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Presenting zero-dimensional structures

Equational axioms of zero-dimensional structures can be presented in
many ways:

Ï “tacit” equality / equality re�ection: ETT, HTS, ZF, Nuprl, etc. [ML79;
Con+86; Voe13; Bau+16; AFH18; Ang+18]

Ï “coercive” or transportative equality: ITT, HoTT, OTT, etc.
Ï weakly coherent: hSets, i.e. types with UIP [Uni13; Str94]
Ï strictly coherent: Bishop sets, i.e. types with “judgmental
UIP” [Coq17; Mou+15; SAG19; AM06]

In informal mathematics, tacit equality is often preferred (no fuss, no
muss). In proof assistants, coercive equality usually works better (really!),
but presents its own di�culties.

Strictly coherent presentations favored for e�ciency, ease of use.



Desirable properties of presentations

Type theorists and implementers of proof assistants have found these
properties structures to be essential, in order of increasing strength:

Ï Canonicity: global elements of base type are equal to constants
(=⇒ operational/computational semantics)

Ï Normalization: canonical representatives of judgmental/de�nitional
equivalence classes for generalized elements (=⇒ decidability of
the word problem)

Ï Type checking: elaboration of concrete syntax to abstract syntax
(preferred decidable)

Normalization and type checking incompatible with tacit equality (but
canonicity is easier).



Coercive equality and extensionality

In ITT, coercive equality is governed by Martin-Löf’s identity type
IdA(M ,N), generated by reflM : IdA(M ,M).

Further extensionality principles (e.g. for functions, sets) are not
derivable, but can be consistently added as axioms (disrupting
canonicity).

Inspired by semantic models (setoids, groupoids, cubical sets), newer
type theories combine coercive equality with extensionality principles
while preserving canonicity:

Ï Cubical Type Theory [CCHM17; AFH17; ABCFHL]: in�nite-dimensional
type theory

Ï OTT [AM06; AMS07]: set-level type theory (setoid-style)
Ï XTT [SAG19]: set-level type theory (cubical-style), a strictly
truncated version of Cartesian Cubical Type Theory [ABCFHL] for
which we have proved canonicity



Equality types from an interval (syntactically)

Γ ctx

Γ, i : I ctx

Γ ctx Γ` r : I Γ` r′ : I

Γ,r = r′ ctx



Equality types from an interval (syntactically)

formation
Γ, i : I` A[i] type

#                        „
Γ` Nε : A[ε] (ε ∈ {0,1})

Γ` Eqi.A[i](N0,N1) type

introduction
Γ, i : I` M : A

#                                                        „
Γ, i : I, i = ε` M ≡ Nε : A[i] (ε ∈ {0,1})

Γ`λi.M : Eqi.A[i](N0,N1)

elimination
Γ` M : Eqi.A[i](N0,N1) Γ` r : I

Γ` M(r) : A[r] Γ` M(ε) ≡ Nε : A[ε] (ε ∈ {0,1})

computation
Γ, i : I` M[i] : A[i] Γ` r : I

Γ` (λi.M[i])(r) ≡ M[r] : A[r]

unicity
Γ` M : Eqi.A[i](N0,N1)

Γ` M ≡λi.M(i) : Eqi.A[i](N0,N1)



Equality types from an interval (semantically)

Let C be our category of contexts; let I : Pr(C) be a representable interval
object, and let Ũ U$ be a natural model over C in the sense of
Awodey [Awo18]. Then, the equality type connective is speci�ed by the
following pullback square:

ŨEq

UEq

Ũ

U

lam

$Eq $

Eq

ŨEq = Ũ I

UEq =∑
A:U I

∏
i:I∂i → Ai

$Eq =λM .($◦M ,λiα.Mi)



Strict UIP via boundary separation (syntactically)

XTT is about sets, i.e. types with UIP; we choose to impose a strict version
of UIP in which any two elements of EqA(N0,N1) are judgmentally equal.
We state this independently of the equality connective:

Γ` r : I

type boundary separation
#                                          „
Γ,r = ε` A ≡ B type (ε ∈ {0,1})

Γ` A ≡ B type

term boundary separation
#                                        „
Γ,r = ε` M ≡ N : A (ε ∈ {0,1})

Γ` M ≡ N : A

Derivable: Γ` P ≡ Q : Eqi.A[i](N0,N1) given Γ` P,Q : Eqi.A[i](N0,N1).



Strict UIP via boundary separation (semantically)

Semantically, strict UIP arises by requiring that the presheaves of types
and elements be separated relative to a certain coverage on C:

K∂(Γ) 3 {
Γ.∂r Γ

}
for each r ∈ I(Γ)

If U ,Ũ : Pr(C) are K∂-separated, then each $[EqA(M ,N)] is strictly
subsingleton.

Coquand considered a version of this condition for universes of Bishop
sets [Coq17].



Generalized composition (syntactically)

We can coerce between any two points on a line, optionally attaching two
faces along the boundary of any dimension s : I.

Γ, i : I` A[i] type Γ` r,r′ : I Γ` M : A[r]

coercion

Γ` i.A[i]↓r
r′ M : A[r′] Γ,r = r′ ` i.A[i]↓r

r′ M ≡ M : A[r′]

composition
Γ` s : I

#                                                  „
Γ,s = ε, i : I` Nε[i] : A[i]

#                                                      „
Γ,s = ε` Nε[r] ≡ M : A[r]

Γ` i.A[i]↓r
r′ [M | #                            „

s = ε→ i.Nε[i]] : A[r′]
Γ,r = r′ ` i.A[i]↓r

r′ [M | #                            „
s = ε→ i.Nε[i]] ≡ M : A[r′]

Γ,s = ε` i.A[i]↓r
r′ [M | #                            „

s = ε→ i.Nε[i]] ≡ Nε[r′] : A[r′]



Generalized composition (semantically)

“Tube shapes” ϕ : F are generated by ⊥ and ∂(s) for any s : I. Internally to
the logical framework of Pr(C) (see [OP16]), we have the following
orthogonality structure for each display map $[A] ΓpA , given a
dimension r : I and a tube shape ϕ : F:

∑
i:I[(i = r)∨ϕ]

I

$[A]

Γ

S

Aγ
↓r •S pA

γ

(Same �lling problems as Angiuli, Harper, and Wilson [AHW16], except we
impose regularity)



Hierarchies of universes of sets

In higher-dimensional semantics, a (standard) universe of sets is not a
set. But this higher-dimensional data can be controlled by equipping the
standard universes with a structure, for instance:

Ï well-ordering structure, as in the interpretation of cumulative set
theories into type theory [Acz78; Uni13]

Ï inductive-recursive structure, as in Martin-Löf’s earliest accounts of
hierarchies of set-universes [ML84]

For subtle reasons concerning the word problem for XTT, we equip the
standard universes with IR codes.



Objective metatheory of XTT

XTT is essentially algebraic, and therefore obtains a category of algebras
with an initial object (the syntactic model) [Car78; PV07; Awo18; Uem19].

Follows from general considerations, and does not require taking a
position on the so-called “initiality conjecture”.

XTT’s algebraic model theory enables a presentation-independent proof
of canonicity.



Canonicity

Canonicity for type theories, analogous to the disjunction property for
logics, is a form of “internal constructivity” (computation).

Theorem (Canonicity)
If · ` M : bool, then either M ≡ true or M ≡ false.

Canonicity (and normalization) for algebraic languages is always obtained
through Artin gluing along a suitable relativization of the global sections
functor [LS86; Cro93; AHS95; Str98; Alt+01; Fio02; Shu15; SS18; Coq19;
KHS19].



A nerve from XTT into cubical sets

Let ä be the category of cubes, and let C be the syntactic category of XTT.
Because the interval I is representable, we obtain an embeddingä Ci ,
inducing a nerve N from C into cubical sets:

C

Pr(C) Pr(ä)
i∗

N

By gluing along this nerve, independently proposed by Awodey, we
obtain a cubical notion of computability in the sense of Tait and
Martin-Löf [Tai67; ML75a]. This is classical global-sections gluing from the
internal point of view (see for instance [CHS19]).



Artin gluing for XTT

Using the comma construction, we obtain a category of cubical logical
families over C:

G= idPr(ä) ↓ N

An alternative presentation of the gluing category is obtained by pulling
back the fundamental �bration along the nerve functor:

G [2,Pr(ä)]

Pr(ä)C

∂1∂1[N]

N



Artin gluing for XTT

Theorem
G carries an XTT-algebra structure, and furthermore G C∂1[N] is a
homomorphism of XTT-algebras.

Sketch.
Obviously N is a pseudomorphism of natural models in the sense of
Kaposi, Huber, and Sattler [KHS19], since C Pr(C) is one, and change
of base Pr(C) Pr(ä)i∗ is left exact. Therefore, the (Π,Σ,bool)
structure on Pr(ä) lifts to G; one then checks equality types, IR universes,
and composition structures.



Canonicity from the gluing model

The boolean object �bool :G was given by the following family in Pr(ä):

1+1

1 = N(1)

1 = N(1)

N(bool)

�bool

N
(true)

N(false)

A computable boolean is equipped with a proof that it is one of the two
constants!



Canonicity from the gluing model

Theorem (Canonicity)
If · ` M : bool, then either M ≡ true or M ≡ false.

Proof.
We have 1 boolM in C; by the universal property of the initial algebra
C, we have 1 �bool!G(M) ; considering the �bers of �bool, we have
(∂1[N]◦ !G)(M) ∈ {true, false}. But by initiality we have the following
triangle in Alg[XTT]:

C G

C

id
C

!G

∂1[N]



Outlook

XTT exhibits a strictness mismatch, making the combination of function
comprehension and e�ective quotients unlikely; XTT ought to be viewed
as a coherence construction which is developed inside a broader,
univalent type theory which has the customary (higher) exactness
properties.

We expect our metatheoretic techniques will scale to proving
normalization of the in�nite-dimensional cubical type theory (using a
di�erent nerve).
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