All $(\infty, 1)$ -toposes have strict univalent universes

Mike Shulman

University of San Diego

HoTT 2019 Carnegie Mellon University August 13, 2019

- A (Grothendieck–Rezk–Lurie) (∞ , 1)-topos is:
 - The category of objects obtained by "homotopically gluing together" copies of some collection of "model objects" in specified ways.
 - The free cocompletion of a small $(\infty, 1)$ -category preserving certain well-behaved colimits.
 - An accessible left exact localization of an $(\infty, 1)$ -category of presheaves.

They are a powerful tool for studying all kinds of "geometry" (topological, algebraic, differential, cohesive, etc.).

It has long been expected that (∞ , 1)-toposes are models of HoTT, but coherence problems have proven difficult to overcome.

Theorem (S.)

Every $(\infty, 1)$ -topos can be given the structure of a model of "Book" HoTT with strict univalent universes, closed under Σs , Πs , coproducts, and identity types.

Caveats for experts:

- 1 Classical metatheory: ZFC with inaccessible cardinals.
- **2** We assume the initiality principle.
- **3** Only an interpretation, not an equivalence.
- **4** HITs also exist, but remains to show universes are closed under them.

Example

- Hou-Finster-Licata-Lumsdaine formalized a proof of the Blakers-Massey theorem in HoTT.
- ② Later, Rezk and Anel–Biedermann–Finster–Joyal unwound this manually into a new (∞, 1)-topos-theoretic proof, with a generalization applicable to Goodwillie calculus.
- (3) We can now say that the HFLL proof already implies the $(\infty, 1)$ -topos-theoretic result, without manual translation. (Modulo closure under HITs.)

1 Type-theoretic model toposes

2 Left exact localizations

3 Injective model structures

4 Remarks

We can interpret type theory in a well-behaved model category $\mathscr{E}\colon$

Type theory	Model category
$Type\; \Gamma \vdash A$	Fibration $\Gamma A \rightarrow \Gamma$
Term $\Gamma \vdash a : A$	Section $\Gamma \to \Gamma_{\bullet} A$ over Γ
ld-type	Path object
÷	÷
Universe	Generic small fibration $\pi: \widetilde{U} \twoheadrightarrow U$

To ensure U is closed under the type-forming operations, we choose it so that every fibration with " κ -small fibers" is a pullback of π , where κ is some inaccessible cardinal.

Let $\mathscr{E} = [\mathcal{C}^{\mathrm{op}}, \mathsf{Set}]$ be a presheaf model category.

Definition

Define a presheaf $U \in \mathscr{E} = [\mathcal{C}^{\mathrm{op}}, \mathsf{Set}]$ where

$$U(c) = \Big\{\kappa ext{-small fibrations over } \& c = \mathcal{C}(-,c)\Big\}$$

with functorial action by pullback along $\natural \gamma : \natural c_1 \rightarrow \natural c_2$. (Plus standard cleverness to make it strictly functorial.)

Similarly, define \widetilde{U} using fibrations equipped with a section. We have a κ -small map $\pi : \widetilde{U} \to U$.

Theorem

Every κ -small fibration is a pullback of π .

But π may not itself be a fibration!

Theorem

If the generating acyclic cofibrations in $\mathscr{E} = [\mathcal{C}^{op}, \text{Set}]$ have representable codomains, then $\pi : \widetilde{U} \to U$ is a fibration.

Proof.

To lift in the outer rectangle, instead lift in the left square.

$$\begin{array}{c} A \longrightarrow \bullet \longrightarrow \widetilde{U} \\ \downarrow & \downarrow^{\pi} \\ \downarrow & \downarrow^{\pi} \\ \downarrow c \longrightarrow \downarrow c \\ \downarrow c \longrightarrow \downarrow c \\ \downarrow r \end{array}$$

Example (Voevodsky)

In simplicial sets, the generating acyclic cofibrations are $\Lambda^{n,k} \to \Delta^n$, where Δ^n is representable.

In cubical sets, the fibrations have a *uniform choice* of liftings against generators $\Box^{n,k} \to \Box^n$. Since \Box^n is representable, our π lifts against these generators, but not uniformly.

Instead one defines (BCH, CCHM, ABCFHL, etc.)

$$U(c) = \left\{ \text{small fibrations over } \& c \text{ with specified uniform lifts} \right\}$$

Then the lifts against the generators $\sqcap^{n,k} \to \square^n$ cohere under pullback, giving π also a uniform choice of lifts.

Let's put this in an abstract context.

Definition

A notion of fibred structure \mathbb{F} on a category \mathscr{E} assigns to each morphism $f: X \to Y$ a set (perhaps empty) of " \mathbb{F} -structures", which vary functorially in pullback squares: given a pullback

any \mathbb{F} -structure on f induces one on f', functorially.

Definition

A notion of fibred structure \mathbb{F} is locally representable if for any $f: X \to Y$, the functor $\mathscr{E}/Y \to Set$, sending $g: Z \to Y$ to the set of \mathbb{F} -structures on $g^*X \to Z$, is representable.

Examples

The following notions of fibred structure on a map $f : X \to Y$ are locally representable:

- The property of lifting against a set of maps with representable codomains (e.g. simplicial sets).
- The structure of liftings against a category of maps with representable codomains (e.g. as in Emily's talk).
- A G_Y-algebra structure for a fibred pointed endofunctor G (e.g. the partial map classifier, as in Steve's talk).
- A section of $F_Y(X)$, for any fibred endofunctor F.
- The combination of two or more locally representable notions of fibred structure.
- **6** The property of having κ -small fibers.
- A square exhibiting f as a pullback of some $\pi: \widetilde{U} \to U$.

Universes from fibration structures

For a notion of fibred structure ${\mathbb F},$ define

 $U(c) = \{$ small maps into &c with specified \mathbb{F} -structures $\}$.

and similarly $\pi: \widetilde{U} \to U$.

Theorem

If \mathbb{F} is locally representable, then π also has an \mathbb{F} -structure, and every \mathbb{F} -structured map is a pullback of it.

Proof.

Write U as a colimit of representables. All the coprojections factor coherently through the representing object for \mathbb{F} -structures on π , so the latter has a section.

(Can also use the representing object for \mathbb{F} -structures on the classifier $\widetilde{V} \to V$ of all κ -small morphisms, as Steve did yesterday.)

Definition (S.)

A type-theoretic model topos is a model category $\mathscr E$ such that:

- & is a right proper Cisinski model category.
- & has a well-behaved, locally representable, notion of fibred structure $\mathbb F$ such that the maps admitting an $\mathbb F$ -structure are precisely the fibrations.
- & has a well-behaved enrichment (e.g. over simplicial sets).

It is not hard to show:

- **1** Every type-theoretic model topos interprets Book HoTT with univalent universes. (FEP+EEP \Rightarrow U is fibrant and univalent.)
- 2 The $(\infty, 1)$ -category presented by a type-theoretic model topos is a Grothendieck $(\infty, 1)$ -topos. (It satisfies Rezk descent.)

The hard part is the converse of (2): are there enough ttmts?

An $(\infty, 1)$ -topos is, by one definition, an accessible left exact localization of a presheaf $(\infty, 1)$ -category. Thus it will suffice to:

- () Show that simplicial sets are a type-theoretic model topos. \checkmark
- Show that type-theoretic model toposes are closed under passage to presheaves.
- **3** Show that type-theoretic model toposes are closed under accessible left exact localizations.

We take the last two in reverse order.

1 Type-theoretic model toposes

2 Left exact localizations

Injective model structures

Let S be a set of morphisms in a type-theoretic model topos \mathscr{E} .

Definition

A fibrant object $Z \in \mathscr{E}$ is (internally) S-local if $Z^f : Z^B \to Z^A$ is an equivalence in \mathscr{E} for all $f : A \to B$ in S.

These are the fibrant objects of a left Bousfield localization model structure $\mathcal{L}_{S}\mathscr{E}$ on the same underlying category \mathscr{E} . It is left exact if fibrant replacement in $\mathcal{L}_{S}\mathscr{E}$ preserves homotopy pullbacks in \mathscr{E} .

Example

If $\mathscr{E} = [\mathcal{C}^{\mathrm{op}}, \mathsf{Set}]$ and \mathscr{C} is a site with covering sieves $R \rightarrowtail \&c$, then Z^R is the object of local/descent data. Thus the local objects are the sheaves/stacks.

Lemma

There is a loc. rep. notion of fibred structure whose \mathbb{F}_S -structured maps are the fibrations $X \to Y$ that are S-local in \mathscr{E}/Y .

Sketch of proof.

Define isLocal_S(X) using the internal type theory, and let an \mathbb{F}_{S} -structure be an \mathbb{F} -structure and a section of isLocal_S(X).

Lemma

There is a loc. rep. notion of fibred structure whose \mathbb{F}_S -structured maps are the fibrations $X \to Y$ that are S-local in \mathscr{E}/Y .

Sketch of proof.

Define isLocal_S(X) using the internal type theory, and let an \mathbb{F}_{S} -structure be an \mathbb{F} -structure and a section of isLocal_S(X).

Theorem

If S-localization is left exact, $\mathcal{L}_{S}\mathscr{E}$ is a type-theoretic model topos.

Sketch of proof.

Using Rijke–S.–Spitters and Anel–Biedermann–Finster–Joyal (forthcoming), if we close S under homotopy diagonals, the above \mathbb{F}_{S} -structured maps also coincide with the fibrations in $\mathcal{L}_{S}\mathscr{E}$.

1 Type-theoretic model toposes

2 Left exact localizations

3 Injective model structures

 $\mathscr{E} = a$ type-theoretic model topos, $\mathscr{D} = a$ small (enriched) category, $[\mathscr{D}^{\mathrm{op}}, \mathscr{E}] =$ the presheaf category.

Warning #1

It's essential that we allow presheaves over $(\infty, 1)$ -categories (e.g. simplicially enriched categories) rather than just 1-categories. But for simplicity here, let's assume \mathscr{D} is unenriched.

Warning #2

In cubical cases, $[\mathscr{D}^{\mathrm{op}}, \mathscr{E}]$ has an "intrinsic" cubical-type model structure, which (when \mathscr{D} is unenriched) coincides with the ordinary cubical model constructed in the internal logic of $[\mathscr{D}^{\mathrm{op}}, \operatorname{Set}]$. However, this generally does not present the correct $(\infty, 1)$ -presheaf category, as discussed by Thierry yesterday.

Theorem

The category $[\mathcal{D}^{op}, \mathscr{E}]$ of presheaves has an injective model structure such that:

- 1 The weak equivalences and cofibrations are pointwise.
- 2 It is right proper and Cisinski.
- **3** It presents the corresponding presheaf $(\infty, 1)$ -category.

Thus it lacks only a suitable notion of fibred structure to be a type-theoretic model topos.

Theorem

The category $[\mathcal{D}^{op}, \mathscr{E}]$ of presheaves has an injective model structure such that:

- 1 The weak equivalences and cofibrations are pointwise.
- The fibrations are ...?????
- 2 It is right proper and Cisinski.
- **3** It presents the corresponding presheaf $(\infty, 1)$ -category.

Thus it lacks only a suitable notion of fibred structure to be a type-theoretic model topos.

Why pointwise isn't enough

When is $X \in [\mathscr{D}^{\mathrm{op}}, \mathscr{E}]$ injectively fibrant? We want to lift in

where $i : A \rightarrow B$ is a pointwise acyclic cofibration. If X is pointwise fibrant, then for all $d \in \mathscr{D}$ we have a lift

These may not fit together into a natural transformation $B \rightarrow X$, but they do form a homotopy coherent natural transformation.

Lemma

The notion of coherent natural transformation is representable. That is, there is a coherent transformation coclassifier $C^{\mathscr{D}}(Y)$ (classically called the cobar construction) with a natural bijection

$$\frac{h:X\dashrightarrow Y}{\overline{h}:X\to \mathsf{C}^{\mathscr{D}}(Y)}$$

- The (strictly natural) identity X → X corresponds to a canonical map v_X : X → C^D(X).
- ν_X is always a pointwise acyclic cofibration!

Injective fibrancy

Theorem (S.)

 $X \in [\mathscr{D}^{\mathrm{op}}, \mathscr{E}]$ is injectively fibrant if and only if it is pointwise fibrant and $\nu_X : X \to C^{\mathscr{D}}(X)$ has a retraction $r : C^{\mathscr{D}}(X) \to X$.

Injective fibrancy

Theorem (S.)

 $X \in [\mathscr{D}^{\mathrm{op}}, \mathscr{E}]$ is injectively fibrant if and only if it is pointwise fibrant and $\nu_X : X \to C^{\mathscr{D}}(X)$ has a retraction $r : C^{\mathscr{D}}(X) \to X$.

Proof of "only if".

If $X \in [\mathscr{D}^{\mathrm{op}}, \mathscr{E}]$ is injectively fibrant, then since ν_X is a pointwise acyclic cofibration we have a lift:

Theorem (S.)

 $X \in [\mathscr{D}^{\mathrm{op}}, \mathscr{E}]$ is injectively fibrant if and only if it is pointwise fibrant and $\nu_X : X \to C^{\mathscr{D}}(X)$ has a retraction $r : C^{\mathscr{D}}(X) \to X$.

Proof of "if".

Given a pointwise acyclic cofibration $i : A \rightarrow B$ and a map $g : A \rightarrow X$, we construct a coherent $h : B \rightsquigarrow X$ with $h \circ i = g$.

We have $\overline{h}: B \to C^{\mathscr{D}}(X)$; define $k = r \circ \overline{h}: B \to X$. Since $h \circ i = g$ is strict, $\overline{h} \circ i = \nu_X \circ g$, and $k \circ i = r \circ \overline{h} \circ i = r \circ \nu_X \circ g = g$. \Box

Given $f : X \rightarrow Y$, define a factorization by pullback:

Theorem (S.)

 $f : X \to Y$ is an injective fibration if and only if it is a pointwise fibration and λ_f has a retraction $r : C^{\mathscr{D}}(f) \to X$ over Y.

Note $C^{\mathscr{D}}$ is a fibred pointed endofunctor of $[\mathscr{D}^{\mathrm{op}}, \mathscr{E}]$. Thus, if we define an $\mathbb{F}^{\mathscr{D}}$ -structure to be a pointwise \mathbb{F} -structure and a $C^{\mathscr{D}}$ -algebra structure, we get a locally representable notion of fibred structure for the injective fibrations in $[\mathscr{D}^{\mathrm{op}}, \mathscr{E}]$.

Theorem

 $[\mathscr{D}^{\mathrm{op}}, \mathscr{E}]$ is a type-theoretic model topos with $\mathbb{F}^{\mathscr{D}}$.

This completes the main result.

1 Type-theoretic model toposes

2 Left exact localizations

3 Injective model structures

- 1 Are these universes closed under higher inductive types?
- ② Do Grothendieck (∞, 1)-toposes model *cubical* type theory? (Perhaps with cubically enriched type-theoretic model toposes?)
- 3 How much of this works in a constructive metatheory?
- 4 What about *elementary* $(\infty, 1)$ -toposes? (E.g. by Yoneda?)