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Introduction: constructivity of MLTT

Martin-Löf type theory (MLTT) is a constructive system:
• existence proofs are effective,
• can be used as programming language with notion of evaluation.

It enjoys canonicity: every closed term of a positive type (e.g., Nat) is
obtained (up to judgmental equality) from an introduction rule.

Adding axioms (e.g., law of excluded middle) destroys canonicity.



Introduction: constructivity of MLTT

Martin-Löf type theory (MLTT) is a constructive system:
• existence proofs are effective,
• can be used as programming language with notion of evaluation.

It enjoys canonicity: every closed term of a positive type (e.g., Nat) is
obtained (up to judgmental equality) from an introduction rule.

Adding axioms (e.g., law of excluded middle) destroys canonicity.



Introduction: constructivity of HoTT

Homotopy type theory (HoTT) is obtained from MLTT by adding the
axioms of function extensionality and univalence.

Canonicity fails. Should HoTT still be seen as a constructive system?

Voevodsky: yes, if the following conjecture is true.

Conjecture (Voevodsky, ≤ 20101)
For any closed term n of natural number type, there is k ∈ N with a
closed term p of the identity type relating n to the numeral Sk0.
Both n and p may make use of the univalence axiom.

Furthermore, this procedure should be given by an effective algorithm.

This is known as the homotopy canonicity conjecture.

“This conjecture seems to be highly non-trivial. [...] I find this conjecture
to be both very important for the univalent foundations and very interesting.”
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Introduction: cubical type theories

Cubical type theories are extensions or modifications of HoTT with
• strict cubical shapes,
• additional operations and judgmental equations

designed to “make univalence compute,” retaining canonicity in the
presence of univalence.

Important developments, but:
• Unknown if cubical type theories are conservative over HoTT.

So this does not solve the homotopy canonicity conjecture.
• (Unclear if there is a cubical type theory that can be interpreted in

standard homotopy types, let alone higher topoi.)
• (Strict cubical shapes are in contrast to weak axiomatization of

higher groupoidal structure encoded intrinsically by identity type.)
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MLTT: semantics

By MLTT, we understand the following collection of type formers:
• dependent sums (strict),
• dependent products (strict),
• indexed inductive types (in particular: identity types),
• hierarchy of universes (can be cumulative) closed under type formers.

Write MLTT also for category of models2 of this theory. A model C has:
• a category C of contexts and substitutions,

• presheaves Ty ∈ Ĉ of types and Tm ∈
∫̂
Ty of terms,

• interpretations of global context 1 and context extension Γ.A,
• interpretations of above type formers, stable under substitution.

For example, we have the set model Set ∈ MLTT.

2

presented using categories with families, categories with attributes, full
comprehension categories, natural models, or any other equivalent notion
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MLTT: canonicity (recollection)

Canonicity is a property of the initial model 0MLTT ∈ MLTT.

Canonicity is proved abstractly by sconing (Freyd cover), i.e. glueing
along the global sections functor to Set.

Glueing makes sense generally along a pseudomorphism of models:

Definition
A pseudomorphism F : C → D of models of MLTT is a functor on
underlying categories with natural transformations on types and terms
that preserves the global context and context extension up to (canonical)
isomorphism and preserves small types (elements of universes).

This is the analogue of a left exact functor.

Note: a pseudomorphism is not a morphism in MLTT.
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MLTT: glueing (recollection)

Construction
Let F : C → D be a pseudomorphism of models of MLTT.
The glueing Glue(F ) is a model with category of contexts D ↓ F .
The projection D ↓ F → C extends to a map Glue(F )→ C in MLTT.

Concretely:
• A context is a triple of ΓC ∈ C, ΓD ∈ D, and ΓD

γ−→ FΓC .
• A types is a pair AC ∈ TyC(ΓC) and AD ∈ TyD(ΓD.(FAC)σ).
• A term is a pair tC ∈ TmC(ΓC ,AC) and tD ∈ TmD(ΓD,AD[(FtC)γ]).
• Dependent sums, dependent products, and indexed inductive types

are defined from the corresponding type formers in C and D.
• Universes are interpreted using universes in C and D and

non-dependent products in D:

UGlue(F ) = (UC , (F ElC)γ → UD),

ElGlue(F )(AC ,AD) = (ElC(AC),ElD(app(AD, q))).
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MLTT: canonicity from glueing (recollection)

The global sections functor F : 0MLTT → Set extends to a
pseudomorphism of models.

By initiality of 0MLTT, we obtain a unique section to the projection from
the glueing along F :

Glue(F )

��

0MLTT
id //

J−K

∃!

44

0MLTT

(diagram in MLTT).



MLTT: canonicity from glueing (recollection)

By construction of Glue(F ), we have NatGlue(F ) = (Nat,Nat′) where
Nat′ : Tm(1,Nat)→ Set is inductively generated by

0′ ∈ Nat′(F0),

S ′(m,m′) ∈ Nat′((FS)(m)) for m′ ∈ Nat′(m).

This is the preimage of the canonical map S (−)0 : N→ Tm(1,Nat).

For canonicity, let n ∈ Tm0MLTT(1,Nat).

We obtain JnK = (n, n′) ∈ TmGlue(F )(1,Nat) where n′ ∈ Nat′(n) is the
witness that n is canonical (equal to a numeral Sk0).
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Semantics of HoTT

By HoTT, we mean the extension of MLTT with:
• witnesses of function extensionality (substitution stable),
• witnesses of univalence (substitution stable).

Everything we will say also applies when one adds:
• some higher inductive types such as pushouts,
• witnesses of resizing axioms (substitution stable).

Again, write HoTT also for category of models of this theory.



Shulman’s work on homotopy canonicity

(Shulman; 2013)3 generalized glueing along a pseudomorphism F to
HoTT under the additional assumption that F coherently preserves
anodyne maps (behaving as reflexivity for identity type elimination).

(Shulman; 2015)4 weakens this requirement to the more natural condition
that F coherently preserves homotopy equivalences. Equivalently:

Proposition (Shulman)
Given a pseudomorphism F : C → D of models of HoTT, the glueing
Glue(F ) exists as soon as F preserves contractibility (stably under
substitution).

This aligns the construction with Artin glueing for higher toposes:
left exact functors are presented already by maps of fibration categories.

3Univalence for inverse diagrams and homotopy canonicity
4

Univalence for inverse EI diagrams
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Shulman: 0-truncated homotopy canonicity

The proof of canonicity of MLTT fails for HoTT for two reasons:
• Set is not a model of HoTT.
• The global sections functor F : 0HoTT → Set does not preserve

contractibility.

Let n-truncated HoTT≤n be the following modification of HoTT:
• the axiom Kn that every type is n-truncated (substitution stable),
• additional universes of (n − 1)-types,
• univalence restricted to these universes.

Then Set is a model of 0-truncated HoTT.
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Shulman: 0-truncated homotopy canonicity

The global sections functor 0HoTT≤0 → Set fails to preserve contractibility.

Shulman: consider quotiented global sections functor 0HoTT≤0 → Set
that sends a context Γ to the quotient 0HoTT≤0(1, Γ)/∼
where γ ∼ γ′ if the identity context IdΓ(γ, γ′) has a point.

Now the proof by sconing goes through. Instead of canonicity, we obtain
homotopy canonicity for 0-truncated HoTT.
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Shulman: 1-truncated homotopy canonicity

Can we follow this approach in higher dimensions?

Shulman: we obtain homotopy canonicity of 1-truncated HoTT by
• replacing Set with the model in Gpd (Hofmann, Streicher),
• using a groupoid-valued global sections functor F : 0HoTT≤0 → Gpd,

quotiented on the level of morphisms; for closed type A:
• the objects of FA are Tm(1,A),
• the morphisms FA(s, t) are Tm(1, IdA(s, t))/∼

where u ∼ v if Tm(1, IdIdA(s,t)(u, v)) is inhabited.

Note: the quotient on the level of morphisms is essential in two ways:
• to ensure preservation of contractibility,
• to make F a functor (instead of a pseudofunctor).
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Shulman: problems in higher dimensions

What about higher dimensions?
• We have a model of non-truncated HoTT:

Voevodsky’s simplicial set model ∆̂.

• But it seems impossible to define global sections functor F : 0HoTT → ∆̂.

How should we associate a Kan fibrant simplicial set FA to a closed type A?
• Can define semisimplical structure:

(FA)0 = Tm(1,A)

(FA)1(s, t) = Tm(1, IdA(s, t))

(FA)2(. . .) = {triangle fillers}
. . .

• However, we have no natural way to define degeneracies.
• But the real problem is that (FA)1 is not functorial in A. This would

mean ap(g ◦ f ) = ap(g)◦ ap(f ), which only holds up to identity type.
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New approaches to homotopy canonicity

We seem to need a new idea.

Brainstorming:

• Stop trying to glue the initial model.

• Types need to come functorially with data that encodes their
higher-dimensional groupoidal structure.

• How do we do this without losing the connection to the initial model?
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Shulman: inverse diagram models

Let D be a direct category with finite slices.

Construction (Shulman)
Any model E ∈ HoTT lifts to a model [Dop, E ]rf ∈ HoTT of inverse
diagrams in E over Dop.

Concretely:
• The contexts are functors Dop → E .
• A ∈ Ty(Γ) is a structured Reedy fibration: Ai ∈ Ty(Γi .MiA) for

i ∈ D where MiA is the telescope

MiA = (xj : Γ∗f Aj [(Γ∗gxk)
k

g−→
6=

j
])
j

f−→
6=

i
.

• t ∈ Tm(Γ,A) consists of Tm(Γi ,Ai [(Γ∗f tj)j
f−→
6=

i
]).

• . . .
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Variation: homotopical inverse diagram models

Let (D,W ) be a homotopical direct category with finite slices,
(W ⊆ D is a wide subcategory of weak equivalences).

Construction
Assume that for all i ∈ D, the weak equivalences with target i are either
all maps or only the identity on i .
Then any model E ∈ HoTT lifts to a model [(D,W )op, E ]rf ∈ HoTT of
homotopical inverse diagrams in E over (D,W )op.
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Variation: homotopical inverse diagram models

Concretely:
• Basic structure of [(D,W )op, E ]rf is as in [Dop, E ]rf , but with extra

data on types A ∈ Ty(Γ) that (Γ.A)i → (Γ.A)j is fiberwise
equivalence over Γi → Γj for any weak equivalence j → i .

• Type formers in [(D,W )op, E ]rf are interpreted as in [Dop, E ]rf , with
the exception of universes.

For positive dependent sums, identity types, and dependent product, this
construction is (Kapulkin, Lumsdaine; 2018)5.

For the special case of D = {0 ⇒ 1} with W maximal, this construction
appears (obfuscated by syntax) in (Tabareau, Tanter, Sozeau; 2018)6.

5

Homotopical inverse diagrams in categories with attributes

6

Equivalences for free: univalent parametricity for effective transport
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Example: frame models

Take D = ∆+ (the semisimplex category) and W maximal.

For E ∈ HoTT, yields model [(∆+,W )op, E ]rf ∈ HoTT of frames in E .

These are the frames from Karol’s talk yesterday:
• used for homotopical models of HoTT by (Kapulkin, Szumiło; 2017)7,
• introduced for fibration categories by (Schwede; 2013)8,
• goes back to simplicial notions of frame in model categories.

7

Internal Languages of Finitely Complete (∞, 1)-categories

8

The p-order of topological triangulated categories
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Example: frame models

Evaluation ev0 : [(∆+,W )op, E ]rf → E at level 0 gives a map in HoTT
that is a weak equivalence in a certain precise sense (cf. Karol’s talk).

This model supports a semisimplicial global sections functor

[(∆+,W )op, E ]rf
[(∆+,W )op,G ]

// ∆̂+

by applying the ordinary global sections functor G levelwise.

Homotopicality ensures that types are mapped to Kan fibrations in ∆̂+.
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Glueing along semisimplicial global sections functor?

Unfortunately, semisimplicial sets do not model HoTT.

To fix this, one can weaken the η-rule for dependent products and relax
some substitutional coherence (similar sacrifices are made in (Gambino,
Henry; 2019)9).

Unfortunately, strict dependent products (i.e., with η) are needed for the
construction of universes in inverse diagram models.

9Towards a constructive simplicial model of Univalent Foundations, 2019



Glueing along what?

Last piece of the puzzle: postcompose with right Kan extension
i∗ : ∆̂+ → ∆̂ to move to simplicial sets (where i : ∆+ ↪→ ∆)!

Key: i∗ is an exact functor of fibration categories10,11, so it preserves
types and contractibility.

In total, the functor FE to glue along is (restricting to contextual E):

[(∆+,W )op, E ]
[(∆+,W )op,G ]

// (∆̂+)fib
i∗ // (∆̂)fib.

10Henry, Weak model categories in classical and constructive mathematics, 2018
11Sattler, Constructive homotopy theory of marked semisimplicial sets, 2018
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Remaining problems: substitutional coherence
We did not explain how to achieve an action of F on (contractible) types
that is coherent with substitution.

We solve this problem by:
• using Voevodsky’s splitting technique,
• replacing Voevodsky’s big universe in ∆̂ to define types by a

Hofmann-Streicher one.

In simplicial sets, define

Ubig,n = {X ∈ ∆̂/[n] | • X−→ ∆n Kan fibration},

U≤−2big,n = {X ∈ ∆̂/[n] | • X−→ ∆n trivial fibration}.

Note that the universal fibration of U≤−2big,n is a contractible type.

We then have natural transformations

Ty→ ∆̂(FE(−),Ubig),

Ty≤−2 → ∆̂(FE(−),U≤−2big ).
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Homotopy canonicity

Now we can glue.

To obtain homotopy of HoTT, we use initiality of 0HoTT:

Glue(F0HoTT)

��

[(∆+,W )op, 0HoTT]

ev0

��

0HoTT
id

//

J−K

88

J−K

55

0HoTT

(diagram in HoTT).

Note that the natural numbers are interpreted in ∆̂ as constantly N.

Given n ∈ Tm(1,Nat), the second component of JnK in Glue(F0HoTT)
gives us k ∈ N with Tm(1, IdNat(JnK,Sk0)) in [(∆+,W )op, 0HoTT].

Evaluating at level 0, we obtain Tm(1, IdNat(n,Sk0)) in 0HoTT.
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Constructivity issues

So far, the proof of homotopy canonicity is non-constructive because the
simplicial set model (with the needed strictness) is non-constructive.

Bezem: we still obtain a (very stupid) terminating algorithm.

Can we do better?
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Homotopy canonicity via glueing with cubical sets

We obtain a constructive proof of homotopy canonicity by glueing along:

[(∆+,W )op, 0HoTT]

[(∆+,W )op,G ]
��

(∆̂+)dec,fib (levelwise decidable equality)

i∗
��

∆̂degunifib (degeneracy-uniform fibrations)

Id
��

∆̂unifib (uniform fibrations)

j∗ where j : ∆→ FinLat = �full��

(�̂full)CCHM.

The coherence issue of the action on (contractible) types is solved using
the modification of the local universe method of (Shulman; 2019)12.

12

All (∞, 1)-toposes have strict univalent universes
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