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Directed Type Theory
• Riehl-Shulman defines a type theory for ∞-categories with a 

model bisimplicial sets
1. Begin with HoTT
2. Add Hom-types 
3. ∞-categories (Segal types) and univalent ∞-category 

(Rezk types) given internally as predicates on types
4. Predicate isCov(B : A → U) for covariant discrete 

fibrations
5. Cavallo, Riehl and Sattler have also (externally) defined 

the universe of covariant fibrations (the ∞-category of 
spaces and continuous functions) and shown 
Directed Univalence: HomUCov A B ≃ A → B
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Constructive(?) Directed 
Type Theory

• Can we make this constructive? 
1. Begin with Cubical Type Theory
2. Use a second cubical interval to define Hom-types
3. Use LOPS to define universe of covariant fibrations 

and construct directed univalence internally...
• ...unfortunately, directed univalence is a bit trickier 

than expected



Let's see how far the 
techniques from cubical 

type theory get us!
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hasCov : (𝟚 → U) → U

hasCov A = Π α : Cof .

                    Π t : (Π x : 𝟚 . α → A x)

                    Π b : (A 𝟘𝟚)[α ↦ t 𝟘𝟚] .

                    (A 𝟙𝟚)[α ↦ t 𝟙𝟚]


relCov : (A : U) → (A → U) → U

relCov A B = Π p : 𝟚 → A .


hasCov (B ∘ p)



Directed Type Theory

1. Begin with MLTT

2. Add an interval: 𝕀

4. Define filling problem for 

Kan fibrations

5. Define universe of 

Kan fibrations

6. Construct univalence

1. Begin with Cubical Type Theory

2. Add an interval: 𝟚

4. Define filling problem for 

covariant fibrations

5. Define universe of 

covariant fibrations

6. Construct directed univalence

Cubical Type Theory 
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

3. Specify gen. cofibrations for 𝕀 3. Specify gen. cofibrations for 𝟚



Directed Type Theory

1. Begin with MLTT

2. Add an interval: 𝕀

4. Define filling problem for 

Kan fibrations

5. Define universe of  
Kan fibrations

6. Construct univalence

1. Begin with Cubical Type Theory

2. Add an interval: 𝟚

4. Define filling problem for 

covariant fibrations

5. Define universe of  
covariant fibrations

6. Construct directed univalence

Cubical Type Theory 
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

3. Specify gen. cofibrations for 𝕀 3. Specify gen. cofibrations for 𝟚



Directed Type Theory

5. Define universe of  
Kan fibrations

5. Define universe of  
covariant fibrations

Cubical Type Theory 
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory



Directed Type Theory

5. Define universe of  
Kan fibrations

5. Define universe of  
covariant fibrations

• UKan given by LOPS 
construction for relCom

Cubical Type Theory 
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory



Directed Type Theory

5. Define universe of  
Kan fibrations

5. Define universe of  
covariant fibrations

• UKan given by LOPS 
construction for relCom

• UCov given by LOPS 
construction for relCov. 
Lemma: relCov is in UKan
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• Key Idea: Glue type to attach 
functions to morphism structure

Cubical Type Theory 
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Glue Types
α ⊢ T

α ⊢ f

B

Glue [ α ↦ (T , f) ] B :=

α ⊢ t : T

α ⊢ f

b : B

glue t b :=

α ⊢ Glue [ α ↦ (T , f) ] B ≡ T

α ⊢ glue t b ≡ t

g : Glue [ α ↦ (T , f) ] B
unglue g : B

α ⊢ unglue (glue t b) ≡ f t

glue g (unglue g) ≡ g



Defining  
Directed Univalence

A B

f id

B

dua i A B f := Glue [ i = 0 ↦ (A , f : A → B) 

                        , i = 1 ↦ (B , id) ] B

i

: HomU A B
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Naive Directed Univalence
• dua is Kan + covariant, and thus lands in UCov

• UCov itself is Kan

• Path univalence holds in UCov

• These allow us to define the following for UCov:
• dcoe : (Hom A B) → (A → B)
• dua : (A → B) → Hom A B
• duaβ : Π f : A → B . Path f (dcoe (dua f))
• duaηfun : Π p : Hom A B . Π i : 𝟚 . p i → (dua (dcoe p)) i
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Naive Directed Univalence
• We're thus left with the following picture: 

• To complete directed univalence, we need duaηfun-1 

• Agda: https://github.com/dlicata335/cart-cube

A B

id id

i

A B

p

dua (dcoe p)

duaηfun-1duaηfun 

https://github.com/dlicata335/cart-cube
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What next?

• Cavallo, Riehl and Sattler's proof of directed univalence 
contains the precise lemma we need to finish.

• New goal: use any techniques available to confirm 
directed univalence holds at all in a cubical setting.

• Note: We would love any/all feedback on the math that 
follows. 
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What next?

• The proof in the bisimplicial model relies on simplices 
being a Reedy category

• specifically: weak equivalences in the model are level-
wise weak equivalences of simplicial sets 

• Dedekind cubes are not Reedy...
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Our New Goal

• Find a setting that...

1. is cubical set valued presheaves of a Reedy category

2. interprets the axioms from our internal language

3. allows for the LOPS construction of universes
• tiny interval
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What are Reedy 
Categories?

• The Idea: Categories permitting inductive constructions of 
presheaves and their morphisms (akin to cell complexes)

• (informal/incomplete) Definition: A generalized Reedy 
category is a category C along with a degree function      
δ : ob C → ℕ such that every morphism (that isn't an iso) 
factors through an object of strictly smaller degree
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• Free Cartesian category on an interval generated by:

• face maps (+)

• diagonals (+)

• degeneracies (-) 

• connections (-)
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The Image Closure

• The Idea: formally add image objects for every morphism

• The Construction: Given a small Category C, the image 
closure Im(C) is the full subcategory of [Cop , Set] 
containing, for each morphism f in C, the coimage of f.  

• Useful Lemma: We can build a topology Jim (the image 
covering) on Im(C) such that [Cop , Set] ≅ Sh(Im(C), Jim).
• Inspired by Kapulkin and Voevodsky
• The Comparison Lemma: [SGA 4, The Elephant] 
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The Prism Category
• Definition: The prism category is the image closure of the 

Dedekind cube category.  

• Lemma (with Christian Sattler): The prism category is 
equivalent to the full subcategory of simplicial sets 
containing subobjects of the Dedekind cubes (Γ , φ) 
generated by the following formulae:

• ⊤ : true

• x ≤ y : the equalizer of the degeneracy map x and 

connection x ∧ y 

• φ ∧ ψ : the pullback of the subobjects (Γ, φ) and (Γ, ψ)

• φ ∨ ψ : the pushout of the pullback for (Γ, φ ∧ ψ)
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The Prism Category

• The Prism category

• is a finite product category...

• ...and thus the Yoneda embedding of its interval is 
tiny...
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Prisms are Reedy
• Theorem: The prism category is a generalized Reedy 

category. 
• The down maps are those that are regular epis in the 

presheaf category
• The up maps are the monos  
• The Reedy factorization is the image factorization

• Corollary: The opposite of the prism category is also 
generalized Reedy

• Question: For which categories C is Im(C) Reedy?
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Model Category One: 
Prismatic Cubical Sets

• Reedy model structure on [Prismop, [Cubeop, Set]], starting 
with model structure on Cartesian cubes [Sattler, Awodey]

• The lemma missing from the bicubical internal language 
now is provable in the same way as in bisimplicial sets.  

• As our internal language axioms interpret into this model, 
we get a model with directed univalence!  

• Can we make this even more cubical? 
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Model Category Two: 
Bicubical Sets

• Sheafification gives us an adjunction between prismatic 
cubical sets and bicubical sets

• We can transfer the model structure along the adjunction to 
bicubical sets
• Left Induced Model Structure: [Hess-Kedziorek-Riehl-

Shipley, Garner-Kedziorek-Riehl]
• Path Object Argument: [Quillen] 

• Our internal language axioms still interpret after the transfer

• The lemma that finished directed univalence is still true after 
the transfer


