Cubical Exact Equality and Categorical Gluing

J. Sterling¹ C. Angiuli¹ D. Gratzer²

¹Department of Computer Science Carnegie Mellon University

²Department of Computer Science Aarhus University

Homotopy Type Theory 2019

Presenting zero-dimensional structures

Equational axioms of zero-dimensional structures can be presented in many ways:

- "tacit" equality / equality reflection: ETT, HTS, ZF, Nuprl, etc. [ML79; Con+86; Voe13; Bau+16; AFH18; Ang+18]
- ► "coercive" or transportative equality: ITT, HoTT, OTT, etc.
 - ▶ weakly coherent: hSets, i.e. types with UIP [Uni13; Str94]
 - strictly coherent: Bishop sets, i.e. types with "judgmental UIP" [Coq17; Mou+15; SAG19; AM06]

In **informal mathematics**, tacit equality is often preferred (no fuss, no muss). In **proof assistants**, coercive equality usually works better (really!), but presents its own difficulties.

Strictly coherent presentations favored for efficiency, ease of use.

Desirable properties of presentations

Type theorists and implementers of proof assistants have found these properties structures to be essential, in order of increasing strength:

- Canonicity: global elements of base type are equal to constants
 (=> operational/computational semantics)
- Normalization: canonical representatives of judgmental/definitional equivalence classes for generalized elements (=> decidability of the word problem)
- Type checking: elaboration of concrete syntax to abstract syntax (preferred decidable)

Normalization and type checking incompatible with tacit equality (but canonicity is easier).

Coercive equality and extensionality

In ITT, coercive equality is governed by Martin-Löf's *identity type* $\mathbf{Id}_A(M, N)$, generated by $\mathbf{refl}_M : \mathbf{Id}_A(M, M)$.

Further extensionality principles (e.g. for functions, sets) are *not* derivable, but can be consistently added as axioms (disrupting canonicity).

Inspired by semantic models (setoids, groupoids, cubical sets), newer type theories combine coercive equality with extensionality principles while preserving canonicity:

- Cubical Type Theory [CCHM17; AFH17; ABCFHL]: infinite-dimensional type theory
- OTT [AMo6; AMSo7]: set-level type theory (setoid-style)
- XTT [SAG19]: set-level type theory (cubical-style), a strictly truncated version of Cartesian Cubical Type Theory [ABCFHL] for which we have proved canonicity

Equality types from an interval (syntactically)

Equality types from an interval (syntactically)

FORMATION $\Gamma, i: \mathbb{I} \vdash A[i] \ type \qquad \overline{\Gamma \vdash N_{\varepsilon}: A[\varepsilon]} \quad (\varepsilon \in \{0, 1\})$ $\Gamma \vdash \mathbf{Eq}_{i \mid A[i]}(N_0, N_1)$ type INTRODUCTION $\Gamma, i: \mathbb{I}, i = \varepsilon \vdash M \equiv N_{\varepsilon}: A[i] \quad (\varepsilon \in \{0, 1\})$ $\Gamma, i: \mathbb{I} \vdash M: A$ $\Gamma \vdash \lambda i.M : \mathbf{Eq}_{i,A[i]}(N_0, N_1)$ ELIMINATION $\Gamma \vdash M : \mathbf{Eq}_{i,A[i]}(N_0, N_1) \qquad \Gamma \vdash r : \mathbb{I}$ $\Gamma \vdash M(r) : A[r] \qquad \Gamma \vdash M(\varepsilon) \equiv N_{\varepsilon} : A[\varepsilon] \quad (\varepsilon \in \{0, 1\})$ COMPUTATION UNICITY $\Gamma \vdash M : \mathbf{Eq}_{i,A[i]}(N_0, N_1)$ $\Gamma, i: \mathbb{I} \vdash M[i]: A[i] \qquad \Gamma \vdash r: \mathbb{I}$ $\Gamma \vdash (\lambda i.M[i])(r) \equiv M[r]:A[r]$ $\Gamma \vdash M \equiv \lambda i.M(i) : \mathbf{Eq}_{i A[i]}(N_0, N_1)$

Equality types from an interval (semantically)

Let \mathbb{C} be our category of contexts; let $\mathbb{I} : \mathbf{Pr}(\mathbb{C})$ be a representable interval object, and let $\widetilde{\mathscr{U}} \xrightarrow{\omega} \mathscr{U}$ be a natural model over \mathbb{C} in the sense of Awodey [Awo18]. Then, the equality type connective is specified by the following pullback square:

Strict UIP via boundary separation (syntactically)

XTT is about sets, i.e. types with UIP; we choose to impose a strict version of UIP in which any two elements of $\mathbf{Eq}_A(N_0, N_1)$ are judgmentally equal. We state this independently of the equality connective:

 $\frac{\Gamma \vdash r:\mathbb{I}}{\frac{\Gamma}{\Gamma, r = \varepsilon \vdash A \equiv B \text{ type}} (\varepsilon \in \{0, 1\})}{\Gamma \vdash A \equiv B \text{ type}} \qquad \frac{\frac{\mathsf{TERM BOUNDARY SEPARATION}}{\Gamma, r = \varepsilon \vdash M \equiv N:A} (\varepsilon \in \{0, 1\})}{\Gamma \vdash M \equiv N:A}$

Derivable: $\Gamma \vdash P \equiv Q$: $\mathbf{Eq}_{i,A[i]}(N_0, N_1)$ given $\Gamma \vdash P, Q$: $\mathbf{Eq}_{i,A[i]}(N_0, N_1)$.

Strict UIP via boundary separation (semantically)

Semantically, strict UIP arises by requiring that the presheaves of types and elements be *separated* relative to a certain coverage on \mathbb{C} :

 $\mathbf{K}_{\partial}(\Gamma) \ni \left\{ \Gamma.\partial r \longrightarrow \Gamma \right\} \text{ for each } r \in \mathbb{I}(\Gamma)$

If $\mathscr{U}, \widetilde{\mathscr{U}}$: $\mathbf{Pr}(\mathbb{C})$ are \mathbf{K}_{∂} -separated, then each $\varpi[\mathbf{Eq}_A(M, N)]$ is strictly subsingleton.

Coquand considered a version of this condition for universes of *Bishop* sets [Coq17].

Generalized composition (syntactically)

We can coerce between any two points on a line, optionally attaching two faces along the boundary of any dimension $s:\mathbb{I}$.

 $\Gamma, i: \mathbb{I} \vdash A[i] \ type \qquad \Gamma \vdash r, r': \mathbb{I} \qquad \Gamma \vdash M: A[r]$ COERCION $\Gamma \vdash i.A[i] \downarrow_{r'}^{r} M : A[r'] \qquad \Gamma, r = r' \vdash i.A[i] \downarrow_{r'}^{r} M \equiv M : A[r']$ COMPOSITION $\Gamma \vdash s: \mathbb{I} \qquad \overline{\Gamma, s = \varepsilon, i: \mathbb{I} \vdash N_{\varepsilon}[i]: A[i]} \qquad \overline{\Gamma, s = \varepsilon \vdash N_{\varepsilon}[r] = M: A[r]}$ $\Gamma \vdash i.A[i] \downarrow_{r'}^r [M \mid \overline{s = \varepsilon \to i.N_{\varepsilon}[i]}] : A[r']$ $\Gamma, r = r' \vdash i.A[i] \downarrow_{r'}^{r} [M \mid \overline{s = \varepsilon} \to i.N_{\varepsilon}[i]] \equiv M : A[r']$ $\Gamma, s = \varepsilon \vdash i.A[i] \downarrow_{r'}^r [M \mid \overrightarrow{s = \varepsilon} \rightarrow i.N_{\varepsilon}[i]] \equiv N_{\varepsilon}[r'] : A[r']$

Generalized composition (semantically)

"Tube shapes" $\varphi : \mathbb{F}$ are generated by \bot and $\partial(s)$ for any $s : \mathbb{I}$. Internally to the logical framework of $\mathbf{Pr}(\mathbb{C})$ (see [OP16]), we have the following orthogonality structure for each display map $\mathcal{D}[A] \xrightarrow{\mathbf{P}_A} \mathcal{L}\Gamma$, given a dimension $r : \mathbb{I}$ and a tube shape $\varphi : \mathbb{F}$:

(Same filling problems as Angiuli, Harper, and Wilson [AHW16], except we impose *regularity*)

Hierarchies of universes of sets

In higher-dimensional semantics, a (standard) universe of sets is not a set. But this higher-dimensional data can be controlled by equipping the standard universes with a structure, for instance:

- well-ordering structure, as in the interpretation of cumulative set theories into type theory [Acz78; Uni13]
- inductive-recursive structure, as in Martin-Löf's earliest accounts of hierarchies of set-universes [ML84]

For subtle reasons concerning the word problem for XTT, we equip the standard universes with IR codes.

XTT is *essentially algebraic*, and therefore obtains a category of algebras with an initial object (the syntactic model) [Car78; PV07; Awo18; Uem19].

Follows from general considerations, and does not require taking a position on the so-called "initiality conjecture".

XTT's algebraic model theory enables a presentation-independent proof of *canonicity*.

Canonicity

Canonicity for type theories, analogous to the disjunction property for logics, is a form of "internal constructivity" (computation).

Theorem (Canonicity)

If $\cdot \vdash M$: bool, then either $M \equiv$ true or $M \equiv$ false.

Canonicity (and normalization) for algebraic languages is always obtained through *Artin gluing* along a suitable relativization of the global sections functor [LS86; Cro93; AHS95; Str98; Alt+01; Fio02; Shu15; SS18; Coq19; KHS19].

A nerve from XTT into cubical sets

Let \Box be the category of cubes, and let \mathbb{C} be the syntactic category of XTT. Because the interval \mathbb{I} is representable, we obtain an embedding $\Box \xrightarrow{i} \mathbb{C}$, inducing a *nerve* **N** from \mathbb{C} into cubical sets:

By *gluing* along this nerve, independently proposed by Awodey, we obtain a *cubical* notion of computability in the sense of Tait and Martin-Löf [Tai67; ML75a]. This is classical global-sections gluing from the internal point of view (see for instance [CHS19]).

Artin gluing for XTT

Using the comma construction, we obtain a category of cubical logical families over \mathbb{C} :

 $\mathbb{G} = id_{Pr(\Box)} \downarrow \mathbb{N}$

An alternative presentation of the gluing category is obtained by pulling back the fundamental fibration along the nerve functor:

Artin gluing for XTT

Theorem

 \mathbb{G} carries an XTT-algebra structure, and furthermore $\mathbb{G} \xrightarrow{\partial_1[\mathbf{N}]} \mathbb{C}$ is a homomorphism of XTT-algebras.

Sketch.

Obviously **N** is a pseudomorphism of natural models in the sense of Kaposi, Huber, and Sattler [KHS19], since $\mathbb{C} \xrightarrow{\mathcal{K}} \mathbf{Pr}(\mathbb{C})$ is one, and change of base $\mathbf{Pr}(\mathbb{C}) \xrightarrow{i^*} \mathbf{Pr}(\square)$ is left exact. Therefore, the $(\Pi, \Sigma, \mathbf{bool})$ structure on $\mathbf{Pr}(\square)$ lifts to \mathbb{G} ; one then checks equality types, IR universes, and composition structures. \square

Canonicity from the gluing model

The boolean object **bool** : \mathbb{G} was given by the following family in $\mathbf{Pr}(\Box)$:

A computable boolean is equipped with a proof that it is one of the two constants!

Canonicity from the gluing model

Theorem (Canonicity)

If $\cdot \vdash M$: bool, then either $M \equiv$ true or $M \equiv$ false.

Proof.

We have $1 \xrightarrow{M} \mathbf{bool}$ in \mathbb{C} ; by the universal property of the initial algebra \mathbb{C} , we have $1 \xrightarrow{!_{\mathbb{G}}(M)} \mathbf{bool}$; considering the fibers of \mathbf{bool} , we have $(\partial_1[\mathbf{N}] \circ !_{\mathbb{G}})(M) \in \{\mathbf{true}, \mathbf{false}\}$. But by initiality we have the following triangle in $\mathbf{Alg}[\mathbf{XTT}]$:

Outlook

XTT exhibits a strictness mismatch, making the combination of function comprehension and effective quotients unlikely; XTT ought to be viewed as a coherence construction which is developed *inside* a broader, univalent type theory which has the customary (higher) exactness properties.

We expect our metatheoretic techniques will scale to proving normalization of the infinite-dimensional cubical type theory (using a different nerve).

References I

[ABCFHL] Carlo Angiuli, Guillaume Brunerie, Thierry Coquand, Kuen-Bang Hou (Favonia), Robert Harper, and Daniel R. Licata. Syntax and Models of Cartesian Cubical Type Theory. Preprint. Feb. 2019. URL:

https://github.com/dlicata335/cart-cube.

[Acz78] Peter Aczel. "The Type Theoretic Interpretation of Constructive Set Theory". In: Logic Colloquium '77. Ed. by Angus Macintyre, Leszek Pacholski, and Jeff Paris. Vol. 96. Studies in Logic and the Foundations of Mathematics. Elsevier, 1978. DOI: 10.1016/S0049-237X(08)71989-X.

[AFH17] Carlo Angiuli, Kuen-Bang Hou (Favonia), and Robert Harper. Computational Higher Type theory III: Univalent Universes and Exact Equality. 2017. arXiv: 1712.01800.

References II

 [AFH18] Carlo Angiuli, Kuen-Bang Hou (Favonia), and Robert Harper.
 "Cartesian Cubical Computational Type Theory: Constructive Reasoning with Paths and Equalities". In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung. Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. DOI: 10.4230/LIPIcs.CSL.2018.6.

[AHS95] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. "Categorical reconstruction of a reduction free normalization proof". In: Category Theory and Computer Science. Ed. by David Pitt, David E. Rydeheard, and Peter Johnstone. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995.

[AHW16] Carlo Angiuli, Robert Harper, and Todd Wilson. *Computational* Higher Type theory I: Abstract Cubical Realizability. 2016. arXiv: 1604.08873.

References III

 [Alt+01] T. Altenkirch, P. Dybjer, M. Hofmann, and P. Scott.
 "Normalization by Evaluation for Typed Lambda Calculus with Coproducts". In: Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science. LICS '01.
 Washington, DC, USA: IEEE Computer Society, 2001. DOI: 871816.871869.

[AM06] Thorsten Altenkirch and Conor McBride. Towards Observational Type Theory. 2006. URL: www.strictlypositive.org/ott.pdf.

[AMS07] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. "Observational Equality, Now!" In: Proceedings of the 2007 Workshop on Programming Languages Meets Program Verification. PLPV '07. Freiburg, Germany: ACM, 2007.

References IV

- [Ang+18] Carlo Angiuli, Evan Cavallo, Kuen-Bang Hou (Favonia), Robert Harper, and Jonathan Sterling. "The RedPRL Proof Assistant (Invited Paper)". In: Proceedings of the 13th International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice, LFMTP@FSCD 2018, Oxford, UK, 7th July 2018. 2018. DOI: 10.4204/EPTCS.274.1.
- [Awo18] Steve Awodey. "Natural models of homotopy type theory". In: Mathematical Structures in Computer Science 28.2 (2018). DOI: 10.1017/S0960129516000268.
- [Bau+16] Andrej Bauer, Gaëtan Gilbert, Philipp Haselwarter, Matija Pretnar, and Christopher A. Stone. "Design and Implementation of the Andromeda proof assistant". TYPES. 2016. URL: http://www.types2016.uns.ac.rs/images/ abstracts/bauer2.pdf.

References V

- [Car78] John Cartmell. "Generalised Algebraic Theories and Contextual Categories". PhD thesis. Oxford University, Jan. 1978.
- [CCHM17] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. "Cubical Type Theory: a constructive interpretation of the univalence axiom". In: IfCoLog Journal of Logics and their Applications 4.10 (Nov. 2017). URL: http://www.collegepublications.co.uk/journals/ ifcolog/?00019.
- [CHS19] Thierry Coquand, Simon Huber, and Christian Sattler.
 "Homotopy canonicity for cubical type theory". In: Proceedings of the 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Ed. by Herman Geuvers. Vol. 131. 2019.

References VI

- [Con+86] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland,
 J. F. Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock,
 N. P. Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith.
 Implementing Mathematics with the Nuprl Proof Development System. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1986.
- [Coq17] Thierry Coquand. Universe of Bishop sets. Feb. 2017. URL: http: //www.cse.chalmers.se/~coquand/bishop.pdf.
- [Coq19] Thierry Coquand. "Canonicity and normalization for dependent type theory". In: *Theoretical Computer Science* 777 (2019). In memory of Maurice Nivat, a founding father of Theoretical Computer Science - Part I. ISSN: 0304-3975. DOI: 10.1016/j.tcs.2019.01.015. arXiv: 1810.09367.
- [Cro93] R. L. Crole. Categories for Types. Cambridge Mathematical Textbooks. New York: Cambridge University Press, 1993.

References VII

- [Fi002] Marcelo Fiore. "Semantic Analysis of Normalisation by Evaluation for Typed Lambda Calculus". In: Proceedings of the 4th ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming. PPDP '02. Pittsburgh, PA, USA: ACM, 2002. DOI: 10.1145/571157.571161.
- [KHS19] Ambrus Kaposi, Simon Huber, and Christian Sattler. "Gluing for type theory". In: Proceedings of the 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Ed. by Herman Geuvers. Vol. 131. 2019.
- [LH12] Daniel R. Licata and Robert Harper. "Canonicity for 2-dimensional Type Theory". In: SIGPLAN Not. 47.1 (Jan. 2012).
 ISSN: 0362-1340. DOI: 10.1145/2103621.2103697.
- [LS86] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. New York, NY, USA: Cambridge University Press, 1986.

References VIII

- [ML75a] Per Martin-Löf. "About Models for Intuitionistic Type Theories and the Notion of Definitional Equality". In: Proceedings of the Third Scandinavian Logic Symposium. Ed. by Stig Kanger. Vol. 82. Studies in Logic and the Foundations of Mathematics. Elsevier, 1975.
- [ML79] Per Martin-Löf. "Constructive Mathematics and Computer Programming". In: 6th International Congress for Logic, Methodology and Philosophy of Science. Published by North Holland, Amsterdam. 1982. Hanover, Aug. 1979.
- [ML84] Per Martin-Löf. Intuitionistic type theory. Notes by Giovanni Sambin. Vol. 1. Studies in Proof Theory. Bibliopolis, 1984.

References IX

[Mou+15] Leonardo de Moura, Soonho Kong, Jeremy Avigad,
 Floris van Doorn, and Jakob von Raumer. "The Lean Theorem
 Prover (System Description)". In: Automated Deduction CADE-25: 25th International Conference on Automated
 Deduction, Berlin, Germany, August 1-7, 2015, Proceedings.
 Ed. by Amy P. Felty and Aart Middeldorp. Cham: Springer
 International Publishing, 2015.

- [OP16] Ian Orton and Andrew M. Pitts. "Axioms for Modelling Cubical Type Theory in a Topos". In: 25th EACSL Annual Conference on Computer Science Logic, CSL 2016, August 29 - September 1, 2016, Marseille, France. 2016.
- [PV07] E. Palmgren and S. J. Vickers. "Partial Horn logic and cartesian categories". In: Annals of Pure and Applied Logic 145.3 (2007).
 ISSN: 0168-0072. DOI: 10.1016/j.apal.2006.10.001.

References X

[SAG19] Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. "Cubical Syntax for Reflection-Free Extensional Equality". In: Proceedings of the 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Ed. by Herman Geuvers. Vol. 131. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019. DOI: 10.4230/LIPIcs.FSCD.2019.31. arXiv: 1904.08562.

- [Shu15] Michael Shulman. "Univalence for inverse diagrams and homotopy canonicity". In: Mathematical Structures in Computer Science 25.5 (2015). DOI: 10.1017/S0960129514000565.
- [SS18] Jonathan Sterling and Bas Spitters. Normalization by gluing for free λ -theories. Sept. 2018. arXiv: 1809.08646 [cs.L0].

References XI

- [Str94] Thomas Streicher. Investigations Into Intensional Type Theory. Habilitationsschrift, Universität München. 1994.
- [Str98] Thomas Streicher. "Categorical intuitions underlying semantic normalisation proofs". In: Preliminary Proceedings of the APPSEM Workshop on Normalisation by Evaluation. Ed. by O. Danvy and P. Dybjer. Department of Computer Science, Aarhus University, 1998.
- [Tai67] W. W. Tait. "Intensional Interpretations of Functionals of Finite Type I". In: The Journal of Symbolic Logic 32.2 (1967). ISSN: 00224812. URL: http://www.jstor.org/stable/2271658.
- [Uem19] Taichi Uemura. A General Framework for the Semantics of Type Theory. 2019. arXiv: 1904.04091.

References XII

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study: https://homotopytypetheory.org/book, 2013.

[Voe13] Vladimir Voevodsky. "A simple type system with two identity types". Talk at André Joyal's 70th birthday conference. (Slides available at

https://www.math.ias.edu/vladimir/sites/math. ias.edu.vladimir/files/HTS_slides.pdf).Feb.2013. URL:https://www.math.ias.edu/vladimir/sites/ math.ias.edu.vladimir/files/HTS.pdf.