Constructing \mathbb{N} by S^{1} induction

Robert Rose

Indiana University
rrose1@iu.edu

August 13, 2019

The problem

In Martin-Löf type theory and homotopy type theory, an "axiom of infinity" is given explicitly as a type of natural numbers with a combined principle for proof by induction and definition by recursion.

A couple of years ago, Rijke and Shulman conjectured that in HoTT, we have an axiom of infinity in the form of the higher inductive type S^{1}. Can ΩS^{1} be used to construct the natural numbers inside of type theory?

I learned about this problem in the lead up to the 2017 AMS Mathematical Research Community on Homotopy Type Theory. In the intervening time, Mike's feedback has been vital.

Main result

Let S1TT denote a Martin-Löf type theory whose type formers comprise $\Sigma, \Pi,=, \perp, T, B o o l, U_{0}, U_{1}, \ldots$ and $S 1$.

Theorem
A natural number system is derivable in S1TT.

Specialization of S^{1} induction

Given the following data:

- a family of types P over S^{1}
- a family of types b^{*} over the fiber $P(b)$
- a family of equivalences: for $x: P(b), I^{*}(x): b^{*}(x) \simeq b^{*}(\operatorname{tpt}(P, I, x))$
the S^{1} induction principle supplies a family of types Q which varies over both a : S^{1} and $P(a)$, with proofs that
- $Q(b)=b^{*}$
- $Q(b, l, x)=I^{*}(x)$ for all $x: P(b)$

When specialized to the case where P is the type of paths with a free endpoint, we get from

- $P_{b}: \Omega S^{1} \rightarrow U_{i}$
- a family of equivalences $P_{b}(x) \simeq P_{b}(I \cdot x)$ for $x: \Omega S^{1}$
a family of types $P: \Sigma_{a: S^{1}}(a=b) \rightarrow U_{i}$ satisfying the expected equations.

Moreover, since the domain of P is contractible, we get a section of P_{b} just by showing that $P_{b}(r e f l)$ is inhabited.

Finally, from the data

- $P_{b}: \Omega S^{1} \rightarrow U_{i}$
- a family of equivalences $P_{b}(x) \simeq P_{b}(I \cdot x)$ for $x: \Omega S^{1}$
- $P_{b}(r e f l)$
we get a function $P: \Pi_{x: \Omega s^{1}} P(x)$ satisfying the expected equations.
If we take $s:=I \cdot-$ and $z:=$ refl, this looks something like the induction principle for \mathbb{N}. But of course the fact that we require a family of equivalences instead of a family of functions means it is too weak to simply restrict somehow.

Nonetheless, we can heuristically view this principle as a means of defining "predicates" over ΩS^{1}, and so as a means of proving various properties of elements of ΩS^{1}.

Examples

What sorts of properties of ΩS^{1} have we been able to prove this way?

- that I commutes with all loops in $\Omega S^{1}: x \mapsto I \cdot x=x \cdot I$
- that ΩS^{1} is abelian : $x, y \mapsto y \cdot x=x \cdot y$
- fixing n, we can show that ΩS^{1} has division by I^{n} with remainder:

$$
\text { e.g., for } n=2, x \mapsto \Sigma_{y: \Omega S^{1}}(x=y \cdot y)+(x=l \cdot y \cdot y)
$$

- fixing n, dividing a loop x^{n} by I^{n} yields x : e.g., for $n=2$, $x \mapsto \operatorname{div}_{2}(x \cdot x)=x$

Example: Divison by 2

The path algebra can be a hassle.

```
( \(\mathrm{q}: ~ \mathrm{l} * \mathrm{x}==\mathrm{y} * \mathrm{y}\) )
-> ((l [1,0,2] ! *unitl
    * ! (*invl [2,0,1] x)
    * *assoc
    * (! \(1[1,0,2]\) q)
    * ! *assoc
    * ((! (! l [1,0,2] *unitr)
    * ! (! 1 [1,0,2] y [1,0,2] *invr)
    * ! (! 1 [1,0,2] *assoc)
    * ! (! 1 [1,0,2] com [2,0,1] ! 1)
    * (! 1 [1,0,2] *assoc)
    * ! *assoc
    * (*invl 1 [2,0,1] (y * ! 1))
    * *unitl) [2,0,1] y)
    * *assoc
    * ! *unitl
    * ! (*invr [2,0,1] y * ! l * y)
    * *assoc
    * 1 [1,0,2] ! *assoc)
* (1 [1,0,2] ! *assoc)
```


Example: Divison by 2

```
* (l [1,0,2] (! *unitl
    * ! (*invl [2,0,1] l * ! l * y)
    * *assoc
    * (! l [1,0,2] (((1 [1,0,2] ! (! *unitl
                                    * ! (*invr \([2,0,1] \mathrm{y}\) )
                                    * *assoc))
    * com
    * (! *unitl
        * ! (*invr [2,0,1] y)
        * *assoc)
        [2,0,1] 1)
                            * *assoc))
    * ! *assoc
    * (*invl [2,0,1] (! l * y) * l)
    * *unitl)
    [2,0,1] ! l * y)
* (1 [1,0,2] *assoc)
* ! *assoc)
* (! *assoc
    * (*invr [2,0,1] y)
    * *unitl) [2,0,2] ! *assoc
                                * (*invr \([2,0,1] \mathrm{y}\) )
                                * *unitl
==

\section*{Non-examples}

What are some properties which don't seem (directly) provable this way?
- that for a fixed loop \(x\) in \(\Omega S^{1}\), being equal to \(x\) is decidable:
\[
y \mapsto y=x+(y=x \rightarrow \perp)
\]
- that \(\Omega S^{1}\) is a set (if you find otherwise, please let me know)

For decidable equality, the obstacle seems to be that the disequality is not informative enough. The intuitionistic negation \(y=x \rightarrow \perp\) is insufficient to decide whether or not \(l \cdot y=x\). Instead of \(y=x \rightarrow \perp\), we'd like a measure of how different they are.

\section*{Intuition}

Consider two elements of \(\Omega S^{1}, I^{-2}\) and \(I^{3}\). We can construct a finite sequence of elements \(I^{-2}\) and \(I^{3}\) generated by the equivalence \(I \cdot-\) :
\[
I^{-2}, I^{-1}, \text { refl }, I, I^{2}, I^{3}
\]

In the process of producing this partial orbit, we might also generate a relation:
\[
I^{-2} \longrightarrow I^{-1} \longrightarrow \text { refl } \longrightarrow I \longrightarrow I^{2} \longrightarrow I^{3}
\]

We can try to formalize a theory of such segments as a type family over \(\Omega S^{1} \times \Omega S^{1}\); the fibers of this type family would consist of structures interpreting the theory.

\section*{Intuition}

Hence, we might constrain such a type family to get segments starting at refl:
\[
\begin{aligned}
& \text { refl } \\
& \text { refl, } / \\
& \text { refl }, I, I^{2}
\end{aligned}
\]

And those non-trivial segments ending at refl:
\[
\begin{array}{r}
I^{-1}, \text { refl } \\
I^{-1}, I^{-2}, \text { refl }
\end{array}
\]

We'd like to show that every loop corresponds to a exactly one such segment.

\section*{Segments}

To each type \(B\), base point \(b: B, x_{\min }: \Omega B, x_{\max }: \Omega B\) and equivalence \(s: B \simeq B\), we associate a complicated \(\Sigma\) type each term of which contains the following data:
- a family of types \(D: \Omega B \rightarrow U_{0}\)
- \(d_{\text {min }}: D\left(x_{\text {min }}\right)\)
- \(d_{\max }: D\left(x_{\max }\right)\)
- a "binary" relation \(R: \Pi_{\left(x_{1}: \Omega B, d_{1}: D\left(x_{1}\right), x_{2}: \Omega B, d_{2}: D\left(x_{2}\right)\right) h \text { Prop }}\)
- a lot of more data ensuring that \(R\) projected to \(\Omega S^{1}\) is a finite segment from \(x_{\text {min }}\) to \(x_{\text {max }}\)

\section*{More data}

Segments also include proofs that (eliding further scare quotes)
- \(R\) is irreflexive: \(R\left(x_{1}, d_{1}, x_{1}, d_{1}^{\prime}\right) \rightarrow \perp\)
- \(R\) is transitive: \(R\left(x_{1}, d_{1}, x_{2}, d_{2}\right) \rightarrow R\left(x_{2}, d_{2}^{\prime}, x_{3}, d_{3}\right) \rightarrow R\left(x_{1}, d_{1}, x_{3}, d_{3}\right)\)
- \(R\) is trichotomous: \(R\left(x_{1}, d_{1}, x_{2}, d_{2}\right)+\left(x_{1}=x_{2}\right)+R\left(x_{2}, d_{2}, x_{1}, d_{1}\right)\)
- \(d_{\text {min }}\) is minimal: \(x \neq x_{\text {min }} \rightarrow R\left(x_{\text {min }}, d_{\text {min }}, x, d\right)\)
- \(d_{\text {max }}\) is maximal: \(x \neq x_{\text {max }} \rightarrow R\left(x, d, x_{\max }, d_{\text {max }}\right)\)
- \(R\) is generated by \(s: R\left(x_{1}, d_{1}, s\left(x_{1}\right), d_{2}\right)\)
- \(R\) is discrete wrt \(s: R\left(x_{1}, d_{1}, x_{2}, d_{2}\right) \rightarrow R\left(x_{2}, d_{2}, s\left(x_{1}\right), d_{3}\right) \rightarrow \perp\)
- \(R\) is up-closed and down-closed wrt \(s\) :
\(\Sigma_{d: D(x)} R\left(x, d, x_{\max }, d_{\max }\right) \simeq \Sigma_{d: D(s(x))} R\left(x_{\min }, d_{\text {min }}, x, d\right)\)
- \(D\) is asymmetric wrt refl: \(x \neq r e f l \rightarrow D(x) \rightarrow D\left(x^{-1}\right) \rightarrow \perp\).

\section*{Specialized Segments}

Take \(B:=S^{1}\) and the equivalence \(s\) to be left composition with I. Define
- \(S_{e g \geq 0}\) to be a segment with \(x_{\text {min }}=\) refl
- \(S_{e g>0}\) to be a segment with \(x_{\text {min }}=\) refl with additional datum \(R\left(x_{\min }, d_{\min }, x_{\max }, d_{\max }\right)\)
- \(\operatorname{Seg}_{\leq 0}\) to be a segment with \(x_{\max }=\) refl
- \(S_{e g}{ }_{<0}\) to be a segment with \(x_{\text {max }}=\) refl with additional datum \(R\left(x_{\min }, d_{\min }, x_{\max }, d_{\text {max }}\right)\)
- \(\operatorname{Seg}_{+0}\) to be a segment with \(x_{\text {min }}=\) refl with additional datum \(R\left(x_{\text {min }}, d_{\text {min }}, x_{\text {max }}, d_{\text {max }}\right) \rightarrow \perp\)
- \(\operatorname{Seg}_{-0}\) to be a segment with \(x_{\max }=\) refl with additional datum \(R\left(x_{\min }, d_{\min }, x_{\max }, d_{\text {max }}\right) \rightarrow \perp\)

\section*{Negative or non-negative}

Hence, we define the following second-order predicate of \(\Omega S^{1}\) :
\[
\begin{aligned}
& P_{b}: \Omega S^{1} \rightarrow U_{1} \\
& P_{b}(x):=\operatorname{Seg}_{<0}(x)+\operatorname{Seg}_{\geq 0}(x)
\end{aligned}
\]

To apply \(S^{1}\) induction so as to generalize \(P_{b}\) and prove that it holds of every element of \(\Omega S^{1}\), we need to show that \(P_{b}(x) \simeq P_{b}(I \cdot x)\).

\section*{\(P_{b}(x) \simeq P_{b}(1 \cdot x)\)}

We obtain the desired family of equivalences from these components:
\[
\begin{aligned}
& \operatorname{Seg}_{<0}(x)+\operatorname{Seg}_{\geq 0}(x) \simeq \\
& \operatorname{Seg}_{\leq 0}(I \cdot x)+\operatorname{Seg}_{>0}(I \cdot x) \simeq \\
& \left(\operatorname{Seg}_{<0}(I \cdot x)+\operatorname{Seg}_{-0}(I \cdot x)\right)+\operatorname{Seg}_{>0}(I \cdot x) \simeq \\
& \operatorname{Seg}_{<0}(I \cdot x)+\left(\operatorname{Seg}_{+0}(I \cdot x)+\operatorname{Seg}_{>0}(I \cdot x)\right) \simeq \\
& \operatorname{Seg}_{<0}(I \cdot x)+\operatorname{Seg}_{\geq 0}(I \cdot x) \simeq
\end{aligned}
\]

Defining the equivalence \(\operatorname{Seg}_{\geq 0}(x) \simeq \operatorname{Seg}_{>0}(I \cdot x)\) (and its negative reflection) is lengthy and contains some subtleties. In particular, one has to be careful about how to define the "increase max" and "decrease max" functions for non-negative segments so that they compose to the identities. (And likewise for "increase min" and "decrease min".)

\section*{\(P_{b}(x) \simeq P_{b}(1 \cdot x)\)}

Note that we have not characterized finite segments purely in terms of order theoretic properties and the iteration of the equivalence. The asymmetry assumption allows us to exclude any model where \(I^{-2}\) is the max, refl is the min and every loop but \(I^{-1}\) is in the segment.

Moreover, some algebraic facts come into play crucially:
- \(I \neq r e f l\)
- \(I^{2} \neq\) refl
- \(I^{3} \neq\) refl
- \(l\) is odd
- \(I\) is in the center
- there are no elements of order 2

\section*{\(P_{b}(r e f l)\)}

We define a non-negative segment with refl for min and max as follows:
- \(D(x):=(x=r e f l)\)
- \(R(x 1, d 2, x 2, d 2):=\perp\)
- trichotomy is obtained by composing paths from \(D\left(x_{1}\right)\) and \(D\left(x_{2}\right)\)
- generation invokes the fact that \(I \neq\) refl

The rest of the properties more or less vacuously hold.

Theorem
There exists a section sign: \(\Pi_{x: \Omega s^{1}} \operatorname{Seg}_{<0}(x)+\operatorname{Seg}_{\geq 0}(x)\) which computes as expected.

Corollary
\(\Omega S^{1}\) has decidable equality.
Corollary
For all \(x: \Omega S^{1}\), the underlying type family of \(\operatorname{sign}(x)\) is a family of decidable propositions.

With sign, we can now define
\[
\begin{aligned}
& \mathbb{N}: U_{0} \\
& \mathbb{N}:=\Sigma_{\left(x: \Omega S^{1}\right)} f s t(\operatorname{sign}(x))=\text { true }
\end{aligned}
\]

The usual first order properties of \(\mathbb{N}\) are provable directly by reasoning about segments, and we are also able to define a total ordering \(\leq\) on \(\mathbb{N}\).

It remains to derive the induction principle for \(\mathbb{N}\).

\section*{Approximations}

Given
- \(Q: N \rightarrow U_{i}\)
- \(z^{*}: Q(z)\)
- \(s^{*}: \Pi_{(n: N)} Q(n) \rightarrow Q(\operatorname{suc}(n))\)
an approximation is defined as an element of a type family over \(x: \Omega S^{1}\) :
- a function \(a: \Pi_{(m: n a t(x), n: \mathbb{N})}(n \leq(x, m)) \rightarrow Q(n)\)
- a function \(r z: \Pi_{(m: n a t(x), r: z \leq(x, m))} a(m, z, r)=z^{*}\).
- a function
\[
r s: \Pi_{\left(m: \operatorname{nat}(x), r_{1}: \operatorname{suc}(n) \leq(x, m), r_{2}: n \leq(x, m)\right)} a\left(m, \operatorname{suc}(n), r_{1}\right)=s^{*}\left(n, a\left(m, n, r_{2}\right)\right)
\]

\section*{Approximations}

Note that whenever \(x\) is not a natural number, the type of approximations over \(x\) is contractible with center the triple of empty functions.

Hence, we again apply \(S^{1}\) induction to obtain a section a: \(\Pi_{x: \Omega S^{1}}\) approx \((x)\), from which we may extract a section ind \(\mathbb{N}\) : \(\Pi_{(n: \mathbb{N})} Q(n)\).```

