Internal Languages of Higher Categories

Karol Szumiło

University of Leeds

HoTT 2019

Theorem (Lambek–Scott)

The category of λ -calculi is equivalent to the category of cartesian closed categories.

Theorem (Lambek–Scott)

The category of λ -calculi is equivalent to the category of cartesian closed categories.

Theorem (Lambek–Scott)

The category of higher order intuitionistic type theories is (almost) equivalent to the category of elementary toposes with NNO.

Theorem (Lambek–Scott)

The category of λ -calculi is equivalent to the category of cartesian closed categories.

Theorem (Lambek–Scott)

The category of higher order intuitionistic type theories is (almost) equivalent to the category of elementary toposes with NNO.

What is a counterpart for HoTT?

Joint work with Chris Kapulkin:

Theorem (2017)

The homotopy theory of comprehension categories with Id and Σ is equivalent to the homotopy theory of quasicategories with finite limits.

Joint work with Chris Kapulkin:

Theorem (2017)

The homotopy theory of comprehension categories with Id and Σ is equivalent to the homotopy theory of quasicategories with finite limits.

Theorem (in progress)

The homotopy theory of comprehension categories with Id, Π and Σ satisfying functional extensionality is equivalent to the homotopy theory of locally cartesian closed quasicategories.

 ${\mathcal C}$ has an associated $(\infty,1)\text{-category}$ obtained by universally inverting the weak equivalences.

 ${\mathcal C}$ has an associated $(\infty,1)\text{-category}$ obtained by universally inverting the weak equivalences.

A functor $F: \mathcal{C} \to \mathcal{D}$ is homotopical if it preserves weak equivalences.

 ${\mathcal C}$ has an associated $(\infty,1)\text{-category}$ obtained by universally inverting the weak equivalences.

A functor $F: \mathcal{C} \to \mathcal{D}$ is homotopical if it preserves weak equivalences.

It is a DK-equivalence if $\operatorname{Ho} \mathcal{C} \to \operatorname{Ho} \mathcal{D}$ is essentially surjective and $L^{H}\mathcal{C}(X,Y) \to L^{H}\mathcal{D}(FX,FY)$ are weak homotopy equivalences, i.e., it induces an equivalences of $(\infty, 1)$ -categories.

$\mathsf{CompCat}_{\mathsf{Id},\Pi,\Sigma} \longrightarrow \mathsf{LCCQ}$

comprehension categories

locally cartesian closed quasicategories

$\mathsf{CompCat}_{\mathsf{Id},\Pi,\Sigma} \longrightarrow \Pi\text{-}\mathsf{Trb} \longrightarrow \mathsf{LCCQ}$

comprehension categories Π-tribes locally cartesian closed quasicategories

- T1 There is a terminal object and all objects are fibrant.
- T2 There are pullbacks along fibrations and fibrations are stable under pullback.
- T3 Every morphism factors as an anodyne morphism followed by a fibration.
- T4 Anodyne morphisms are stable under pullbacks along fibrations.

- T1 There is a terminal object and all objects are fibrant.
- T2 There are pullbacks along fibrations and fibrations are stable under pullback.
- T3 Every morphism factors as an anodyne morphism followed by a fibration.
- T4 Anodyne morphisms are stable under pullbacks along fibrations.

- T1 There is a terminal object and all objects are fibrant.
- T2 There are pullbacks along fibrations and fibrations are stable under pullback.
- T3 Every morphism factors as an anodyne morphism followed by a fibration.
- T4 Anodyne morphisms are stable under pullbacks along fibrations.

- T1 There is a terminal object and all objects are fibrant.
- T2 There are pullbacks along fibrations and fibrations are stable under pullback.
- T3 Every morphism factors as an anodyne morphism followed by a fibration.
- T4 Anodyne morphisms are stable under pullbacks along fibrations.

- T1 There is a terminal object and all objects are fibrant.
- T2 There are pullbacks along fibrations and fibrations are stable under pullback.
- T3 Every morphism factors as an anodyne morphism followed by a fibration.
- T4 Anodyne morphisms are stable under pullbacks along fibrations.

A homotopy between morphisms $a \rightarrow b$ is a morphism $a \rightarrow Pb$.

A homotopy between morphisms $a \rightarrow b$ is a morphism $a \rightarrow Pb$.

A homotopy equivalence is a morphism with an inverse up to homotopy.

A homotopy between morphisms $a \rightarrow b$ is a morphism $a \rightarrow Pb$.

A homotopy equivalence is a morphism with an inverse up to homotopy.

A homomorphism of tribes is a functor that preserves fibrations, anodyne morphisms, terminal object and pullbacks along fibrations.

A homotopy between morphisms $a \rightarrow b$ is a morphism $a \rightarrow Pb$.

A homotopy equivalence is a morphism with an inverse up to homotopy.

A homomorphism of tribes is a functor that preserves fibrations, anodyne morphisms, terminal object and pullbacks along fibrations.

A Π -tribe is a tribe \mathcal{T} such that for all fibrations $p: a \rightarrow b$, the pullback functor $p^*: \mathcal{T} \downarrow b \rightarrow \mathcal{T} \downarrow a$ has a right adjoint Π_p that is a homomorphism.

A homotopy between morphisms $a \rightarrow b$ is a morphism $a \rightarrow Pb$.

A homotopy equivalence is a morphism with an inverse up to homotopy.

A homomorphism of tribes is a functor that preserves fibrations, anodyne morphisms, terminal object and pullbacks along fibrations.

A Π -tribe is a tribe \mathcal{T} such that for all fibrations $p: a \rightarrow b$, the pullback functor $p^*: \mathcal{T} \downarrow b \rightarrow \mathcal{T} \downarrow a$ has a right adjoint Π_p that is a homomorphism.

A Π -homomorphism is a homomorphism that preserves Π .

A homotopy between morphisms $a \rightarrow b$ is a morphism $a \rightarrow Pb$.

A homotopy equivalence is a morphism with an inverse up to homotopy.

A homomorphism of tribes is a functor that preserves fibrations, anodyne morphisms, terminal object and pullbacks along fibrations.

A Π -tribe is a tribe \mathcal{T} such that for all fibrations $p: a \rightarrow b$, the pullback functor $p^*: \mathcal{T} \downarrow b \rightarrow \mathcal{T} \downarrow a$ has a right adjoint Π_p that is a homomorphism.

A Π -homomorphism is a homomorphism that preserves Π .

It is a weak equivalence if it induces an equivalence on homotopy categories.

A semisimplicial set is a "simplicial set without degeneracies".

A semisimplicial set is a "simplicial set without degeneracies".

Semisimplicial sets carry a symmetric monoidal geometric product.

A semisimplicial set is a "simplicial set without degeneracies".

Semisimplicial sets carry a symmetric monoidal geometric product.

A semisimplicial $\Pi\text{-}tribe$ is a $\Pi\text{-}tribe$ that is enriched in semisimplicial sets such that

- cotensors by finite semisimplicial sets exist and the "pullback cotensor property" is satisfied;
- cotensors preserve anodyne morphisms;
- adjunctions $p^* \vdash \prod_p$ are semisimplicial.

A frame in a $\Pi\text{-tribe}\ \mathcal{T}$ is a Reedy fibrant homotopically constant semisimplicial object in $\mathcal{T}.$

A frame in a $\Pi\text{-tribe}\ \mathcal{T}$ is a Reedy fibrant homotopically constant semisimplicial object in $\mathcal{T}.$

The category of frames $\mathsf{Fr}\,\mathcal{T}$ is a semisimplicial $\Pi\text{-tribe}.$

A frame in a Π -tribe \mathcal{T} is a Reedy fibrant homotopically constant semisimplicial object in \mathcal{T} .

The category of frames $\mathsf{Fr}\,\mathcal{T}$ is a semisimplicial $\Pi\text{-tribe}.$

A frame in a Π -tribe \mathcal{T} is a Reedy fibrant homotopically constant semisimplicial object in \mathcal{T} .

The category of frames $\mathsf{Fr}\,\mathcal{T}$ is a semisimplicial $\Pi\text{-tribe}.$

$$\mathit{U}\,\mathsf{Fr}\,\mathcal{T}\overset{\sim}{\longrightarrow}\mathcal{T}$$

A frame in a Π -tribe \mathcal{T} is a Reedy fibrant homotopically constant semisimplicial object in \mathcal{T} .

The category of frames $\operatorname{Fr} \mathcal{T}$ is a semisimplicial Π -tribe.

A quasicategory is a simplicial set $\mathcal C$ with the RLP with respect to the inner horn inclusions. Quasicategories model $(\infty,1)$ -categories.

A quasicategory is a simplicial set C with the RLP with respect to the inner horn inclusions. Quasicategories model $(\infty, 1)$ -categories.

C has finite limits if for all finite simplicial sets K and $x: K \to C$, the functor $C^{K}(\text{const} -, x)$ is representable.
C has finite limits if for all finite simplicial sets K and $x: K \to C$, the functor $C^{K}(\text{const} -, x)$ is representable.

C is cartesian closed if for all $x, y \in C$, the functor $C(- \times x, y)$ is representable.

C has finite limits if for all finite simplicial sets K and $x: K \to C$, the functor $C^{K}(\text{const} -, x)$ is representable.

C is cartesian closed if for all $x, y \in C$, the functor $C(- \times x, y)$ is representable.

C is locally cartesian closed if for all $x \in C$, $C \downarrow x$ is cartesian closed.

C has finite limits if for all finite simplicial sets K and $x: K \to C$, the functor $C^{K}(\text{const} -, x)$ is representable.

C is cartesian closed if for all $x, y \in C$, the functor $C(- \times x, y)$ is representable.

C is locally cartesian closed if for all $x \in C$, $C \downarrow x$ is cartesian closed.

A morphism of LCCQs is a functor (simplicial map) that preserves finite limits and local exponentials.

C has finite limits if for all finite simplicial sets K and $x: K \to C$, the functor $C^{K}(\text{const} -, x)$ is representable.

C is cartesian closed if for all $x, y \in C$, the functor $C(-\times x, y)$ is representable.

C is locally cartesian closed if for all $x \in C$, $C \downarrow x$ is cartesian closed.

A morphism of LCCQs is a functor (simplicial map) that preserves finite limits and local exponentials.

It is an categorical equivalence if it has an inverse up to natural equivalence.

Show that Π-sTrb and LCCQ are fibration categories.

- Show that Π-sTrb and LCCQ are fibration categories.
- Implement the rightward functors with a convenient construction: the quasicategory of frames.

- Show that Π-sTrb and LCCQ are fibration categories.
- Implement the rightward functors with a convenient construction: the quasicategory of frames.
- ▶ Show that N_f is an exact functor with Approximation Properties.

- Show that Π-sTrb and LCCQ are fibration categories.
- Implement the rightward functors with a convenient construction: the quasicategory of frames.
- ▶ Show that N_f is an exact functor with Approximation Properties.
- For that use tribes of representable injectively fibrant presheaves.

- F1 There is a terminal object and all objects are fibrant.
- F2 Pullbacks along fibrations exist and (acyclic) fibrations are stable under pullback.
- F3 Every morphism factors as a weak equivalence followed by a fibration.
- F4 Weak equivalences satisfy the 2-out-of-6 property.

- F1 There is a terminal object and all objects are fibrant.
- F2 Pullbacks along fibrations exist and (acyclic) fibrations are stable under pullback.
- F3 Every morphism factors as a weak equivalence followed by a fibration.
- F4 Weak equivalences satisfy the 2-out-of-6 property.

An exact functor between fibration categories is a functor that preserves weak equivalences, fibrations, terminal object and pullbacks along fibrations.

- F1 There is a terminal object and all objects are fibrant.
- F2 Pullbacks along fibrations exist and (acyclic) fibrations are stable under pullback.
- F3 Every morphism factors as a weak equivalence followed by a fibration.
- F4 Weak equivalences satisfy the 2-out-of-6 property.

An exact functor between fibration categories is a functor that preserves weak equivalences, fibrations, terminal object and pullbacks along fibrations.

Every tribe is a fibration category and every homomorphism is exact.

- F1 There is a terminal object and all objects are fibrant.
- F2 Pullbacks along fibrations exist and (acyclic) fibrations are stable under pullback.
- F3 Every morphism factors as a weak equivalence followed by a fibration.
- F4 Weak equivalences satisfy the 2-out-of-6 property.

An exact functor between fibration categories is a functor that preserves weak equivalences, fibrations, terminal object and pullbacks along fibrations.

Every tribe is a fibration category and every homomorphism is exact.

LCCQ is a fibration category (fibrations are inner isofibrations).

A fibration between tribes $F: S \twoheadrightarrow T$:

The category Π -sTrb is a fibration category.

The category Π -sTrb is a fibration category.

A path object on $\mathcal{T} \in \Pi$ -sTrb:

$$\mathcal{T} \xrightarrow{\sim} \mathcal{T}_{R}^{Z} \xrightarrow{} \mathcal{T} \times \mathcal{T}$$

where $Z = \{ \bullet \leftarrow \bullet \rightarrow \bullet \}$.

The "initial projection" functor NI $\mathcal{C} \rightarrow \mathcal{C}$ creates weak equivalences in I \mathcal{C} .

The "initial projection" functor NI $\mathcal{C} \rightarrow \mathcal{C}$ creates weak equivalences in I \mathcal{C} .

 $\mathsf{I}\mathcal{C}$ is a homotopical inverse category and $\mathsf{N}\mathsf{I}\mathcal{C}\to\mathcal{C}$ is a localization.

The "initial projection" functor NI $\mathcal{C} \to \mathcal{C}$ creates weak equivalences in I \mathcal{C} . I \mathcal{C} is a homotopical inverse category and NI $\mathcal{C} \to \mathcal{C}$ is a localization. If \mathcal{T} is a Π -tribe, define a simplicial set N_f \mathcal{T} (quasicategory of frames): (N_f)_m = {x:I[m] $\to \mathcal{T}$ | x is homotopical and Reedy fibrant}.

The "initial projection" functor NI $\mathcal{C} \rightarrow \mathcal{C}$ creates weak equivalences in I \mathcal{C} .

 $\mathsf{I}\mathcal{C}$ is a homotopical inverse category and $\mathsf{N}\mathsf{I}\mathcal{C}\to\mathcal{C}$ is a localization.

If \mathcal{T} is a Π -tribe, define a simplicial set $N_f \mathcal{T}$ (quasicategory of frames):

 $(N_f)_m = \{x: I[m] \rightarrow \mathcal{T} \mid x \text{ is homotopical and Reedy fibrant}\}.$

 $N_f \, \mathcal{T}$ is a locally cartesian closed quasicategory and $N_f \colon \Pi\text{-sTrb} \to LCCQ$ is an exact functor.

Theorem (Cisinski)

If $F: C \to D$ is an exact functor between fibration categories, then the following are equivalent.

- F is a DK-equivalence.
- F is a weak equivalence.
- F satisfies the Approximation Properties:

App1 *it reflects weak equivalences,* App2

Theorem (Cisinski)

If $F: \mathcal{C} \to \mathcal{D}$ is an exact functor between fibration categories, then the following are equivalent.

- F is a DK-equivalence.
- F is a weak equivalence.
- F satisfies the Approximation Properties:
 App1 it reflects weak equivalences,

App2

We need to show that N_f satisfies App2.

A simplicial presheaf A over a simplicial category \mathcal{A} is representable if there is $\mathcal{A}(-, a) \stackrel{\sim}{\rightarrow} A$.

$$\begin{array}{ccc} \mathcal{C} & \xrightarrow{F} & \mathsf{N}_{f} \mathcal{T} & & \mathcal{T} \\ & & & & & & \\ \sim & & & & & & \\ \mathcal{C}' & \xrightarrow{\sim} & \mathsf{N}_{f} \mathcal{S} & & \mathcal{S} \end{array}$$

A simplicial presheaf A over a simplicial category \mathcal{A} is representable if there is $\mathcal{A}(-, a) \stackrel{\sim}{\rightarrow} A$.

Consider the hammock localization $L^H IC$. Then the category RC of representable injectively fibrant simplicial presheaves over $L^H IC$ is a Π -tribe (with injective fibrations). Moreover, $N_f RC$ is equivalent to C.

An object of ${\mathcal S}$ consists of

- ▶ presheaves X, \widetilde{X} over $L^H | C$ with X injectively fibrant,
- an object $a \in \mathcal{T}$,
- an injective fibration $\widetilde{X} \twoheadrightarrow X \times L^{H}\mathcal{T}(F -, a)$

such that

- $\widetilde{X} \to X$ is a weak equivalence,
- ▶ there is a representation $L^H I C(-, x) \Rightarrow \widetilde{X}$ that induces a weak equivalence $Fx \rightarrow a$.

An object of ${\mathcal S}$ consists of

- ▶ presheaves X, \widetilde{X} over $L^H | C$ with X injectively fibrant,
- an object $a \in \mathcal{T}$,
- an injective fibration $\widetilde{X} \twoheadrightarrow X \times L^{H}\mathcal{T}(F -, a)$

such that

- $\widetilde{X} \to X$ is a weak equivalence,
- ▶ there is a representation $L^H I C(-, x) \Rightarrow \widetilde{X}$ that induces a weak equivalence $Fx \rightarrow a$.

 ${\mathcal S}$ is a Π -tribe.

An object of ${\mathcal S}$ consists of

- presheaves X, \widetilde{X} over $L^H | C$ with X injectively fibrant,
- an object $a \in \mathcal{T}$,
- an injective fibration $\widetilde{X} \twoheadrightarrow X \times L^{H}\mathcal{T}(F -, a)$

such that

- $\widetilde{X} \to X$ is a weak equivalence,
- ▶ there is a representation $L^H I C(-, x) \Rightarrow \widetilde{X}$ that induces a weak equivalence $Fx \rightarrow a$.

 ${\mathcal S}$ is a $\Pi\text{-tribe}.$

An *m*-simplex of \mathcal{C}' consists of

- an *m*-simplex (X, \widetilde{X}, a) of $N_f S$,
- an *m*-simplex x of C,
- a natural choice of representations $L^H \, {\rm I} \, {\mathcal C}(-, x \varphi) \Rightarrow \widetilde{X}_{\varphi}$ for $\varphi : [k] \hookrightarrow [m]$ inducing weak equivalences $Fx \varphi \to a \varphi$.

 $\mathcal{C}' \rightarrow \mathcal{C}$ is an acyclic fibration. In particular, \mathcal{C}' is a LCCQ.

 $\mathcal{C}' \to \mathcal{C}$ is an acyclic fibration. In particular, \mathcal{C}' is a LCCQ.

 $C' \rightarrow N_f S$ preserves finite limits and satisfies quasicategorical Approximation Properties.

 $\mathcal{C}' \rightarrow \mathcal{C}$ is an acyclic fibration. In particular, \mathcal{C}' is a LCCQ.

 $C' \rightarrow N_f S$ preserves finite limits and satisfies quasicategorical Approximation Properties.