - Unordered pairs
 - Union
 - Powerset
 - Infinity
- A countable hierarchy $S_0 \in S_1 \in S_2 \in \cdots \in S$ of Grothendieck universes (transitive sets of sets closed under the above set-forming operations)
Presheaf models of IZFA+

For any small category \mathcal{C}, since $\text{Set}^{\mathcal{C}^\text{op}}$ is a topos, it can soundly interpret (higher-order) intuitionistic logic. So we can look for models of the theory IZFA there.
Presheaf models of IZFA+

For any small category C, since \mathbf{Set}^{op} is a topos, it can soundly interpret (higher-order) intuitionistic logic. So we can look for models of the theory IZFA there.

In ZFC + countably many inaccessible cardinals, starting with any presheaf $I \in \mathbf{Set}^{\text{op}}$ for atoms, we get a model of IZFA+ by solving fixed point equations in \mathbf{Set}^{op}

$$S_n \cong P_n(I + S_n)$$

where $P_n : \mathbf{Set}^{\text{op}} \to \mathbf{Set}^{\text{op}}$ is a suitable size-n powerobject functor

by taking the colimit of a suitably long ordinal-iteration of $P_n(I + _)$.
Presheaf models of IZFA+

My take-home message from Scott’s note:

- Each C determines a Kripke-like forcing interpretation of IZFA.

- Within that model of set theory there is a category of “global” sets and functions equivalent to $\text{Set}^{\text{C}^\text{op}}$ (and within that, a full subcategory equivalent to C).

- So things that one might do concretely with presheaves (models of univalence!) can in principle be done in the model using the language of IZFA and might look simpler that way, because the set-theoretic interpretation of dependent types is simple…
Set-theoretic model of Type Theory

For the formalities see:

Set-theoretic model of Type Theory

For the formalities see:

From now on, let’s work informally within IZFA+

- types are sets \(X \in S \)
- dependent types are \(S \)-valued functions, \(F \in X \rightarrow S \)

\[
(x, y) \triangleq \{\{x\}, \{x, y\}\}
\]

\[
F \in X \rightarrow S \triangleq \forall z \in F, \exists x \in X, \exists Y \in S, \ z = (x, Y),
\forall x, Y, Y', (x, Y), (x, Y') \in F \Rightarrow Y = Y'
\]
Set-theoretic model of Type Theory

For the formalities see:

From now on, let’s work informally within IZFA+

- types are sets $X \in S$
- dependent types are S-valued functions, $F \in X \to S$
- dependent products $\Sigma X F \triangleq \{ (x, y) \mid x \in X, y \in F(x) \}$

\[
y \in F(x) \triangleq \exists Y, (x, Y) \in F, y \in Y
\]
Set-theoretic model of Type Theory

For the formalities see:

From now on, let’s work informally within IZFA+

- types are sets $X \in S$
- dependent types are S-valued functions, $F \in X \to S$
- dependent products $\Sigma X F \triangleq \{(x, y) \mid x \in X, y \in F(x)\}$
- dependent functions $\Pi X F \triangleq \{f \in X \to __ \mid \forall x \in X, \exists y \in F(x), (x, y) \in f\}$

$f \in X \to __ \triangleq \forall z \in f, \exists x, y, z = (x, y), \forall x, y, y', (x, y), (x, y') \in f \Rightarrow y = y'$
Set-theoretic model of Type Theory

For the formalities see:

From now on, let’s work informally within IZFA+

- types are sets $X \in S$
- dependent types are S-valued functions, $F \in X \rightarrow S$
- dependent products $\Sigma X F \triangleq \{(x, y) \mid x \in X, y \in F(x)\}$
- dependent functions $\Pi X F \triangleq \{f \in X \rightarrow _{_} \mid \forall x \in X, \exists y \in F(x), (x, y) \in f\}$

Use Agda-like notation

\[
\begin{align*}
(x \in X) \times F(x) & \triangleq \Sigma X F \\
(x \in X) \rightarrow F(x) & \triangleq \Pi X F
\end{align*}
\]
Set-theoretic model of Type Theory

For the formalities see:

From now on, let’s work informally within IZFA+

- types are sets $X \in S$
- dependent types are S-valued functions, $F \in X \to S$
- dependent products $\Sigma X F \triangleq \{(x, y) \mid x \in X, y \in F(x)\}$
- dependent functions $\Pi X F \triangleq \{f \in X \to __ \mid \forall x \in X, \exists y \in F(x), (x, y) \in f\}$
- well-founded trees $W X F \triangleq \text{least } W \text{ s.t. } (x \in X) \times (F(x) \to W) \subseteq W$
Martin-Löf Universes

Within IZFA, say that a set \(U \in S \) is an MLU if

- \(U \subseteq S \) (i.e. the elements of \(U \) are sets)
- \(\emptyset \) and \(\{\emptyset\} \) are in \(U \)
- if \(X, Y \in U \) then
 \[X \uplus Y \triangleq \{(\emptyset, x) \mid x \in X\} \cup \{({\emptyset}, y) \mid y \in Y\} \] is in \(U \)
- if \(X \in U \) and \(F \in X \to U \), then
 \(\Sigma X F \), \(\Pi X F \) and \(W X F \) are in \(U \)
Martin-Löf Universes

Within IZFA, say that a set \(U \in S \) is an MLU if

- \(U \subseteq S \) (i.e. the elements of \(U \) are sets)
- \(\emptyset \) and \(\{\emptyset\} \) are in \(U \)
- if \(X, Y \in U \) then \(X \uplus Y \triangleq \{(\emptyset, x) \mid x \in X\} \cup \{(\{\emptyset\}, y) \mid y \in Y\} \) is in \(U \)
- if \(X \in U \) and \(F \in X \to U \), then \(\Sigma X F, \Pi X F \) and \(\mathcal{W} X F \) are in \(U \)

What does it mean for such a \(U \) to be univalent?

Since univalence depends on identity, to answer the question, we first have to consider (typal) identity sets in an MLU…
Typal identity sets

To model typal identity types in IZFA (naively), we need for each $X \in S$

- $\text{Id}_X \in X \times X \to S$
- $r_X \in (x \in X) \to \text{Id}_X(x, x)$
Typal identity sets

To model typal identity types in IZFA (naively), we need for each $X \in S$

- $\text{ld}_X \in X \times X \rightarrow S$
- $r_X \in (x \in X) \rightarrow \text{ld}_X(x, x)$
- $\text{elim}_X \in (x \in X) \rightarrow$
 $\quad (F \in (y \in X) \times \text{ld}_X(x, y) \rightarrow S) \rightarrow$
 $\quad (z \in F(x, r_X x)) \rightarrow$
 $\quad (y \in X) \rightarrow$
 $\quad (p \in \text{ld}_X(x, y)) \rightarrow$
 $\quad F(y, p)$
- $\text{comp}_X \in (x \in X) \rightarrow$
 $\quad (F \in (y \in X) \times \text{ld}_X(x, y) \rightarrow S) \rightarrow$
 $\quad (z \in F(x, r_X x)) \rightarrow$
 $\quad \text{ld}_{F(x, r_X x)}(\text{elim}_X x F z x (r_X x), z)$
To model typal identity types in IZFA (naively), we need for each $X \in S$

- $\text{Id}_X \in X \times X \rightarrow S$
- $r_X \in (x \in X) \rightarrow \text{Id}_X(x, x)$
- $\text{elim}_X \in (x \in X) \rightarrow$
 $(F \in (y \in X) \times \text{Id}_X(x, y) \rightarrow S) \rightarrow$
 $(z \in F(x, r_X x)) \rightarrow$
 $(y \in X) \rightarrow$
 $(p \in \text{Id}_X(x, y)) \rightarrow$
 $F(y, p)$

Given $x \in X$, taking $F_x(y, p) \triangleq \{\emptyset \mid x = y \land p = r_X x\}$, for all $y \in X$ and $p \in \text{Id}_X(x, y)$ we get $\text{elim}_X x \ F_x \emptyset \ y \ p \in F_x(y, p)$ and hence $y = x$ and $p = r_X x$. So $\text{Id}_X(x, y) \cong \{\emptyset \mid x = y\}$

Therefore this typal identity coincides with extensional equality and so univalence with respect to Id implies degeneracy.
Typal identity sets

To model typal identity types inside some MLUs $\mathcal{U}_0 \in \mathcal{U}_1 \in \mathcal{U}_2 \in \cdots$, we need for each $X \in \mathcal{U}_n$

- $\text{Id}_X \in X \times X \to \mathcal{U}_n$
- $r_X \in (x \in X) \to \text{Id}_X(x, x)$
- $\text{elim}_X \in (x \in X) \to$

 $\begin{align*}
 & (F \in (y \in X) \times \text{Id}_X(x, y) \to \mathcal{U}_m) \to \\
 & (z \in F(x, r_X x)) \to \\
 & (y \in X) \to \\
 & (p \in \text{Id}_X(x, y)) \to \\
 & F(y, p)
 \end{align*}$

- $\text{comp}_X \in (x \in X) \to$

 $\begin{align*}
 & (F \in (y \in X) \times \text{Id}_X(x, y) \to \mathcal{U}_m) \to \\
 & (z \in F(x, r_X x)) \to \\
 & \text{Id}_{F(x, r_X x)}(\text{elim}_X x F z x (r_X x), z)
 \end{align*}$

How to get such structure? One way is via an interval…
Path sets

Extend IZFA+ by endowing \mathcal{I} (the set of atoms) with some structure that makes it interval-like.
Path sets

Extend IZFA+ by endowing \mathbb{I} (the set of atoms) with some structure that makes it interval-like.

Assuming constants $0, 1 \in \mathbb{I}$ (end points), for each $X \in \mathcal{S}$ and $x, y \in X$ we can define $\text{Id}_X(x, y) \triangleq (x \sim y)$ where

$$x \sim y \triangleq \{p \in \mathbb{I} \to X \mid p \ 0 = x, \ p \ 1 = y\}$$

$$\text{r}_X \ x \ \triangleq \ \{(i, x) \mid i \in \mathbb{I}\} \in (x \sim x)$$

What suffices for this to give typal identity types in the MLUs \mathcal{U}_n?
Path sets

\[\nabla \in (I \times I \to I) \text{ satisfying} \]
\[0 \nabla i = 0 = i \nabla 0 \]
\[1 \nabla i = i = i \nabla 1 \]

I-coercion \[\text{coe} \in ((P \in I \to U_n) \to P \to 0 \to P \to 1) \text{ [no conditions]} \]

Suppose MLUs \(U_0 \in U_1 \in \cdots \) are closed under I-path sets:
\[\forall X \in U_n, \forall x, y \in X, (x \sim y) \in U_n \]

Theorem. If there is an I-connection and an I-coercion, then there exist elim and comp making \(\sim \) a typal identity for the \(U_n \).
Sketch of the proof of the Theorem.

Adapting an argument due to Peter Lumsdaine [unpublished], it is possible to define a new version of I-coercion

$$\text{coe} \in ((P \in I \rightarrow \mathcal{U}_n) \rightarrow P \rightarrow P 1)$$

which is “regular”, i.e. for which there exist paths

$$\text{coe}_\beta(X, x) \in \text{coe}(\lambda__ \rightarrow X) x \sim x$$

for all $x \in X \in \mathcal{U}_n$.

Sketch of the proof of the Theorem.

Adapting an argument due to Peter Lumsdaine [unpublished], it is possible to define a new version of I-coercion

$$\overline{\text{coe}} \in ((P \in \text{I} \to \mathcal{U}_n) \to P \to P \rightarrow P)$$

which is “regular”, i.e. for which there exist paths

$$\overline{\text{coe}}_\beta (X, x) \in \overline{\text{coe}} (\lambda_\rightarrow X) x \sim x$$

for all $x \in X \in \mathcal{U}_n$.

Then given $F \in ((y \in X) \times \text{Id}_X (x, y) \to \mathcal{U}_m), z \in F(x, r_X x), y \in X, p \in (x \sim y)$ using $\sqcap, \overline{\text{coe}}$ and $\overline{\text{coe}}_\beta$, one can define (following Martin-Löf)

$$\text{elim}_X x F z y p \in F(y, p)$$
$$\text{elim}_X x F z y p \triangleq \overline{\text{coe}} (\lambda i \rightarrow F(p i, \lambda j \rightarrow p(i \sqcap j))) z$$
$$\text{comp}_X x F z \in \text{elim}_X x F z x (r_X x) \sim z$$
$$\text{comp}_X x F z \triangleq \overline{\text{coe}}_\beta (F(x, r_X x), z)$$
Univalence

Suppose MLUs $\mathcal{U}_0 \in \mathcal{U}_1 \in \cdots$ are closed under I-path sets, that I has a connection and that there are I-coercions in \mathcal{U}_-, so that paths give typal identity types \sim in \mathcal{U}_-.

Voevodsky’s definition: \mathcal{U}_n is univalent if for all $X, Y \in \mathcal{U}_n$, the canonical function (in \mathcal{U}_{n+1})

$$(X \sim Y) \rightarrow (X \simeq Y)$$

is an equivalence

usual type of equivalences (mod \sim) in \mathcal{U}_n
Suppose MLUs $\mathcal{U}_0 \in \mathcal{U}_1 \in \cdots$ are closed under I-path sets, that I has a connection and that there are I-coercions in \mathcal{U}_-, so that paths give typal identity types \sim in \mathcal{U}_-.

Voevodsky’s definition: \mathcal{U}_n is univalent if for all $X, Y \in \mathcal{U}_n$, the canonical function (in \mathcal{U}_{n+1})

$$(X \sim Y) \rightarrow (X \simeq Y)$$

is an equivalence

Observations of Shulman, Licata and specifically Ian Orton and AMP, *Decomposing the Univalence Axiom*, TYPES 2017

leads to a simpler criterion for univalence...
Univalence

Theorem. The MLUs \mathcal{U} are univalent iff there are elements

\[uc \in (X \in \mathcal{U}_n) \rightarrow \text{isContr}(X) \rightarrow (X \sim 1) \]
\[ub \in (X, Y \in \mathcal{U}_n) \rightarrow (X \cong Y) \rightarrow (X \sim Y) \]
\[ub_\beta \in (X, Y \in \mathcal{U}_n)(b \in X \cong Y)(x \in X) \rightarrow \coe(ub_\beta X Y b) x \sim b(x) \]
Univalence

Theorem. The MLUs \mathcal{U} are univalent iff there are elements

- $uc \in (X \in \mathcal{U}_n) \rightarrow \text{isContr}(X) \rightarrow (X \sim 1)$
- $ub \in (X, Y \in \mathcal{U}_n) \rightarrow (X \equiv Y) \rightarrow (X \sim Y)$
- $ub_\beta \in (X, Y \in \mathcal{U}_n)(b \in X \equiv Y)(x \in X) \rightarrow \coe(ub X Y b) x \sim b(x)$

$(x \in X) \times (y \in X) \rightarrow x \sim y$

set-theoretic bijections
Univalence

Theorem. The MLUs \mathcal{U} are univalent iff there are elements

$$
uc \in (X \in \mathcal{U}_n) \rightarrow \text{isContr}(X) \rightarrow (X \sim 1)
$$

$$
ub \in (X, Y \in \mathcal{U}_n) \rightarrow (X \cong Y) \rightarrow (X \sim Y)
$$

$$
ub_\beta \in (X, Y \in \mathcal{U}_n)(b \in X \cong Y)(x \in X) \rightarrow \text{coe}(ub X Y b) x \sim b(x)
$$

Proof uses fact that functions are extensional mod \sim:

$$
\text{funext} \in (e \in (x \in X) \rightarrow (f x \sim g x)) \rightarrow (f \sim g)
$$

$$
\text{funext } e i \triangleq \lambda(x \in X) \rightarrow e x i
$$
Instead of Conclusions, I have some questions
Question 1

Are there any models of IZFA+ for which

1. I has a connection \(\square \) and is non-trivial (\(0 \neq 1 \))
2. there are MLUs \(\mathcal{U}_0 \in \mathcal{U}_1 \in \ldots \) closed under I-path sets, with I-coercions coe and a univalence structure \(\text{uc}, \text{ub}, \text{ub}_\beta \)?
Question 1

Are there any models of IZFA+ for which

- I has a connection \(\square \) and is non-trivial \((0 \neq 1)\)
- there are MLUs \(\mathcal{U}_0 \in \mathcal{U}_1 \in \ldots \) closed under I-path sets, with I-coercions \(\text{coe} \) and a univalence structure \(\text{uc}, \text{ub}, \text{ub}_\beta \)?

In the model of IZFA+ using the presheaf topos from

one can get a “Tarski” version of the above...
\begin{itemize}
 \item \(\hat{\text{Id}} \in (X \in \mathcal{U}_n) \to E \, X \to E \, X \to \mathcal{U}_n \) satisfying \(E(\hat{\text{Id}} \, X \, x \, y) = (x \sim y) \) and similarly for 0, 1, +, \(\Pi \), \(\Sigma \) and \(W \)
 \item \(\hat{\mathcal{U}}_n \in \mathcal{U}_{n+1} \) satisfying \(E(\hat{\mathcal{U}}_n) = \mathcal{U}_n \)
 \item \(\hat{\text{coe}} \in (P \in I \to \mathcal{U}_n) \to E(P \, 0) \to E(P \, 1) \)
 \item \(\hat{\text{uc}} \in (X \in \mathcal{U}_n) \to \text{isContr}(E \, X) \to (X \sim \hat{1}) \)
 \item \(\hat{u}b \in \ldots \)
 \item \(\hat{u}b_\beta \in \ldots \)
\end{itemize}

In the CCHM model of IZFA+, \(E : \mathcal{U}_n \to \mathcal{S} \) is the carrier for the generic CCHM fibration (with size-\(n \) fibres)
Question 1

? Are there any models of IZFA+ for which

- I has a connection □ and is non-trivial (0 ≠ 1)
- there are MLUs \(\mathcal{U}_0 \in \mathcal{U}_1 \in \ldots \) closed under I-path sets, with I-coercions \(\text{coe} \) and a univalence structure \(\text{uc}, \text{ub}, \text{ub}_\beta \)?

In the model of IZFA+ using the presheaf topos from

one can get a “Tarski” version of the above...

Can this be “Russellified”?
constructs the [CCHM] univalent universe entirely within dependent type theory + a local/global modality (“Crisp” Type Theory), starting from axiom

the interval is “tiny”

(i.e. \((_)^\upuparrows\) has a global right adjoint)

plus the Orton-Pitts axioms for the interval and cofibrant propositions.
Question 2

con structs the [CCHM] univalent universe entirely within dependent type theory + a local/global modality ("Crisp" Type Theory), starting from axiom

the interval is "tiny"

(i.e. \({_i} \) has a global right adjoint)

plus the Orton-Pitts axioms for the interval and cofibrant propositions.

? Is there a modal version of IZFA+ admitting a set-theoretic model of Crisp Type Theory?

Is there a generalisation of the result about classical Kan simplicial sets in the above paper?

? In IZFA+, can any MLUs $\mathcal{U}_0 \in \mathcal{U}_1 \in \ldots$ that are closed under I-path sets and with I-coercions be completed to MLUs with a univalence structure?
Is there a generalisation of the result about classical Kan simplicial sets in the above paper?

In IZFA+, can any MLUs $\mathcal{U}_0 \in \mathcal{U}_1 \in \ldots$ that are closed under I-path sets and with I-coercions be completed to MLUs with a univalence structure?

Thanks for your attention — any answers?