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Foundations: Synthetic (∞, 1)-categories à la Riehl–Shulman I

In order to develop synthetic higher category theory, Riehl and Shulman introduced a
Simplicial Type Theory (STT) in [RS17]: MLTT with additional layers of shapes, allowing for
defining synthetic (∞, 1)-categories as complete Segal/Rezk types.

As a main feature, STT postulates extension types (after Lumsdaine–Shulman), i.e. for shape
inclusions Φ� Ψ, families A : Ψ→ U , and partial sections a :

∏
t:Φ

A(t) there exists the type of

sections 〈∏
t:Ψ

A(t)

∣∣∣∣∣
Φ

a

〉
,


Φ A

Ψ

a

ā


judgmentally extending a.
Example & Definition: For a type A and terms x, y : A, define the hom-type

homA(x, y) :=
〈

∆1 → A
∣∣∂∆1

[x,y]

〉
.



Foundations: Synthetic (∞, 1)-categories à la Riehl–Shulman II

Definitions from [RS17]:

• A type A is a Segal type if (∆2 → A)
'−→ (Λ2

1 → A) (Joyal).

• A Segal type A is a Rezk type if idtoisoA :
∏
x,y:A

IdA(x, y)
'−→ isoA(x, y).

• A type A is a discrete type if idtorarrA :
∏
x,y:A

IdA(x, y)
'−→ homA(x, y).

These notions coincide with their classical analogues in the intended semantics in (a model
structure representing) the∞-topos of simplicial spaces, PSh∞( ).

Goal: Extend the∞-category theory developed in [RS17]. Namely, add universes, other
notions of fibrations, and the traditional Yoneda embedding yA : A→ (Aop → Space).

Besides Riehl–Shulman’s work, we heavily rely on Licata–Shulman–Riley’s modal framework,
cf. Dan’s recent talk! For related work in bicubical sets, cf. Matt’s upcoming talk!



Outline

1 Introduction

2 Model in simplicial spaces (inside cubical spaces)

3 Modalities from shape operations

4 Right adjoint types

5 Perspectives



Simplicial spaces inside cubical space

The category sSet of simplicial sets is the category of presheaves on the category of finite
ordinals with monotone maps as morphisms.

The category cSet of cubical sets is the category of presheaves on the category of powers of
the ordinal 2 with monotone maps as morphisms.

We want to define universes internally which, due to [LOPS18] becomes possible using
tinyness of the cubical interval 21.
Simplicial sets form an essential subtopos of cubical sets.

This has been discussed by Sattler [Sat18], Kapulkin–Voevodsky [KV18], and Streicher-W
[SW18].

One can show that this lifts to the level of∞-toposes. Since this constitutes a topological
modality sheafification becomes an internal operation ([RSS17]) which by the theory of
compact types treated in [Rij18] can be expressed in rather elementary terms.



Universes of simplicial types

Start with a strict universe in cubical spaces [Shu19]. From this we derive:
• Simp: universe of simplicial types since we have a topological modality [RSS17]
• Cat: universe of (complete) Segal types due to our new notion of cocartesian family
• Space: universe of discrete types due to Riehl–Shulman’s notion of covariant family
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Modalities: [ and op

However, the universes constructed this way are classifying only for the cohesively discrete
(crisp) types.

We also want to have opposite categories Aop.

Hence, we introduce the modalities [ and op as in the framework of Licata–Shulman–Riley to
this theory.

We have a mode theory with c (cohesive/cubical) and x : c ` f(x) : c (flat) as well as
x : c ` o(x) : c (representing the opposite cubical type/category) with equations

f(f(x)) = f(x), o(f(x)) = f(x), o(o(x)) = x, f(o(x)) = f(x),

and
f(x× y) = f(x)× f(y), o(x× y) = o(x)× o(y).



Operations on topes and shapes I
Problem: In order to get the Yoneda embedding, we need to get homA(a, b) for a : Aop and
b : A (for A :: Cat).

Solution: Instead of ordinary hom-types construct a covariant fibration Tw(A)→ Aop ×A and
obtain the “hom type” as the fiber. Here, Tw(A) is the twisted arrow type (traditionally, the
category of elements of the uncurried Yoneda embedding) with 0-simplices

a
f // b

and 1-simplices:

a
f // b

ϕ1

��
c

ϕ0

OO

g
// d

Classically, the twisted arrow space is defined by reindexing along the functor
ε := op ∗ id : → . This does not yield an extension type in Riehl–Shulman’s sense.



Operations on topes and shapes II

We get the twisted arrow type using right adjoint types (U -types) in the sense of [LRS19].

First, we axiomatize operations on topes and shapes according to

f : Ξ→ Ξ′ Ξ|Φ ` Φ′f

Ξ|Φ f−→ Ξ′|Φ′
and

F oper {Ξ | ϕ} shape

F{Ξ | ϕ} shape
.

Defining opposites and join for topes, we can then lift these to the level of shapes as

{I | ϕ} ∗ {J | ψ} := {I + 1 + J | ϕ ∗ ψ}, {I | ϕ}op = {I | ϕop}.

From this, we can define ε := op ∗ id for shapes. Unary operations induce modalities on the
base category, hence we can define the twisted arrow types as U -types w.r.t. to ε.



Fibrational framework à Licata–Shulman–Riley

After the work of Licata–Shulman–Riley consider a type theory fibered over a type theory of
modes:

Given a shape Φ and an arbitrary mode context γ, we get a universe γ ` cΦ of small types over
Φ.

For any small type γ ` n : cΦ there is a small type γ ` T (Φ)(n) of contexts over n, a
comprehension object in the sense of [LRS19].

Endomorphisms f : → give rise to mode morphisms n : cΦ ` f n : cfΦ.



Some rules of the type theory of modes I

γ `

· `
γ ` γ ` n : cΦ

γ, x : T (Φ)(n) `

γ ` a

γ `
γ ` cΦ

(Φ shape)
γ ` n : cΦ

γ ` T (Φ)(n)

γ ` n : a

γ `
γ ` ∅ : cΦ

γ ` n : cΦ γ ` m : T (Φ)(n)

γ ` n.m : cΦ

γ ` n : cΦ

γ ` 1 : T (Φ)(n)

γ ` n : cΦ f op1

γ ` f(n) : cfΦ

γ ` · f op0

γ ` f0 : cΦ

γ ` n : cΦ γ ` m : T (Φ)(n)

γ ` f(m) : T (fΦ)(fn)
f(n.m) ≡ f(n). f(m)



Some rules of the type theory of modes II

γ ` n⇒ m : a

γ ` n : cΦ

γ ` 1⇒ f(1) : T (fΦ)(fn)



Some rules of the type theory–on–top
Γ `γ

· ·

Γ γ`T (Φ)(n) A γ ` n : cΦ

Γ, x : A γ,x:T (Φ)(n)

Γ γ`a A

Γ γ`a A1 Γ γ`a A2

Γ γ`a A1 +A2

Γ γ`a A1 Γ γ`a A2

Γ γ`a A1 ×A2

Γ γ`n:a N : A

Γ γ`T (Φ)(n) A γ ` n : cΦ

Γ, x : A γ,x:T (Φ)(n)`x:T (Φ)(n) x : A



Semantics of the fibrational framework I

• Mode contexts γ are (modeled as) toposes (with sufficient homotopical/logical structure).

• Modes–in–context γ ` a are geometric morphisms E → Jγ `K.

• Types–over–modes Γ γ` are objects of Jγ `K.

• Terms–over–mode terms Γ γ`a A are objects of the fibers EJΓK.

E

Jγ`aK

��

JΓ γ`a AK ∈ EJΓK s(JΓ γ`K)
JΓ γ`n:aN :AK

// JΓ γ`a AK

Jγ `K

s=Jγ`n:aK

UU

JΓ γ`K ∈ Jγ `K

• The empty mode context · ` is the terminal topos.



Semantics of the fibrational framework II

• Universes γ ` c are projections

JγK× E
Jγ`cK // JγK

Jγ`∅:cK
ll

with canonical section Jγ ` ∅ : cK = λX. 〈X, 1〉.
• Comprehension objects γ ` T (n) are interpreted by Artin glueing of Jγ ` n : aK:

Jγ, x : T (n) `K //

Jγ`T (n)K
��

E→

cod

��
Jγ `K

Jγ`n:aK
// E

In particular, in our intended model of cubical spaces mode contexts will be of the form cSp/Φ
for a shape Φ.
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Right adjoint types I

• Endomorphisms f : → give rise to adjoint pairs f∗ : cSp/fΦ� cSp/Φ :f!, f! a f∗.
• The functor f! (on the level of modes) corresponds to mode morphisms.

• f∗ gives rise to right adjoint types, aka U -types.

• We get a bijection{
Γ γ`f(k):T (fΦ)(f n) a : A

}
1:1←→

{
Γ γ`k:T (Φ)(n) b : UfA

}
.



Right adjoint types II

Γ γ`T (fΦ)(f n) A γ ` n : cΦ

Γ γ`T (Φ)(n) UfA
U-Form

Γ γ`f(k):T (fΦ)(f n) A γ ` n : cΦ γ ` k : T (Φ)(n)

Γ γ`k:T (Φ)(n) λ
fM : UfA

U-Intro

Γ γ`k:T (Φ)(n) N : UfA γ ` n : cΦ

Γ γ`f(k):T (fΦ)(n) N()f : A
U-Elim

λfN()f ≡ N λfM()f ≡M



Right adjoint types III
One can show that the action of the mode morphism when forming a U -type builds upon the
structure of a dependent right adjoint, cf. [BCM18] et al., 2018:

Assume an operation f : Φ→ Ψ, inducing f! a f∗ : EΦ → EΨ.

For JΓK ∈ JγK and JnK : JγK→ EΦ, consider JAK and JkK as in:

JT (n)K //

��

E→Φ

cod

��
JγK

JkK

DD

JnK
// EΦ

JT (f n)K //

��

E→Ψ

cod

��
JγK

Jf kK

DD

Jf nK
// EΨ

JAK ∈ EΨ/Jf nKJΓK

Then we get a correspondence:

f!(JkKJΓK)

&&

// JAK

��
f!(JnKJΓK)

EΨ

←→ JkKJΓK

$$

// Uf JAK

��

// f∗(JAK)

��
JnKJΓK

ηJnKJΓK
// f∗f!(JnKJΓK)

EΦ



Twisted arrow types I

Externally, the twisted arrow simplicial space is constructed by reindexing along the functor
ε := op ∗ id. Thus, we internalize it by considering the U -type w.r.t. the endofunctor ε. Note that
there are two natural transformations η0 : op⇒ ε⇐ id : η1 in particular, for any shape Φ giving
rise to a diagram:

/Φ
ε! //

op! $$

/εΦ

/ op Φ

η0Φ

::



Twisted arrow types II

Γ γ`T (εΦ)(ε n) A Γ γ`k:T (Φ)(n) a0 : (Uη0ΦA)
op

Γ γ`k:T (Φ)(n) a1 : Uη1ΦA γ ` k : T (Φ)(n) γ ` n : cΦ

Γ γ`T (Φ)(n) twk
A(a0, a1)

tw-Form

Γ γ`T (εΦ)(ε n) A Γ γ`ε(k):T (εΦ)(ε n) a : A(
λη0Φa

)op ≡ a0 λη1Φa ≡ a1 γ ` k : T (Φ)(n) γ ` n : cΦ

Γ γ`k:T (Φ)(n) λ
twa : twk

A(a0, a1)
tw-Intro

Γ γ`k:T (Φ)(n) b : twk
A(a0, a1) γ ` k : T (Φ)(n) γ ` n : cΦ

Γ γ`ε(k):T (εΦ)(ε n) b()tw : A
tw-Elim

(
λη0 Φb()tw

)op ≡ a0 λη1 Φb()tw ≡ a1 λtwa()tw ≡ a λtwb()tw ≡ b



Twisted arrow types III

Using that the flat modality can be defined as the U -type w.r.t. the terminal projection functor
! : → one can show for crisp Segal types A that e.g. [homA(a0, a1) ' [ twA(a0, a1)
using the ensuing computation rules for U -types.
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Perspectives
Work in progress:

• Give a full proof of an analog of the “classical Yoneda Lemma” using twisted arrow types.
• Define fibrancy structures internally on the universes Simp, Cat, and Space, possibly á la

Orton (PhD thesis).
• Do we get (enough of) the expected 2-dimensional structure for the theory of Segal/Rezk

types, cf. Riehl–Shulman, Riehl–Verity’s∞-cosmos theory?

Based on the same frameworks:
• Cavallo–Riehl–Sattler: Directed univalence for simplicial type theory [CRS18]
• Licata–Weaver: Directed univalence for bicubical directed type theory [LW18]

Selection of further work on directed type theory:
• Altenkirch–Sestini: “Naturality for free", 2019)
• Cavallo–Harper: parametric CTT, 2019)
• North: directed HoTT & wfs, 2018/19
• Nuyts: directed HoTT, 2015+; w/ Devriese: Menkar, ultimode presheaf proof assistant
https://github.com/anuyts/menkar

https://github.com/anuyts/menkar
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Thank you!
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