
A Model of Type Theory
with Directed Univalence

in Bicubical Sets

HoTT. August 14, 2019

Matthew Weaver and Dan Licata
Princeton University Wesleyan University

Directed Type Theory

Directed Type Theory
• Riehl-Shulman defines a type theory for ∞-categories with a

model bisimplicial sets

Directed Type Theory
• Riehl-Shulman defines a type theory for ∞-categories with a

model bisimplicial sets
1. Begin with HoTT

Directed Type Theory
• Riehl-Shulman defines a type theory for ∞-categories with a

model bisimplicial sets
1. Begin with HoTT
2. Add Hom-types

Directed Type Theory
• Riehl-Shulman defines a type theory for ∞-categories with a

model bisimplicial sets
1. Begin with HoTT
2. Add Hom-types
3. ∞-categories (Segal types) and univalent ∞-category

(Rezk types) given internally as predicates on types

Directed Type Theory
• Riehl-Shulman defines a type theory for ∞-categories with a

model bisimplicial sets
1. Begin with HoTT
2. Add Hom-types
3. ∞-categories (Segal types) and univalent ∞-category

(Rezk types) given internally as predicates on types
4. Predicate isCov(B : A → U) for covariant discrete

fibrations

Directed Type Theory
• Riehl-Shulman defines a type theory for ∞-categories with a

model bisimplicial sets
1. Begin with HoTT
2. Add Hom-types
3. ∞-categories (Segal types) and univalent ∞-category

(Rezk types) given internally as predicates on types
4. Predicate isCov(B : A → U) for covariant discrete

fibrations
5. Cavallo, Riehl and Sattler have also (externally) defined

the universe of covariant fibrations (the ∞-category of
spaces and continuous functions) and shown 
Directed Univalence: HomUCov A B ≃ A → B

Constructive(?) Directed
Type Theory

Constructive(?) Directed
Type Theory

• Can we make this constructive?

Constructive(?) Directed
Type Theory

• Can we make this constructive?
1. Begin with Cubical Type Theory

Constructive(?) Directed
Type Theory

• Can we make this constructive?
1. Begin with Cubical Type Theory
2. Use a second cubical interval to define Hom-types

Constructive(?) Directed
Type Theory

• Can we make this constructive?
1. Begin with Cubical Type Theory
2. Use a second cubical interval to define Hom-types
3. Use LOPS to define universe of covariant fibrations

and construct directed univalence internally...

Constructive(?) Directed
Type Theory

• Can we make this constructive?
1. Begin with Cubical Type Theory
2. Use a second cubical interval to define Hom-types
3. Use LOPS to define universe of covariant fibrations

and construct directed univalence internally...
• ...unfortunately, directed univalence is a bit trickier

than expected

Let's see how far the
techniques from cubical

type theory get us!

Defining Bicubical Directed Type Theory
Directed Type TheoryCubical Type Theory

(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory
Directed Type Theory

1. Begin with MLTT

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory
Directed Type Theory

1. Begin with MLTT

2. Add an interval: 𝕀

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory
Directed Type Theory

1. Begin with MLTT

2. Add an interval: 𝕀

3. Specify gen. cofibrations for 𝕀

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory
Directed Type Theory

1. Begin with MLTT

2. Add an interval: 𝕀

3. Specify gen. cofibrations for 𝕀

4. Define filling problem for

Kan fibrations

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory
Directed Type Theory

1. Begin with MLTT

2. Add an interval: 𝕀

3. Specify gen. cofibrations for 𝕀

4. Define filling problem for

Kan fibrations

5. Define universe of

Kan fibrations

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory
Directed Type Theory

1. Begin with MLTT

2. Add an interval: 𝕀

3. Specify gen. cofibrations for 𝕀

4. Define filling problem for

Kan fibrations

5. Define universe of

Kan fibrations

6. Construct univalence

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory
Directed Type Theory

1. Begin with MLTT

2. Add an interval: 𝕀

3. Specify gen. cofibrations for 𝕀

4. Define filling problem for

Kan fibrations

5. Define universe of

Kan fibrations

6. Construct univalence

1. Begin with Cubical Type Theory

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory
Directed Type Theory

1. Begin with MLTT

2. Add an interval: 𝕀

3. Specify gen. cofibrations for 𝕀

4. Define filling problem for

Kan fibrations

5. Define universe of

Kan fibrations

6. Construct univalence

1. Begin with Cubical Type Theory

2. Add an interval: 𝟚

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory
Directed Type Theory

1. Begin with MLTT

2. Add an interval: 𝕀

3. Specify gen. cofibrations for 𝕀

4. Define filling problem for

Kan fibrations

5. Define universe of

Kan fibrations

6. Construct univalence

1. Begin with Cubical Type Theory

2. Add an interval: 𝟚

3. Specify gen. cofibrations for 𝟚

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory
Directed Type Theory

1. Begin with MLTT

2. Add an interval: 𝕀

3. Specify gen. cofibrations for 𝕀

4. Define filling problem for

Kan fibrations

5. Define universe of

Kan fibrations

6. Construct univalence

1. Begin with Cubical Type Theory

2. Add an interval: 𝟚

3. Specify gen. cofibrations for 𝟚

4. Define filling problem for

covariant fibrations

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory
Directed Type Theory

1. Begin with MLTT

2. Add an interval: 𝕀

3. Specify gen. cofibrations for 𝕀

4. Define filling problem for

Kan fibrations

5. Define universe of

Kan fibrations

6. Construct univalence

1. Begin with Cubical Type Theory

2. Add an interval: 𝟚

3. Specify gen. cofibrations for 𝟚

4. Define filling problem for

covariant fibrations

5. Define universe of

covariant fibrations

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory
Directed Type Theory

1. Begin with MLTT

2. Add an interval: 𝕀

3. Specify gen. cofibrations for 𝕀

4. Define filling problem for

Kan fibrations

5. Define universe of

Kan fibrations

6. Construct univalence

1. Begin with Cubical Type Theory

2. Add an interval: 𝟚

3. Specify gen. cofibrations for 𝟚

4. Define filling problem for

covariant fibrations

5. Define universe of

covariant fibrations

6. Construct directed univalence

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory
Directed Type Theory

1. Begin with MLTT

2. Add an interval: 𝕀

3. Specify gen. cofibrations for 𝕀

4. Define filling problem for

Kan fibrations

5. Define universe of

Kan fibrations

6. Construct univalence

1. Begin with Cubical Type Theory

2. Add an interval: 𝟚

3. Specify gen. cofibrations for 𝟚

4. Define filling problem for

covariant fibrations

5. Define universe of

covariant fibrations

6. Construct directed univalence

Cubical Type Theory
(in the style of Orton-Pitts)

Directed Type Theory

2. Add an interval: 𝕀 2. Add an interval: 𝟚

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

Directed Type Theory

2. Add an interval: 𝕀 2. Add an interval: 𝟚

Cubical Type Theory
(in the style of Orton-Pitts)

𝕀 : Type

Defining Bicubical Directed Type Theory

Directed Type Theory

2. Add an interval: 𝕀 2. Add an interval: 𝟚

Cubical Type Theory
(in the style of Orton-Pitts)

𝟘𝕀 : 𝕀 𝟙𝕀 : 𝕀

𝕀 : Type

Defining Bicubical Directed Type Theory

Directed Type Theory

2. Add an interval: 𝕀 2. Add an interval: 𝟚

Cubical Type Theory
(in the style of Orton-Pitts)

𝟘𝕀 : 𝕀 𝟙𝕀 : 𝕀

𝕀 : Type

i.e. generators for the Cartesian cubes

Defining Bicubical Directed Type Theory

Directed Type Theory

2. Add an interval: 𝕀 2. Add an interval: 𝟚

Cubical Type Theory
(in the style of Orton-Pitts)

𝟘𝕀 : 𝕀 𝟙𝕀 : 𝕀

𝕀 : Type 𝟚 : Type

i.e. generators for the Cartesian cubes

Defining Bicubical Directed Type Theory

Directed Type Theory

2. Add an interval: 𝕀 2. Add an interval: 𝟚

Cubical Type Theory
(in the style of Orton-Pitts)

𝟘𝕀 : 𝕀 𝟙𝕀 : 𝕀

𝕀 : Type 𝟚 : Type

𝟘𝟚 : 𝟚

x ∧ y : 𝟚
x : 𝟚 y : 𝟚

𝟙𝟚 : 𝟚

x ∨ y : 𝟚
x : 𝟚 y : 𝟚

i.e. generators for the Cartesian cubes

Defining Bicubical Directed Type Theory

Directed Type Theory

2. Add an interval: 𝕀 2. Add an interval: 𝟚

Cubical Type Theory
(in the style of Orton-Pitts)

𝟘𝕀 : 𝕀 𝟙𝕀 : 𝕀

𝕀 : Type 𝟚 : Type

𝟘𝟚 : 𝟚

x ∧ y : 𝟚
x : 𝟚 y : 𝟚

𝟙𝟚 : 𝟚

x ∨ y : 𝟚
x : 𝟚 y : 𝟚

i.e. generators for the Cartesian cubes

and equations...

Defining Bicubical Directed Type Theory

Directed Type Theory

2. Add an interval: 𝕀 2. Add an interval: 𝟚

Cubical Type Theory
(in the style of Orton-Pitts)

𝟘𝕀 : 𝕀 𝟙𝕀 : 𝕀

𝕀 : Type 𝟚 : Type

𝟘𝟚 : 𝟚

x ∧ y : 𝟚
x : 𝟚 y : 𝟚

𝟙𝟚 : 𝟚

x ∨ y : 𝟚
x : 𝟚 y : 𝟚

i.e. generators for the Cartesian cubes i.e. generators for the Dedekind cubes

and equations...

Defining Bicubical Directed Type Theory

The Directed Interval

The Directed Interval

• Why Dedekind cubes instead of Cartesian?  
x ≤ y := x = x ∧ y

The Directed Interval

• Why Dedekind cubes instead of Cartesian?  
x ≤ y := x = x ∧ y

• We also add the following axioms:

The Directed Interval

• Why Dedekind cubes instead of Cartesian?  
x ≤ y := x = x ∧ y

• We also add the following axioms:

• p : 𝕀 → 𝟚 is constant (Π x y : 𝕀, p x = p y)

The Directed Interval

• Why Dedekind cubes instead of Cartesian?  
x ≤ y := x = x ∧ y

• We also add the following axioms:

• p : 𝕀 → 𝟚 is constant (Π x y : 𝕀, p x = p y)

• p : 𝟚 → 𝟚 is monotone (Π x y : 𝟚, if x ≤ y then p x ≤ p y)

Directed Type Theory

1. Begin with MLTT

2. Add an interval: 𝕀

4. Define filling problem for

Kan fibrations

5. Define universe of

Kan fibrations

6. Construct univalence

1. Begin with Cubical Type Theory

2. Add an interval: 𝟚

4. Define filling problem for

covariant fibrations

5. Define universe of

covariant fibrations

6. Construct directed univalence

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

3. Specify gen. cofibrations for 𝕀 3. Specify gen. cofibrations for 𝟚

Cubical Type Theory
(in the style of Orton-Pitts) Directed Type Theory

1. Begin with MLTT

2. Add an interval: 𝕀

3. Specify gen. cofibrations for 𝕀

4. Define filling problem for

Kan fibrations

5. Define universe of

Kan fibrations

6. Construct univalence

1. Begin with Cubical Type Theory

2. Add an interval: 𝟚

3. Specify gen. cofibrations for 𝟚

4. Define filling problem for

covariant fibrations

5. Define universe of

covariant fibrations

6. Construct directed univalence

Defining Bicubical Directed Type Theory

Directed Type Theory

3. Specify gen. cofibrations for 𝕀 3. Specify gen. cofibrations for 𝟚

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

Directed Type Theory

3. Specify gen. cofibrations for 𝕀 3. Specify gen. cofibrations for 𝟚

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

isCof : Ω → Ω

Cof := Σ φ : Ω . isCof φ

Directed Type Theory

3. Specify gen. cofibrations for 𝕀 3. Specify gen. cofibrations for 𝟚

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

isCof : Ω → Ω

Cof := Σ φ : Ω . isCof φ

Cof closed under _∧_, _∨_, ⊥, ⊤

Directed Type Theory

3. Specify gen. cofibrations for 𝕀 3. Specify gen. cofibrations for 𝟚

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

isCof : Ω → Ω

Cof := Σ φ : Ω . isCof φ

_ : isCof (x = y)
x : 𝕀 y : 𝕀

_ : isCof (Π x : 𝕀 . φ x)
φ : 𝕀 → Cof

Cof closed under _∧_, _∨_, ⊥, ⊤

Directed Type Theory

3. Specify gen. cofibrations for 𝕀 3. Specify gen. cofibrations for 𝟚

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

isCof : Ω → Ω

Cof := Σ φ : Ω . isCof φ

_ : isCof (x = y)
x : 𝕀 y : 𝕀

_ : isCof (Π x : 𝕀 . φ x)
φ : 𝕀 → Cof

_ : isCof (x = y)
x : 𝟚 y : 𝟚

_ : isCof (Π x : 𝟚 . φ x)
φ : 𝟚 → Cof

Cof closed under _∧_, _∨_, ⊥, ⊤

Directed Type Theory

1. Begin with MLTT

2. Add an interval: 𝕀

4. Define filling problem for

Kan fibrations

5. Define universe of

Kan fibrations

6. Construct univalence

1. Begin with Cubical Type Theory

2. Add an interval: 𝟚

4. Define filling problem for

covariant fibrations

5. Define universe of

covariant fibrations

6. Construct directed univalence

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

3. Specify gen. cofibrations for 𝕀 3. Specify gen. cofibrations for 𝟚

Directed Type Theory

1. Begin with MLTT

2. Add an interval: 𝕀

4. Define filling problem for
Kan fibrations

5. Define universe of

Kan fibrations

6. Construct univalence

1. Begin with Cubical Type Theory

2. Add an interval: 𝟚

4. Define filling problem for
covariant fibrations

5. Define universe of

covariant fibrations

6. Construct directed univalence

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

3. Specify gen. cofibrations for 𝕀 3. Specify gen. cofibrations for 𝟚

Directed Type Theory

4. Define filling problem for
Kan fibrations

4. Define filling problem for
covariant fibrations

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

Directed Type Theory

4. Define filling problem for
Kan fibrations

4. Define filling problem for
covariant fibrations

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

hasCom : (𝕀 → U) → U

hasCom A = Π i j : 𝕀 .

 Π α : Cof .

 Π t : (Π x : 𝕀 . α → A x)

 Π b : (A i)[α ↦ t i] .

 (A j)[α ↦ t j; i = j ↦ b]

relCom : (A : U) → (A → U) → U

relCom A B = Π p : 𝕀 → A .

 hasCom (B ∘ p)

Directed Type Theory

4. Define filling problem for
Kan fibrations

4. Define filling problem for
covariant fibrations

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

hasCom : (𝕀 → U) → U

hasCom A = Π i j : 𝕀 .

 Π α : Cof .

 Π t : (Π x : 𝕀 . α → A x)

 Π b : (A i)[α ↦ t i] .

 (A j)[α ↦ t j; i = j ↦ b]

relCom : (A : U) → (A → U) → U

relCom A B = Π p : 𝕀 → A .

 hasCom (B ∘ p)

hasCov : (𝟚 → U) → U

hasCov A = Π α : Cof .

 Π t : (Π x : 𝟚 . α → A x)

 Π b : (A 𝟘𝟚)[α ↦ t 𝟘𝟚] .

 (A 𝟙𝟚)[α ↦ t 𝟙𝟚]

relCov : (A : U) → (A → U) → U

relCov A B = Π p : 𝟚 → A .

hasCov (B ∘ p)

Directed Type Theory

1. Begin with MLTT

2. Add an interval: 𝕀

4. Define filling problem for

Kan fibrations

5. Define universe of

Kan fibrations

6. Construct univalence

1. Begin with Cubical Type Theory

2. Add an interval: 𝟚

4. Define filling problem for

covariant fibrations

5. Define universe of

covariant fibrations

6. Construct directed univalence

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

3. Specify gen. cofibrations for 𝕀 3. Specify gen. cofibrations for 𝟚

Directed Type Theory

1. Begin with MLTT

2. Add an interval: 𝕀

4. Define filling problem for

Kan fibrations

5. Define universe of
Kan fibrations

6. Construct univalence

1. Begin with Cubical Type Theory

2. Add an interval: 𝟚

4. Define filling problem for

covariant fibrations

5. Define universe of
covariant fibrations

6. Construct directed univalence

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

3. Specify gen. cofibrations for 𝕀 3. Specify gen. cofibrations for 𝟚

Directed Type Theory

5. Define universe of
Kan fibrations

5. Define universe of
covariant fibrations

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

Directed Type Theory

5. Define universe of
Kan fibrations

5. Define universe of
covariant fibrations

• UKan given by LOPS
construction for relCom

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

Directed Type Theory

5. Define universe of
Kan fibrations

5. Define universe of
covariant fibrations

• UKan given by LOPS
construction for relCom

• UCov given by LOPS
construction for relCov. 
Lemma: relCov is in UKan

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

Directed Type Theory

1. Begin with MLTT

2. Add an interval: 𝕀

4. Define filling problem for

Kan fibrations

5. Define universe of

Kan fibrations

6. Construct univalence

1. Begin with Cubical Type Theory

2. Add an interval: 𝟚

4. Define filling problem for

covariant fibrations

5. Define universe of

covariant fibrations

6. Construct directed univalence

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

3. Specify gen. cofibrations for 𝕀 3. Specify gen. cofibrations for 𝟚

Directed Type Theory

1. Begin with MLTT

2. Add an interval: 𝕀

4. Define filling problem for

Kan fibrations

5. Define universe of

Kan fibrations

6. Construct univalence

1. Begin with Cubical Type Theory

2. Add an interval: 𝟚

4. Define filling problem for

covariant fibrations

5. Define universe of

covariant fibrations

6. Construct directed univalence

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

3. Specify gen. cofibrations for 𝕀 3. Specify gen. cofibrations for 𝟚

Directed Type Theory

6. Construct univalence 6. Construct directed univalence

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

Directed Type Theory

6. Construct univalence 6. Construct directed univalence

• Key Idea: Glue type to attach
equivalences to path structure

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

Directed Type Theory

6. Construct univalence 6. Construct directed univalence

• Key Idea: Glue type to attach
equivalences to path structure

• Key Idea: Glue type to attach
functions to morphism structure

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

Glue Types

Glue Types
α ⊢ T

α ⊢ f

B

Glue [α ↦ (T , f)] B :=

Glue Types
α ⊢ T

α ⊢ f

B

Glue [α ↦ (T , f)] B :=
α ⊢ Glue [α ↦ (T , f)] B ≡ T

Glue Types
α ⊢ T

α ⊢ f

B

Glue [α ↦ (T , f)] B :=

α ⊢ t : T

α ⊢ f

b : B

glue t b :=

α ⊢ Glue [α ↦ (T , f)] B ≡ T

Glue Types
α ⊢ T

α ⊢ f

B

Glue [α ↦ (T , f)] B :=

α ⊢ t : T

α ⊢ f

b : B

glue t b :=

α ⊢ Glue [α ↦ (T , f)] B ≡ T

g : Glue [α ↦ (T , f)] B
unglue g : B

Glue Types
α ⊢ T

α ⊢ f

B

Glue [α ↦ (T , f)] B :=

α ⊢ t : T

α ⊢ f

b : B

glue t b :=

α ⊢ Glue [α ↦ (T , f)] B ≡ T

α ⊢ glue t b ≡ t

g : Glue [α ↦ (T , f)] B
unglue g : B

Glue Types
α ⊢ T

α ⊢ f

B

Glue [α ↦ (T , f)] B :=

α ⊢ t : T

α ⊢ f

b : B

glue t b :=

α ⊢ Glue [α ↦ (T , f)] B ≡ T

α ⊢ glue t b ≡ t

g : Glue [α ↦ (T , f)] B
unglue g : B

α ⊢ unglue (glue t b) ≡ f t

Glue Types
α ⊢ T

α ⊢ f

B

Glue [α ↦ (T , f)] B :=

α ⊢ t : T

α ⊢ f

b : B

glue t b :=

α ⊢ Glue [α ↦ (T , f)] B ≡ T

α ⊢ glue t b ≡ t

g : Glue [α ↦ (T , f)] B
unglue g : B

α ⊢ unglue (glue t b) ≡ f t

glue g (unglue g) ≡ g

Defining
Directed Univalence

A B

f id

B

dua i A B f := Glue [i = 0 ↦ (A , f : A → B)

 , i = 1 ↦ (B , id)] B

i

: HomU A B

Naive Directed Univalence

Naive Directed Univalence
• dua is Kan + covariant, and thus lands in UCov

Naive Directed Univalence
• dua is Kan + covariant, and thus lands in UCov

• UCov itself is Kan

Naive Directed Univalence
• dua is Kan + covariant, and thus lands in UCov

• UCov itself is Kan

• Path univalence holds in UCov

Naive Directed Univalence
• dua is Kan + covariant, and thus lands in UCov

• UCov itself is Kan

• Path univalence holds in UCov

• These allow us to define the following for UCov:

Naive Directed Univalence
• dua is Kan + covariant, and thus lands in UCov

• UCov itself is Kan

• Path univalence holds in UCov

• These allow us to define the following for UCov:
• dcoe : (Hom A B) → (A → B)

Naive Directed Univalence
• dua is Kan + covariant, and thus lands in UCov

• UCov itself is Kan

• Path univalence holds in UCov

• These allow us to define the following for UCov:
• dcoe : (Hom A B) → (A → B)
• dua : (A → B) → Hom A B

Naive Directed Univalence
• dua is Kan + covariant, and thus lands in UCov

• UCov itself is Kan

• Path univalence holds in UCov

• These allow us to define the following for UCov:
• dcoe : (Hom A B) → (A → B)
• dua : (A → B) → Hom A B
• duaβ : Π f : A → B . Path f (dcoe (dua f))

Naive Directed Univalence
• dua is Kan + covariant, and thus lands in UCov

• UCov itself is Kan

• Path univalence holds in UCov

• These allow us to define the following for UCov:
• dcoe : (Hom A B) → (A → B)
• dua : (A → B) → Hom A B
• duaβ : Π f : A → B . Path f (dcoe (dua f))
• duaηfun : Π p : Hom A B . Π i : 𝟚 . p i → (dua (dcoe p)) i

Naive Directed Univalence

Naive Directed Univalence
• We're thus left with the following picture:

Naive Directed Univalence
• We're thus left with the following picture:

A B

id id

i

A B

p

dua (dcoe p)

duaηfun-1duaηfun

Naive Directed Univalence
• We're thus left with the following picture:

• To complete directed univalence, we need duaηfun-1

A B

id id

i

A B

p

dua (dcoe p)

duaηfun-1duaηfun

https://github.com/dlicata335/cart-cube

Naive Directed Univalence
• We're thus left with the following picture:

• To complete directed univalence, we need duaηfun-1

• Agda: https://github.com/dlicata335/cart-cube

A B

id id

i

A B

p

dua (dcoe p)

duaηfun-1duaηfun

https://github.com/dlicata335/cart-cube

What next?

What next?

• Cavallo, Riehl and Sattler's proof of directed univalence
contains the precise lemma we need to finish.

What next?

• Cavallo, Riehl and Sattler's proof of directed univalence
contains the precise lemma we need to finish.

• New goal: use any techniques available to confirm
directed univalence holds at all in a cubical setting.

What next?

• Cavallo, Riehl and Sattler's proof of directed univalence
contains the precise lemma we need to finish.

• New goal: use any techniques available to confirm
directed univalence holds at all in a cubical setting.

• Note: We would love any/all feedback on the math that
follows.

What next?

What next?

• The proof in the bisimplicial model relies on simplices
being a Reedy category

What next?

• The proof in the bisimplicial model relies on simplices
being a Reedy category

• specifically: weak equivalences in the model are level-
wise weak equivalences of simplicial sets

What next?

• The proof in the bisimplicial model relies on simplices
being a Reedy category

• specifically: weak equivalences in the model are level-
wise weak equivalences of simplicial sets

• Dedekind cubes are not Reedy...

Our New Goal

Our New Goal

• Find a setting that...

Our New Goal

• Find a setting that...

1. is cubical set valued presheaves of a Reedy category

Our New Goal

• Find a setting that...

1. is cubical set valued presheaves of a Reedy category

2. interprets the axioms from our internal language

Our New Goal

• Find a setting that...

1. is cubical set valued presheaves of a Reedy category

2. interprets the axioms from our internal language

3. allows for the LOPS construction of universes

Our New Goal

• Find a setting that...

1. is cubical set valued presheaves of a Reedy category

2. interprets the axioms from our internal language

3. allows for the LOPS construction of universes
• tiny interval

What are Reedy
Categories?

What are Reedy
Categories?

• The Idea: Categories permitting inductive constructions of
presheaves and their morphisms (akin to cell complexes)

What are Reedy
Categories?

• The Idea: Categories permitting inductive constructions of
presheaves and their morphisms (akin to cell complexes)

• (informal/incomplete) Definition: A generalized Reedy
category is a category C along with a degree function
δ : ob C → ℕ such that every morphism (that isn't an iso)
factors through an object of strictly smaller degree

The Dedekind Cubes

The Dedekind Cubes

• Free Cartesian category on an interval generated by:

The Dedekind Cubes

• Free Cartesian category on an interval generated by:

• face maps (+)

The Dedekind Cubes

• Free Cartesian category on an interval generated by:

• face maps (+)

• diagonals (+)

The Dedekind Cubes

• Free Cartesian category on an interval generated by:

• face maps (+)

• diagonals (+)

• degeneracies (-)

The Dedekind Cubes

• Free Cartesian category on an interval generated by:

• face maps (+)

• diagonals (+)

• degeneracies (-)

• connections (-)

The Dedekind Cubes
(x, y) ↦ (x, y, y) ↦ (x∧y, y)

The Dedekind Cubes
(x, y) ↦ (x, y, y) ↦ (x∧y, y)

The Dedekind Cubes
(x, y) ↦ (x, y, y) ↦ (x∧y, y)

up by a diagonal

The Dedekind Cubes
(x, y) ↦ (x, y, y) ↦ (x∧y, y)

down by a connection

The Dedekind Cubes
(x, y) ↦ (x∧y, y)

x

y

The Dedekind Cubes
(x, y) ↦ (x∧y, y)

x

y

The Dedekind Cubes
(x, y) ↦ (x∧y, y)

x

y

The Dedekind Cubes
(x, y) ↦ (x∧y, y)

x

y

The Dedekind Cubes
(x, y) ↦ (x∧y, y)

x

y

The Image Closure

The Image Closure

• The Idea: formally add image objects for every morphism

The Image Closure

• The Idea: formally add image objects for every morphism

• The Construction: Given a small Category C, the image
closure Im(C) is the full subcategory of [Cop , Set]
containing, for each morphism f in C, the coimage of f.

The Image Closure

• The Idea: formally add image objects for every morphism

• The Construction: Given a small Category C, the image
closure Im(C) is the full subcategory of [Cop , Set]
containing, for each morphism f in C, the coimage of f.

• Useful Lemma: We can build a topology Jim (the image
covering) on Im(C) such that [Cop , Set] ≅ Sh(Im(C), Jim).

The Image Closure

• The Idea: formally add image objects for every morphism

• The Construction: Given a small Category C, the image
closure Im(C) is the full subcategory of [Cop , Set]
containing, for each morphism f in C, the coimage of f.

• Useful Lemma: We can build a topology Jim (the image
covering) on Im(C) such that [Cop , Set] ≅ Sh(Im(C), Jim).
• Inspired by Kapulkin and Voevodsky

The Image Closure

• The Idea: formally add image objects for every morphism

• The Construction: Given a small Category C, the image
closure Im(C) is the full subcategory of [Cop , Set]
containing, for each morphism f in C, the coimage of f.

• Useful Lemma: We can build a topology Jim (the image
covering) on Im(C) such that [Cop , Set] ≅ Sh(Im(C), Jim).
• Inspired by Kapulkin and Voevodsky
• The Comparison Lemma: [SGA 4, The Elephant]

The Prism Category

The Prism Category
• Definition: The prism category is the image closure of the

Dedekind cube category.

The Prism Category
• Definition: The prism category is the image closure of the

Dedekind cube category.

• Lemma (with Christian Sattler): The prism category is
equivalent to the full subcategory of simplicial sets
containing subobjects of the Dedekind cubes (Γ , φ)
generated by the following formulae:

• ⊤ : true

• x ≤ y : the equalizer of the degeneracy map x and

connection x ∧ y

• φ ∧ ψ : the pullback of the subobjects (Γ, φ) and (Γ, ψ)

• φ ∨ ψ : the pushout of the pullback for (Γ, φ ∧ ψ)

The Prism Category

The Prism Category

• The Prism category

The Prism Category

• The Prism category

• is a finite product category...

The Prism Category

• The Prism category

• is a finite product category...

• ...and thus the Yoneda embedding of its interval is
tiny...

Prisms are Reedy

Prisms are Reedy
• Theorem: The prism category is a generalized Reedy

category.

Prisms are Reedy
• Theorem: The prism category is a generalized Reedy

category.
• The down maps are those that are regular epis in the

presheaf category

Prisms are Reedy
• Theorem: The prism category is a generalized Reedy

category.
• The down maps are those that are regular epis in the

presheaf category
• The up maps are the monos

Prisms are Reedy
• Theorem: The prism category is a generalized Reedy

category.
• The down maps are those that are regular epis in the

presheaf category
• The up maps are the monos
• The Reedy factorization is the image factorization

Prisms are Reedy
• Theorem: The prism category is a generalized Reedy

category.
• The down maps are those that are regular epis in the

presheaf category
• The up maps are the monos
• The Reedy factorization is the image factorization

• Corollary: The opposite of the prism category is also
generalized Reedy

Prisms are Reedy
• Theorem: The prism category is a generalized Reedy

category.
• The down maps are those that are regular epis in the

presheaf category
• The up maps are the monos
• The Reedy factorization is the image factorization

• Corollary: The opposite of the prism category is also
generalized Reedy

• Question: For which categories C is Im(C) Reedy?

Model Category One:
Prismatic Cubical Sets

Model Category One:
Prismatic Cubical Sets

• Reedy model structure on [Prismop, [Cubeop, Set]], starting
with model structure on Cartesian cubes [Sattler, Awodey]

Model Category One:
Prismatic Cubical Sets

• Reedy model structure on [Prismop, [Cubeop, Set]], starting
with model structure on Cartesian cubes [Sattler, Awodey]

• The lemma missing from the bicubical internal language
now is provable in the same way as in bisimplicial sets.

Model Category One:
Prismatic Cubical Sets

• Reedy model structure on [Prismop, [Cubeop, Set]], starting
with model structure on Cartesian cubes [Sattler, Awodey]

• The lemma missing from the bicubical internal language
now is provable in the same way as in bisimplicial sets.

• As our internal language axioms interpret into this model,
we get a model with directed univalence!

Model Category One:
Prismatic Cubical Sets

• Reedy model structure on [Prismop, [Cubeop, Set]], starting
with model structure on Cartesian cubes [Sattler, Awodey]

• The lemma missing from the bicubical internal language
now is provable in the same way as in bisimplicial sets.

• As our internal language axioms interpret into this model,
we get a model with directed univalence!

• Can we make this even more cubical?

Model Category Two:
Bicubical Sets

Model Category Two:
Bicubical Sets

• Sheafification gives us an adjunction between prismatic
cubical sets and bicubical sets

Model Category Two:
Bicubical Sets

• Sheafification gives us an adjunction between prismatic
cubical sets and bicubical sets

• We can transfer the model structure along the adjunction to
bicubical sets

Model Category Two:
Bicubical Sets

• Sheafification gives us an adjunction between prismatic
cubical sets and bicubical sets

• We can transfer the model structure along the adjunction to
bicubical sets
• Left Induced Model Structure: [Hess-Kedziorek-Riehl-

Shipley, Garner-Kedziorek-Riehl]

Model Category Two:
Bicubical Sets

• Sheafification gives us an adjunction between prismatic
cubical sets and bicubical sets

• We can transfer the model structure along the adjunction to
bicubical sets
• Left Induced Model Structure: [Hess-Kedziorek-Riehl-

Shipley, Garner-Kedziorek-Riehl]
• Path Object Argument: [Quillen]

Model Category Two:
Bicubical Sets

• Sheafification gives us an adjunction between prismatic
cubical sets and bicubical sets

• We can transfer the model structure along the adjunction to
bicubical sets
• Left Induced Model Structure: [Hess-Kedziorek-Riehl-

Shipley, Garner-Kedziorek-Riehl]
• Path Object Argument: [Quillen]

• Our internal language axioms still interpret after the transfer

Model Category Two:
Bicubical Sets

• Sheafification gives us an adjunction between prismatic
cubical sets and bicubical sets

• We can transfer the model structure along the adjunction to
bicubical sets
• Left Induced Model Structure: [Hess-Kedziorek-Riehl-

Shipley, Garner-Kedziorek-Riehl]
• Path Object Argument: [Quillen]

• Our internal language axioms still interpret after the transfer

• The lemma that finished directed univalence is still true after
the transfer

