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Given e : N, write ϕe : N→ N for the partial function computed by
the eth Turing machine.

Definition
Church’s thesis is the statement that for every function f : N→ N
there merely exists e : N such that ϕe = f .

Theorem (Kleene ’52)

Church’s thesis is consistent with Heyting arithmetic.

Theorem (Hyland ’80)

Church’s thesis holds in the internal language of the effective
topos.

Hyland’s proof is sometimes simplified by focusing on the
subcategory of assemblies.
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Theorem
Assume function extensionality. Then the “untruncated version” of
Church’s thesis below is false:∏

f :N→N

∑
e:N

∏
n:N

ϕe(n) = f (n)

Proof.
This says there is a function F : NN → N such that for all
f : N→ N, f = ϕF (f ). Note that any such function is injective,

and so NN has decidable equality. This implies there is a function
N→ 2 that decides whether or not each Turing machine halts,
which is non computable.



What about realizability models of univalent type theory? We work
with internal cubical sets in the category of assemblies: cubical
assemblies. (Cubical assemblies have also been investigated by
Awodey and Frey, and simplicial assemblies by Stekelenburg.)

Theorem (Swan, Uemura)

1. Church’s thesis does not hold in cubical assemblies.

2. Church’s thesis holds in a reflective subuniverse of cubical
assemblies.



Cubical assemblies are a regular locally cartesian closed category,
so they can be viewed as a model of extensional type theory with
propositional truncation (Awodey-Bauer).

In the interpretation of extensional type theory in a locally
cartesian closed category:

I Types in context Γ are interpreted as maps A→ Γ.

I Terms are interpreted as sections Γ→ A (we will also refer to
sections as points).

I Two terms are propositionally equal only if they are equal.

I Hence if a type is an hproposition it has at most one section.

I Propositional truncation “strictly identifies points.”

Theorem
Church’s thesis holds in the interpretation of extensional type
theory in cubical assemblies.
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Orton-Pitts models of cubical type theory consist of two levels:

I The underlying category is locally cartesian closed, and so a
model of extensional type theory.

I The extensional type theory level is used to define and prove
soundness of the cubical type theory level.

I Terms are interpreted as morphisms (as in the extensional
level).

I Two terms σ, τ : Γ→ A are propositionally equal if they are
homotopic: i.e. there is a map h : I× Γ→ A such that
h ◦ δ0 = σ and h ◦ δ1 = τ (constant over Γ).

I Hence hpropositions can have multiple sections, as long as
any two are joined by a path.

I Propositional truncation never strictly identifies points.

NB: By Kraus’ paradox the truncation map∑
e:N

∏
n:N ϕe(n) = f (n) −→ ‖

∑
e:N

∏
n:N ϕe(n) = f (n)‖ is a

monomorphism in any model of univalent type theory.
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Theorem (Uemura)

Cubical assemblies form a model of cubical type theory. In
particular the method of Licata-Orton-Pitts-Spitters can be used to
construct a univalent universe.

Theorem (Swan, Uemura)

The Coquand-Huber-Mörtberg construction of propositional
truncation and suspensions can be carried out in any Orton-Pitts
category with cofibrant non-dependent W -types with reductions.
The same technique works for localization/nullification.

Theorem (Swan)

Cofibrant W -types with reductions exist in any category of
presheaf assemblies as long as cofibrations are locally decidable.
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Theorem (Swan, Uemura)

(In the internal language of a regular locally cartesian closed
category) Church’s thesis does not hold in cubical sets, even if it
holds in the metatheory.

Main ideas in proof:

I The constant presheaf functor from sets to cubical sets has a
left adjoint given by global sections, and also a right adjoint.
Objects in the image of the right adjoint are sometimes called
codiscrete.

I The right adjoint maps to hpropositions.

I One can use the above to construct a function from global
sections of ‖

∑
e:N

∏
n:N ϕe(n) = f (n)‖ to global sections of∑

e:N
∏

n:N ϕe(n) = f (n) for each function f : N→ N.

I We recall untruncated Church’s thesis is false.



We emphasise that the features of cubical sets that we use in the
proof are “good” features that we want models of type theory to
have.

I They are a regular locally cartesian closed category, allowing
us to apply the Orton-Pitts method (but also allow us to
prove untruncated Church’s thesis is false).

I Dependent products and sums are the same in the extensional
level and the cubical level, but with some extra structure.

I Propositional truncation adds new paths but does not add
(essentially) any new points.
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We focus on the property that propositional truncation does not
add (essentially) any new points.

Idea: We construct a model where ‖A‖ is forced to contain more
points. In particular whenever we are given any type A, a function
f , and a function ‖

∑
e:N f = ϕe‖ → A we add a new point to ‖A‖.

We do this without adding any new elements to N, N→ N or to ⊥.

We do this using a reflective subuniverse of null types.
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Definition (Rijke, Shulman, Spitters)

Suppose we are given a family of types B : A→ U . We say a type
X is B-null if for every a : A, the constant function map
X → XB(a) is an equivalence.

The nullification of a type X is a type LB(X ) and a map
αB
X : X → LB(X ) such that for every B-null type Y , every map

X → Y factors uniquely through αB
X .

Theorem (Rijke, Shulman, Spitters)

Suppose that B : A→ U is a family of hpropositions. B-null types
form a reflective subuniverse. They are closed under dependent
products, sums and identity types and contain the unit type. The
universe of B-null types is itself B-null (and univalent).

Note that the general theorem includes “limits but not colimits.”
E.g. If B(a) is empty for some a : A, then the only B-null type is
the unit type >. We give a criterion for when B-null are non-trivial.
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Proposition

Suppose that B : A→ U is a family of hpropositions. Propositional
truncation for B-null types can be constructed as the nullification
of the usual propositional truncation, i.e. LB(‖X‖).

I Propositional truncation and nullification both exist in cubical
assemblies.

I Nullification adds new global sections from which we can’t
uniformly compute global sections of the untruncated type.
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Theorem (Swan, Uemura)

Suppose that we are given,

1. A family of types C : A→ U .

2. Both A and C are constructed using only N, dependent
products and coproducts and identity types.

3. The statement “every C (a) is merely inhabited” holds in the
extensional level of E

Define B(a) := ‖C (a)‖. Then,

1. Every constant cubical set is B-null.

2. B-null types are closed under binary coproduct.

3. The interpretation of
∏

a:A ‖C (a)‖ in B-null types is equal to∏
a:A LB‖C (a)‖, and is inhabited.

Corollary

Church’s thesis holds in the reflective subuniverse of B-null sets in
cubical assemblies, where A := N→ N and B(f ) :=

∑
e:N ϕe = f .



For more details see On Church’s Thesis in Cubical Assemblies
arXiv:1905.03014.

Remaining open problems:

1. What is the consistency strength of univalent type theory with
Church’s thesis? (Our proof gives an upper bound of “type
theory with W -types” which is much higher than “type theory
without W -types”)

2. What is the right way to define the effective ∞-topos?

3. Is there a model of univalent type theory where Church’s
thesis and countable choice hold?

4. What about propositional resizing? (Uemura: propositional
resizing does not hold in cubical assemblies).

5. What about extended Church’s thesis (every partial function
with an almost negative domain is extended by a computable
function)?

Thank you for your attention!
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