A Model of Type Theory with Directed Univalence in Bicubical Sets

Matthew Weaver and Dan Licata

Princeton University Wesleyan University

HoTT. August 14, 2019

 Riehl-Shulman defines a type theory for ∞-categories with a model bisimplicial sets

- Riehl-Shulman defines a type theory for ∞-categories with a model bisimplicial sets
 - 1. Begin with HoTT

- Riehl-Shulman defines a type theory for ∞-categories with a model bisimplicial sets
 - 1. Begin with HoTT
 - 2. Add Hom-types

- Riehl-Shulman defines a type theory for ∞-categories with a model bisimplicial sets
 - 1. Begin with HoTT
 - 2. Add Hom-types
 - ∞-categories (Segal types) and univalent ∞-category (Rezk types) given internally as predicates on types

- Riehl-Shulman defines a type theory for ∞-categories with a model bisimplicial sets
 - 1. Begin with HoTT
 - 2. Add Hom-types
 - ∞-categories (Segal types) and univalent ∞-category (Rezk types) given internally as predicates on types
 - 4. Predicate isCov(B : A \rightarrow U) for covariant discrete fibrations

- Riehl-Shulman defines a type theory for ∞-categories with a model bisimplicial sets
 - 1. Begin with HoTT
 - 2. Add Hom-types
 - ∞-categories (Segal types) and univalent ∞-category (Rezk types) given internally as predicates on types
 - 4. Predicate isCov(B : A \rightarrow U) for covariant discrete fibrations
 - Cavallo, Riehl and Sattler have also (externally) defined the universe of covariant fibrations (the ∞-category of spaces and continuous functions) and shown *Directed Univalence:* Hom_{UCov} A B ≃ A → B

• Can we make this constructive?

- Can we make this constructive?
 - 1. Begin with Cubical Type Theory

- Can we make this constructive?
 - 1. Begin with Cubical Type Theory
 - 2. Use a second cubical interval to define Hom-types

- Can we make this constructive?
 - 1. Begin with Cubical Type Theory
 - 2. Use a second cubical interval to define Hom-types
 - 3. Use LOPS to define universe of covariant fibrations and construct directed univalence internally...

- Can we make this constructive?
 - 1. Begin with Cubical Type Theory
 - 2. Use a second cubical interval to define Hom-types
 - 3. Use LOPS to define universe of covariant fibrations and construct directed univalence internally...
 - ...unfortunately, directed univalence is a bit trickier than expected

Let's see how far the techniques from cubical type theory get us!

Cubical Type Theory

(in the style of Orton-Pitts)

Cubical Type Theory

(in the style of Orton-Pitts)

1. Begin with MLTT

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: $\mathbb I$

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: $\mathbb I$
- 3. Specify gen. cofibrations for ${\ensuremath{\mathbb I}}$

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: $\mathbb I$
- 3. Specify gen. cofibrations for ${\ensuremath{\mathbb I}}$

4. Define filling problem for Kan fibrations

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: $\mathbb I$
- 3. Specify gen. cofibrations for ${\ensuremath{\mathbb I}}$

4. Define filling problem for Kan fibrations

5. Define universe of Kan fibrations

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: $\mathbb I$
- 3. Specify gen. cofibrations for ${\ensuremath{\mathbb I}}$

4. Define filling problem for Kan fibrations

5. Define universe of Kan fibrations

6. Construct univalence

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: $\mathbb I$
- 3. Specify gen. cofibrations for ${\ensuremath{\mathbb I}}$

4. Define filling problem for Kan fibrations

5. Define universe of Kan fibrations

6. Construct univalence

Directed Type Theory

1. Begin with Cubical Type Theory

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: $\mathbb I$
- 3. Specify gen. cofibrations for ${\ensuremath{\mathbb I}}$

4. Define filling problem for Kan fibrations

5. Define universe of Kan fibrations

6. Construct univalence

- 1. Begin with Cubical Type Theory
- 2. Add an interval: \mathbb{Z}

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: $\mathbb I$
- 3. Specify gen. cofibrations for ${\ensuremath{\mathbb I}}$

4. Define filling problem for Kan fibrations

5. Define universe of Kan fibrations

6. Construct univalence

- 1. Begin with Cubical Type Theory
- 2. Add an interval: \mathbb{Z}
- 3. Specify gen. cofibrations for $\ensuremath{\mathbb{Z}}$

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: $\mathbb I$
- 3. Specify gen. cofibrations for ${\ensuremath{\mathbb I}}$

4. Define filling problem for Kan fibrations

5. Define universe of Kan fibrations

6. Construct univalence

Directed Type Theory

1. Begin with Cubical Type Theory

2. Add an interval: \mathbb{Z}

3. Specify gen. cofibrations for $\ensuremath{\mathbb{Z}}$

4. Define filling problem for covariant fibrations

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: $\mathbb I$
- 3. Specify gen. cofibrations for ${\ensuremath{\mathbb I}}$

4. Define filling problem for Kan fibrations

5. Define universe of Kan fibrations

6. Construct univalence

Directed Type Theory

1. Begin with Cubical Type Theory

2. Add an interval: \mathbb{Z}

3. Specify gen. cofibrations for $\ensuremath{\mathbb{Z}}$

4. Define filling problem for covariant fibrations

5. Define universe of covariant fibrations

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: $\mathbb I$
- 3. Specify gen. cofibrations for ${\ensuremath{\mathbb I}}$

4. Define filling problem for Kan fibrations

5. Define universe of Kan fibrations

6. Construct univalence

Directed Type Theory

1. Begin with Cubical Type Theory

2. Add an interval: \mathbb{Z}

3. Specify gen. cofibrations for $\ensuremath{\mathbb{Z}}$

4. Define filling problem for covariant fibrations

5. Define universe of covariant fibrations

6. Construct directed univalence

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: ${\ensuremath{\mathbb I}}$
- 3. Specify gen. cofibrations for ${\ensuremath{\mathbb I}}$

4. Define filling problem for Kan fibrations

5. Define universe of Kan fibrations

6. Construct univalence

Directed Type Theory

1. Begin with Cubical Type Theory

2. Add an interval: \mathbb{Z}

3. Specify gen. cofibrations for $\ensuremath{\mathbb{Z}}$

4. Define filling problem for covariant fibrations

5. Define universe of covariant fibrations

6. Construct directed univalence

Cubical Type Theory

(in the style of Orton-Pitts)

2. Add an interval: \mathbb{I}

Directed Type Theory

2. Add an interval: $\ensuremath{\mathbb{Z}}$

Cubical Type Theory

(in the style of Orton-Pitts)

2. Add an interval: \mathbb{I}

I : Type

Directed Type Theory

2. Add an interval: $\ensuremath{\mathbb{Z}}$

Cubical Type Theory

(in the style of Orton-Pitts)

2. Add an interval: ${\mathbb I}$

I∷ Type

 $\mathbb{O}_{\mathbb{I}}$: \mathbb{I}

1∎:∎

Directed Type Theory

2. Add an interval: $\ensuremath{\mathbb{Z}}$

Cubical Type Theory

(in the style of Orton-Pitts)

2. Add an interval: ${\mathbb I}$

 ${\mathbb I}$: Type

 $\mathbb{O}_{\mathbb{I}}$: \mathbb{I}

 $\mathbb{1}_{\mathbb{I}}$: \mathbb{I}

Directed Type Theory

2. Add an interval: \mathbb{Z}

i.e. generators for the Cartesian cubes

Cubical Type Theory

(in the style of Orton-Pitts)

I : Туре

 $\mathbb{O}_{\mathbb{I}}$: \mathbb{I}

 $\mathbb{1}_{\mathbb{I}}$: \mathbb{I}

Directed Type Theory

2. Add an interval: $\ensuremath{\mathbb{Z}}$

ℤ : Type

i.e. generators for the Cartesian cubes

Directed Type Theory

 $1_2:2$

Directed Type Theory

2. Add an interval: \mathbb{Z}

<:2 y:2	x:2 y:2
x ∧ y : 2	x ∨ y : 2

and equations...

i.e. generators for the Cartesian cubes

i.e. generators for the Dedekind cubes

Why Dedekind cubes instead of Cartesian?
 x ≤ y := x = x ∧ y

- Why Dedekind cubes instead of Cartesian?
 x ≤ y := x = x ∧ y
- We also add the following axioms:

- Why Dedekind cubes instead of Cartesian?
 x ≤ y := x = x ∧ y
- We also add the following axioms:
 - $p : \mathbb{I} \to \mathbb{Z}$ is constant ($\Pi x y : \mathbb{I}, p x = p y$)

- Why Dedekind cubes instead of Cartesian?
 x ≤ y := x = x ∧ y
- We also add the following axioms:
 - $p : \mathbb{I} \to \mathbb{Z}$ is constant ($\Pi x y : \mathbb{I}, p x = p y$)
 - $p : \mathbb{Z} \to \mathbb{Z}$ is monotone ($\Pi x y : \mathbb{Z}$, if $x \le y$ then $p x \le p y$)

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: $\mathbb I$
- 3. Specify gen. cofibrations for ${\ensuremath{\mathbb I}}$

4. Define filling problem for Kan fibrations

5. Define universe of Kan fibrations

6. Construct univalence

Directed Type Theory

1. Begin with Cubical Type Theory

2. Add an interval: \mathbb{Z}

3. Specify gen. cofibrations for $\ensuremath{\mathbb{Z}}$

4. Define filling problem for covariant fibrations

5. Define universe of covariant fibrations

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: $\mathbb I$

3. Specify gen. cofibrations for $\ensuremath{\mathbb{I}}$

4. Define filling problem for Kan fibrations

- 5. Define universe of Kan fibrations
- 6. Construct univalence

Directed Type Theory

1. Begin with Cubical Type Theory

2. Add an interval: \mathbb{Z}

3. Specify gen. cofibrations for $\ensuremath{\mathbb{Z}}$

4. Define filling problem for covariant fibrations

5. Define universe of covariant fibrations

Cubical Type Theory (in the style of Orton-Pitts)

3. Specify gen. cofibrations for ${\ensuremath{\mathbb I}}$

Directed Type Theory

Cubical Type Theory (in the style of Orton-Pitts)

3. Specify gen. cofibrations for ${\ensuremath{\mathbb I}}$

isCof : $\Omega \rightarrow \Omega$

Cof := $\Sigma \varphi$: Ω . isCof φ

Directed Type Theory

Cubical Type Theory (in the style of Orton-Pitts)

3. Specify gen. cofibrations for ${\ensuremath{\mathbb I}}$

isCof : $\Omega \rightarrow \Omega$

Cof := $\Sigma \varphi$: Ω . isCof φ

Cof closed under _^_, _v_, \perp , \top

Directed Type Theory

Cubical Type Theory (in the style of Orton-Pitts)

3. Specify gen. cofibrations for ${\ensuremath{\mathbb I}}$

isCof : $\Omega \rightarrow \Omega$

Cof := $\Sigma \varphi$: Ω . isCof φ

Cof closed under _^_, _v_, \perp , \top

$$\varphi : \mathbb{I} \to Cof$$

_ : isCof ($\Pi x : \mathbb{I} \cdot \varphi x$)

Directed Type Theory

Cubical Type Theory (in the style of Orton-Pitts)

3. Specify gen. cofibrations for ${\ensuremath{\mathbb I}}$

isCof : $\Omega \rightarrow \Omega$

Cof := $\Sigma \varphi$: Ω . isCof φ

Cof closed under _^_, _v_, \perp , \top

$$\varphi : \mathbb{I} \to Cof$$

_ : isCof ($\Pi x : \mathbb{I} \cdot \varphi x$)

Directed Type Theory

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: $\mathbb I$
- 3. Specify gen. cofibrations for ${\ensuremath{\mathbb I}}$

4. Define filling problem for Kan fibrations

5. Define universe of Kan fibrations

6. Construct univalence

Directed Type Theory

1. Begin with Cubical Type Theory

2. Add an interval: \mathbb{Z}

3. Specify gen. cofibrations for $\ensuremath{\mathbb{Z}}$

4. Define filling problem for covariant fibrations

5. Define universe of covariant fibrations

Cubical Type Theory (in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: $\mathbb I$
- 3. Specify gen. cofibrations for ${\ensuremath{\mathbb I}}$

4. Define filling problem for Kan fibrations

- 5. Define universe of Kan fibrations
- 6. Construct univalence

Directed Type Theory

- 1. Begin with Cubical Type Theory
- 2. Add an interval: \mathbb{Z}
- 3. Specify gen. cofibrations for $\ensuremath{\mathbb{Z}}$

4. Define filling problem for covariant fibrations

5. Define universe of covariant fibrations

Cubical Type Theory (in the style of Orton-Pitts)

4. Define filling problem for Kan fibrations

Directed Type Theory

4. Define filling problem for covariant fibrations

Cubical Type Theory

(in the style of Orton-Pitts)

4. Define filling problem for Kan fibrations

```
hasCom : (\mathbb{I} \to U) \to U
hasCom A = \Pi i j : \mathbb{I}.
\Pi a : Cof.
\Pi t : (\Pi x : \mathbb{I} . a \to A x)
\Pi b : (A i)[a \mapsto t i].
(A j)[a \mapsto t j; i = j \mapsto b]
```

```
relCom : (A : U) → (A → U) → U
relCom A B = Π p : \mathbb{I} \rightarrow A.
hasCom (B \circ p)
```

Directed Type Theory

4. Define filling problem for covariant fibrations

Cubical Type Theory (in the style of Orton-Pitts)

4. Define filling problem for Kan fibrations

```
hasCom : (\mathbb{I} \to U) \to U
hasCom A = \Pi i j : \mathbb{I}.
\Pi a : Cof.
\Pi t : (\Pi x : \mathbb{I} . a \to A x)
\Pi b : (A i)[a \mapsto t i].
(A j)[a \mapsto t j; i = j \mapsto b]
```

```
relCom : (A : U) → (A → U) → U
relCom A B = Π p : \mathbb{I} \rightarrow A.
hasCom (B \circ p)
```

Directed Type Theory

```
4. Define filling problem for covariant fibrations
```

```
hasCov : (2 \rightarrow U) \rightarrow U
hasCov A = \Pi \alpha : Cof .
\Pi t : (\Pi x : 2 \cdot \alpha \rightarrow A x)
\Pi b : (A \oplus_2)[\alpha \mapsto t \oplus_2] .
(A \mathbb{1}_2)[\alpha \mapsto t \mathbb{1}_2]
```

```
relCov : (A : U) → (A → U) → U
relCov A B = \Pi p : 2 \rightarrow A .
hasCov (B _{\circ} p)
```

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: $\mathbb I$
- 3. Specify gen. cofibrations for ${\ensuremath{\mathbb I}}$

4. Define filling problem for Kan fibrations

5. Define universe of Kan fibrations

6. Construct univalence

Directed Type Theory

1. Begin with Cubical Type Theory

2. Add an interval: \mathbb{Z}

3. Specify gen. cofibrations for $\ensuremath{\mathbb{Z}}$

4. Define filling problem for covariant fibrations

5. Define universe of covariant fibrations

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: $\mathbb I$
- 3. Specify gen. cofibrations for ${\ensuremath{\mathbb I}}$

4. Define filling problem for Kan fibrations

5. Define universe of Kan fibrations

6. Construct univalence

Directed Type Theory

- 1. Begin with Cubical Type Theory
- 2. Add an interval: \mathbb{Z}
- 3. Specify gen. cofibrations for $\ensuremath{\mathbb{Z}}$

4. Define filling problem for covariant fibrations

5. Define universe of covariant fibrations

Cubical Type Theory

(in the style of Orton-Pitts)

5. Define universe of Kan fibrations **Directed Type Theory**

5. Define universe of covariant fibrations

Cubical Type Theory

(in the style of Orton-Pitts)

5. Define universe of Kan fibrations

• U_{Kan} given by LOPS construction for relCom

Directed Type Theory

5. Define universe of covariant fibrations

Cubical Type Theory

(in the style of Orton-Pitts)

5. Define universe of Kan fibrations

• U_{Kan} given by LOPS construction for relCom

Directed Type Theory

5. Define universe of covariant fibrations

 U_{Cov} given by LOPS construction for relCov.
 Lemma: relCov is in UKan

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: $\mathbb I$
- 3. Specify gen. cofibrations for ${\ensuremath{\mathbb I}}$

4. Define filling problem for Kan fibrations

5. Define universe of Kan fibrations

6. Construct univalence

Directed Type Theory

1. Begin with Cubical Type Theory

2. Add an interval: \mathbb{Z}

3. Specify gen. cofibrations for $\ensuremath{\mathbb{Z}}$

4. Define filling problem for covariant fibrations

5. Define universe of covariant fibrations

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: $\mathbb I$
- 3. Specify gen. cofibrations for ${\ensuremath{\mathbb I}}$

4. Define filling problem for Kan fibrations

5. Define universe of Kan fibrations

6. Construct univalence

Directed Type Theory

1. Begin with Cubical Type Theory

2. Add an interval: \mathbb{Z}

3. Specify gen. cofibrations for $\ensuremath{\mathbb{Z}}$

4. Define filling problem for covariant fibrations

5. Define universe of covariant fibrations

Cubical Type Theory

(in the style of Orton-Pitts)

6. Construct univalence

Directed Type Theory

Cubical Type Theory

(in the style of Orton-Pitts)

6. Construct univalence

• Key Idea: Glue type to attach equivalences to path structure

Directed Type Theory

Cubical Type Theory

(in the style of Orton-Pitts)

6. Construct univalence

• Key Idea: Glue type to attach equivalences to path structure

Directed Type Theory

6. Construct directed univalence

 Key Idea: Glue type to attach functions to morphism structure

 $a \vdash Glue [a \mapsto (T, f)] B \equiv T$

 $\alpha \vdash Glue [\alpha \mapsto (T, f)] B = T$

Defining Directed Univalence

dua i A B f := Glue [i = 0 \mapsto (A , f : A \rightarrow B) , i = 1 \mapsto (B , id)] B : Hom_U A B

- dua is Kan + covariant, and thus lands in U_{Cov}

- dua is Kan + covariant, and thus lands in U_{Cov}
- U_{Cov} itself is Kan

- dua is Kan + covariant, and thus lands in U_{Cov}
- U_{Cov} itself is Kan
- Path univalence holds in U_{Cov}

- dua is Kan + covariant, and thus lands in U_{Cov}
- U_{Cov} itself is Kan
- Path univalence holds in U_{Cov}
- These allow us to define the following for U_{Cov}:

- dua is Kan + covariant, and thus lands in U_{Cov}
- U_{Cov} itself is Kan
- Path univalence holds in U_{Cov}
- These allow us to define the following for U_{Cov}:
 - dcoe : (Hom A B) \rightarrow (A \rightarrow B)

- dua is Kan + covariant, and thus lands in U_{Cov}
- U_{Cov} itself is Kan
- Path univalence holds in U_{Cov}
- These allow us to define the following for U_{Cov} :
 - dcoe : (Hom A B) \rightarrow (A \rightarrow B)
 - dua : $(A \rightarrow B) \rightarrow Hom A B$

- dua is Kan + covariant, and thus lands in U_{Cov}
- U_{Cov} itself is Kan
- Path univalence holds in U_{Cov}
- These allow us to define the following for U_{Cov}:
 - dcoe : (Hom A B) \rightarrow (A \rightarrow B)
 - dua : $(A \rightarrow B) \rightarrow Hom A B$
 - dua_{β} : Π f : A \rightarrow B . Path f (dcoe (dua f))

- dua is Kan + covariant, and thus lands in U_{Cov}
- U_{Cov} itself is Kan
- Path univalence holds in U_{Cov}
- These allow us to define the following for U_{Cov}:
 - dcoe : (Hom A B) \rightarrow (A \rightarrow B)
 - dua : $(A \rightarrow B) \rightarrow Hom A B$
 - dua_{β} : Π f : A \rightarrow B . Path f (dcoe (dua f))
 - dua_{nfun}: Πp : Hom A B. Πi : \mathbb{Z} . $p i \rightarrow$ (dua (dcoe p)) i

• We're thus left with the following picture:

• We're thus left with the following picture:

• We're thus left with the following picture:

• To complete directed univalence, we need $dua_{\eta fun}^{-1}$

• We're thus left with the following picture:

- To complete directed univalence, we need $dua_{\eta fun}^{-1}$
- Agda: <u>https://github.com/dlicata335/cart-cube</u>

• Cavallo, Riehl and Sattler's proof of directed univalence contains the precise lemma we need to finish.

- Cavallo, Riehl and Sattler's proof of directed univalence contains the precise lemma we need to finish.
- New goal: use any techniques available to confirm directed univalence holds at all in a cubical setting.

- Cavallo, Riehl and Sattler's proof of directed univalence contains the precise lemma we need to finish.
- New goal: use any techniques available to confirm directed univalence holds at all in a cubical setting.
- Note: We would love any/all feedback on the math that follows.

• The proof in the bisimplicial model relies on simplices being a Reedy category

- The proof in the bisimplicial model relies on simplices being a Reedy category
 - specifically: weak equivalences in the model are levelwise weak equivalences of simplicial sets

- The proof in the bisimplicial model relies on simplices being a Reedy category
 - specifically: weak equivalences in the model are levelwise weak equivalences of simplicial sets
- Dedekind cubes are not Reedy...

• Find a setting that...

- Find a setting that...
 - 1. is cubical set valued presheaves of a Reedy category

- Find a setting that...
 - 1. is cubical set valued presheaves of a Reedy category
 - 2. interprets the axioms from our internal language

- Find a setting that...
 - 1. is cubical set valued presheaves of a Reedy category
 - 2. interprets the axioms from our internal language
 - 3. allows for the LOPS construction of universes

- Find a setting that...
 - 1. is cubical set valued presheaves of a Reedy category
 - 2. interprets the axioms from our internal language
 - 3. allows for the LOPS construction of universes
 - tiny interval

What are Reedy Categories?

What are Reedy Categories?

• The Idea: Categories permitting inductive constructions of presheaves and their morphisms (akin to cell complexes)

What are Reedy Categories?

- The Idea: Categories permitting inductive constructions of presheaves and their morphisms (akin to cell complexes)
- (informal/incomplete) Definition: A generalized Reedy category is a category C along with a degree function
 δ : ob C → N such that every morphism (that isn't an iso) factors through an object of strictly smaller degree

• Free Cartesian category on an interval generated by:

- Free Cartesian category on an interval generated by:
 - face maps (+)

- Free Cartesian category on an interval generated by:
 - face maps (+)
 - diagonals (+)
- Free Cartesian category on an interval generated by:
 - face maps (+)
 - diagonals (+)
 - degeneracies (-)

- Free Cartesian category on an interval generated by:
 - face maps (+)
 - diagonals (+)
 - degeneracies (-)
 - connections (-)

$(x, y) \mapsto (x, y, y) \mapsto (x \land y, y)$

$(\underline{x, y}) \mapsto (x, y, y) \mapsto (x \land y, y)$

$(x, y) \mapsto (\underline{x, y, y}) \mapsto (x \land y, y)$

up by a diagonal

$(x, y) \mapsto (x, y, y) \mapsto (\underline{x \land y, y})$

down by a connection

 $(x, y) \mapsto (x \land y, y)$

У

Х

• The Idea: formally add image objects for every morphism

- The Idea: formally add image objects for every morphism
- The Construction: Given a small Category C, the *image* closure Im(C) is the full subcategory of [C^{op}, Set] containing, for each morphism f in C, the coimage of f.

- The Idea: formally add image objects for every morphism
- The Construction: Given a small Category C, the *image* closure Im(C) is the full subcategory of [C^{op}, Set] containing, for each morphism f in C, the coimage of f.
- Useful Lemma: We can build a topology J_{im} (the *image covering*) on Im(C) such that $[C^{op}, Set] \cong Sh(Im(C), J_{im})$.

- The Idea: formally add image objects for every morphism
- The Construction: Given a small Category C, the *image* closure Im(C) is the full subcategory of [C^{op}, Set] containing, for each morphism f in C, the coimage of f.
- Useful Lemma: We can build a topology J_{im} (the *image covering*) on Im(C) such that $[C^{op}, Set] \cong Sh(Im(C), J_{im})$.
 - Inspired by Kapulkin and Voevodsky

- The Idea: formally add image objects for every morphism
- The Construction: Given a small Category C, the *image* closure Im(C) is the full subcategory of [C^{op}, Set] containing, for each morphism f in C, the coimage of f.
- Useful Lemma: We can build a topology J_{im} (the *image* covering) on Im(C) such that [C^{op}, Set] ≅ Sh(Im(C), J_{im}).
 - Inspired by Kapulkin and Voevodsky
 - The Comparison Lemma: [SGA 4, The Elephant]

• Definition: The *prism category* is the image closure of the Dedekind cube category.

- Definition: The *prism category* is the image closure of the Dedekind cube category.
- Lemma (with Christian Sattler): The prism category is equivalent to the full subcategory of simplicial sets containing subobjects of the Dedekind cubes (Γ, φ) generated by the following formulae:
 - ⊤ : true
 - x ≤ y : the equalizer of the degeneracy map x and connection x ∧ y
 - $\phi \land \psi$: the pullback of the subobjects (Γ , ϕ) and (Γ , ψ)
 - $\phi \lor \psi$: the pushout of the pullback for ($\Gamma, \phi \land \psi$)

• The Prism category

- The Prism category
 - is a finite product category...

- The Prism category
 - is a finite product category...
 - ...and thus the Yoneda embedding of its interval is tiny...

• Theorem: The prism category is a generalized Reedy category.

- Theorem: The prism category is a generalized Reedy category.
 - The down maps are those that are regular epis in the presheaf category

- Theorem: The prism category is a generalized Reedy category.
 - The down maps are those that are regular epis in the presheaf category
 - The up maps are the monos

- Theorem: The prism category is a generalized Reedy category.
 - The down maps are those that are regular epis in the presheaf category
 - The up maps are the monos
 - The Reedy factorization is the image factorization

- Theorem: The prism category is a generalized Reedy category.
 - The down maps are those that are regular epis in the presheaf category
 - The up maps are the monos
 - The Reedy factorization is the image factorization
- Corollary: The opposite of the prism category is also generalized Reedy

- Theorem: The prism category is a generalized Reedy category.
 - The down maps are those that are regular epis in the presheaf category
 - The up maps are the monos
 - The Reedy factorization is the image factorization
- Corollary: The opposite of the prism category is also generalized Reedy
- Question: For which categories C is Im(C) Reedy?

 Reedy model structure on [Prism^{op}, [Cube^{op}, Set]], starting with model structure on Cartesian cubes [Sattler, Awodey]

- Reedy model structure on [Prism^{op}, [Cube^{op}, Set]], starting with model structure on Cartesian cubes [Sattler, Awodey]
- The lemma missing from the bicubical internal language now is provable in the same way as in bisimplicial sets.

- Reedy model structure on [Prism^{op}, [Cube^{op}, Set]], starting with model structure on Cartesian cubes [Sattler, Awodey]
- The lemma missing from the bicubical internal language now is provable in the same way as in bisimplicial sets.
- As our internal language axioms interpret into this model, we get a model with directed univalence!

- Reedy model structure on [Prism^{op}, [Cube^{op}, Set]], starting with model structure on Cartesian cubes [Sattler, Awodey]
- The lemma missing from the bicubical internal language now is provable in the same way as in bisimplicial sets.
- As our internal language axioms interpret into this model, we get a model with directed univalence!
- Can we make this even more cubical?
Sheafification gives us an adjunction between prismatic cubical sets and bicubical sets

- Sheafification gives us an adjunction between prismatic cubical sets and bicubical sets
- We can transfer the model structure along the adjunction to bicubical sets

- Sheafification gives us an adjunction between prismatic cubical sets and bicubical sets
- We can transfer the model structure along the adjunction to bicubical sets
 - Left Induced Model Structure: [Hess-Kedziorek-Riehl-Shipley, Garner-Kedziorek-Riehl]

- Sheafification gives us an adjunction between prismatic cubical sets and bicubical sets
- We can transfer the model structure along the adjunction to bicubical sets
 - Left Induced Model Structure: [Hess-Kedziorek-Riehl-Shipley, Garner-Kedziorek-Riehl]
 - Path Object Argument: [Quillen]

- Sheafification gives us an adjunction between prismatic cubical sets and bicubical sets
- We can transfer the model structure along the adjunction to bicubical sets
 - Left Induced Model Structure: [Hess-Kedziorek-Riehl-Shipley, Garner-Kedziorek-Riehl]
 - Path Object Argument: [Quillen]
- Our internal language axioms still interpret after the transfer

- Sheafification gives us an adjunction between prismatic cubical sets and bicubical sets
- We can transfer the model structure along the adjunction to bicubical sets
 - Left Induced Model Structure: [Hess-Kedziorek-Riehl-Shipley, Garner-Kedziorek-Riehl]
 - Path Object Argument: [Quillen]
- Our internal language axioms still interpret after the transfer
- The lemma that finished directed univalence is still true after the transfer