Type-theoretic modalities for synthetic $(\infty, 1)$ -categories

Ulrik Buchholtz & Jonathan Weinberger

TU Darmstadt

August 14, 2019 Homotopy Type Theory 2019 Carnegie Mellon University, Pittsburgh, PA

1 Introduction

- 2 Model in simplicial spaces (inside cubical spaces)
- 3 Modalities from shape operations
- 4 Right adjoint types
- 5 Perspectives

Outline

1 Introduction

- 2 Model in simplicial spaces (inside cubical spaces)
- 3 Modalities from shape operations
- 4 Right adjoint types
- 5 Perspectives

Foundations: Synthetic $(\infty, 1)$ -categories à la Riehl–Shulman I

In order to develop *synthetic higher category theory*, Riehl and Shulman introduced a *Simplicial Type Theory* (STT) in [RS17]: MLTT with additional layers of shapes, allowing for defining *synthetic* $(\infty, 1)$ -categories as complete Segal/Rezk types.

As a main feature, STT postulates *extension types* (after Lumsdaine–Shulman), i.e. for shape inclusions $\Phi \rightarrow \Psi$, families $A : \Psi \rightarrow U$, and partial sections $a : \prod_{t:\Phi} A(t)$ there exists the type of ...

sections

$$\left\langle \prod_{t:\Psi} A(t) \right|_{a}^{\Phi} \right\rangle \triangleq \left\{ \begin{array}{c} \Phi \xrightarrow{a} A \\ \downarrow & \overbrace{a}^{\uparrow\uparrow} \\ \Psi \end{array} \right\}$$

judgmentally extending *a*. **Example & Definition:** For a type *A* and terms x, y : A, define the *hom-type* $\hom_A(x, y) := \left\langle \Delta^1 \to A \Big|_{[x,y]}^{\partial \Delta^1} \right\rangle$. Foundations: Synthetic $(\infty, 1)$ -categories à la Riehl–Shulman II

Definitions from [RS17]:

- A type A is a *Segal type* if $(\Delta^2 \to A) \xrightarrow{\simeq} (\Lambda_1^2 \to A)$ (Joyal).
- A Segal type A is a *Rezk type* if $\operatorname{idtoiso}_A : \prod_{x,y:A} \operatorname{Id}_A(x,y) \xrightarrow{\simeq} \operatorname{iso}_A(x,y).$
- A type A is a *discrete type* if $\operatorname{idtorarr}_A : \prod_{x,y:A} \operatorname{Id}_A(x,y) \xrightarrow{\simeq} \hom_A(x,y).$

These notions coincide with their classical analogues in the intended semantics in (a model structure representing) the ∞ -topos of simplicial spaces, $PSh_{\infty}(\Delta)$.

Goal: Extend the ∞ -category theory developed in [RS17]. Namely, add universes, other notions of fibrations, and the traditional Yoneda embedding $\mathbf{y}_A : A \to (A^{\mathrm{op}} \to \mathrm{Space})$.

Besides Riehl–Shulman's work, we heavily rely on Licata–Shulman–Riley's modal framework, cf. Dan's recent talk! For related work in bicubical sets, cf. Matt's upcoming talk!

Outline

1 Introduction

2 Model in simplicial spaces (inside cubical spaces)

- 3 Modalities from shape operations
- 4 Right adjoint types
- 5 Perspectives

Simplicial spaces inside cubical space

The category sSet of *simplicial sets* is the category of presheaves on the category \triangle of finite ordinals with monotone maps as morphisms.

The category cSet of *cubical sets* is the category of presheaves on the category of powers of the ordinal 2 with monotone maps as morphisms.

We want to define universes internally which, due to [LOPS18] becomes possible using tinyness of the *cubical* interval \Box^1 .

Simplicial sets form an essential subtopos of cubical sets.

This has been discussed by Sattler [Sat18], Kapulkin–Voevodsky [KV18], and Streicher-W [SW18].

One can show that this lifts to the level of ∞ -toposes. Since this constitutes a topological modality sheafification becomes an internal operation ([RSS17]) which by the theory of compact types treated in [Rij18] can be expressed in rather elementary terms.

Universes of simplicial types

Start with a *strict* universe in cubical spaces [Shu19]. From this we derive:

- Simp: universe of simplicial types since we have a topological modality [RSS17]
- Cat: universe of (complete) Segal types due to our new notion of cocartesian family
- · Space: universe of discrete types due to Riehl-Shulman's notion of covariant family

Outline

1 Introduction

2 Model in simplicial spaces (inside cubical spaces)

3 Modalities from shape operations

4 Right adjoint types

5 Perspectives

Modalities: \flat and $^{\rm op}$

However, the universes constructed this way are classifying only for the *cohesively discrete* (*crisp*) types.

We also want to have *opposite categories* A^{op} .

Hence, we introduce the modalities \flat and $^{\rm op}$ as in the framework of Licata–Shulman–Riley to this theory.

We have a mode theory with c (cohesive/cubical) and $x : c \vdash f(x) : c$ (flat) as well as $x : c \vdash o(x) : c$ (representing the opposite cubical type/category) with equations

$$f(f(x)) = f(x), \quad o(f(x)) = f(x), \quad o(o(x)) = x, \quad f(o(x)) = f(x),$$

and

$$f(x\times y)=f(x)\times f(y),\quad o(x\times y)=o(x)\times o(y).$$

Operations on topes and shapes I

Problem: In order to get the Yoneda embedding, we need to get $hom_A(a, b)$ for $a : A^{op}$ and b : A (for A :: Cat).

Solution: Instead of ordinary hom-types construct a covariant fibration $Tw(A) \rightarrow A^{op} \times A$ and obtain the "hom type" as the fiber. Here, Tw(A) is the *twisted arrow type* (traditionally, the category of elements of the uncurried Yoneda embedding) with 0-simplices

and 1-simplices:

Classically, the twisted arrow space is defined by reindexing along the functor $\varepsilon := \operatorname{op} * \operatorname{id} : \mathbb{A} \to \mathbb{A}$. This does not yield an extension type in Riehl–Shulman's sense.

Operations on topes and shapes II

We get the twisted arrow type using right adjoint types (U-types) in the sense of [LRS19].

First, we axiomatize operations on topes and shapes according to

$$\frac{f:\Xi\to\Xi'\ \Xi|\Phi\vdash\Phi'f}{\Xi|\Phi\xrightarrow{f}\Xi'|\Phi'}\quad\text{and}\quad\frac{F\text{ oper }\{\Xi\mid\varphi\}\text{ shape}}{F\{\Xi\mid\varphi\}\text{ shape}}.$$

Defining opposites and join for topes, we can then lift these to the level of shapes as

$$\{I \mid \varphi\} * \{J \mid \psi\} := \{I + 1 + J \mid \varphi * \psi\}, \quad \{I \mid \varphi\}^{\rm op} = \{I \mid \varphi^{\rm op}\}.$$

From this, we can define $\varepsilon := \operatorname{op} * \operatorname{id}$ for shapes. Unary operations induce modalities on the base category, hence we can define the twisted arrow types as *U*-types w.r.t. to ε .

Fibrational framework à Licata-Shulman-Riley

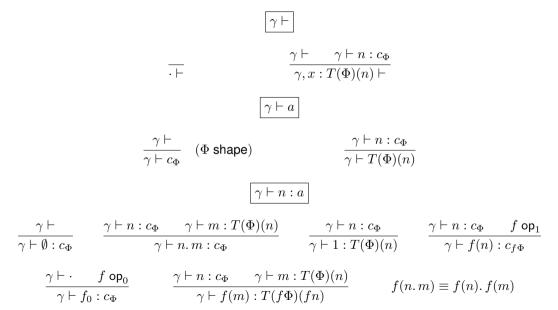
After the work of Licata–Shulman–Riley consider a type theory fibered over a type theory of modes:

Given a shape Φ and an arbitrary mode context γ , we get a universe $\gamma \vdash c_{\Phi}$ of small types over Φ .

For any small type $\gamma \vdash n : c_{\Phi}$ there is a small type $\gamma \vdash T(\Phi)(n)$ of contexts over n, a *comprehension object* in the sense of [LRS19].

Endomorphisms $f \colon \square \to \square$ give rise to mode morphisms $n : c_{\Phi} \vdash f n : c_{f\Phi}$.

Some rules of the type theory of modes I



Some rules of the type theory of modes II

$$\gamma \vdash n \Rightarrow m:a$$

$$\frac{\gamma \vdash n : c_{\Phi}}{\gamma \vdash 1 \Rightarrow f(1) : T(f\Phi)(fn)}$$

Some rules of the type theory-on-top



Semantics of the fibrational framework I

- Mode contexts γ are (modeled as) toposes (with sufficient homotopical/logical structure).
- Modes-in-context $\gamma \vdash a$ are geometric morphisms $\mathcal{E} \rightarrow [\![\gamma \vdash]\!]$.
- Types–over–modes $\Gamma \vdash_{\gamma \vdash}$ are objects of $\llbracket \gamma \vdash \rrbracket$.
- Terms–over–mode terms $\Gamma \mid_{\overline{\gamma \vdash a}} A$ are objects of the fibers $\mathcal{E}_{\llbracket \Gamma \rrbracket}$.

$$\begin{array}{c} \mathcal{E} & [\![\Gamma \vdash_{\overline{\gamma \vdash a}} A]\!] \in \mathcal{E}_{[\![\Gamma]\!]} & s([\![\Gamma \vdash_{\overline{\gamma \vdash}}]\!]) \xrightarrow{[\![\Gamma \vdash_{\overline{\gamma \vdash a}} N:A]\!]} & [\![\Gamma \vdash_{\overline{\gamma \vdash a}} A]\!] \\ \\ [\![\gamma \vdash a]\!] & & s = [\![\gamma \vdash n:a]\!] & [\![\Gamma \vdash_{\overline{\gamma \vdash}}]\!] \in [\![\gamma \vdash]\!] & s = [\![\gamma \vdash n:a]\!] & s$$

• The empty mode context $\cdot \vdash$ is the terminal topos.

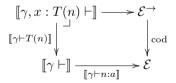
Semantics of the fibrational framework II

- Universes $\gamma \vdash c$ are projections

$$\llbracket \gamma \rrbracket \times \mathcal{E} \xrightarrow{\llbracket \gamma \vdash c \rrbracket} \llbracket \gamma \rrbracket$$

with canonical section $\llbracket \gamma \vdash \emptyset : c \rrbracket = \lambda X. \langle X, 1 \rangle.$

• Comprehension objects $\gamma \vdash T(n)$ are interpreted by *Artin glueing* of $[\![\gamma \vdash n : a]\!]$:



In particular, in our intended model of cubical spaces mode contexts will be of the form \mathbf{cSp}/Φ for a shape Φ .

Outline

1 Introduction

- 2 Model in simplicial spaces (inside cubical spaces)
- 3 Modalities from shape operations
- 4 Right adjoint types
- 5 Perspectives

Right adjoint types I

- Endomorphisms $f: \square \to \square$ give rise to adjoint pairs $f^*: \mathbf{cSp}/f \Phi \rightleftharpoons \mathbf{cSp}/\Phi: f_!, f_! \dashv f^*$.
- The functor $f_!$ (on the level of modes) corresponds to mode morphisms.
- f^* gives rise to right adjoint types, aka U-types.
- · We get a bijection

$$\left\{\Gamma \mathrel{\mathop{\longmapsto}}_{\gamma \vdash f(k): T(f\Phi)(f\,n)} a: A\right\} \xleftarrow{1:1} \left\{\Gamma \mathrel{\mathop{\longmapsto}}_{\gamma \vdash k: T(\Phi)(n)} b: U_f A\right\}.$$

Right adjoint types II

$$\frac{\Gamma \vdash_{\gamma \vdash T(f\Phi)(fn)} A \qquad \gamma \vdash n : c_{\Phi}}{\Gamma \vdash_{\gamma \vdash T(\Phi)(n)} U_f A} \text{ U-Form}$$

$$\frac{\Gamma \vdash_{\gamma \vdash f(k): T(f\Phi)(fn)} A \quad \gamma \vdash n: c_{\Phi} \quad \gamma \vdash k: T(\Phi)(n)}{\Gamma \vdash_{\gamma \vdash k: T(\Phi)(n)} \lambda^{f} M: U_{f} A} \text{ U-Intro}$$

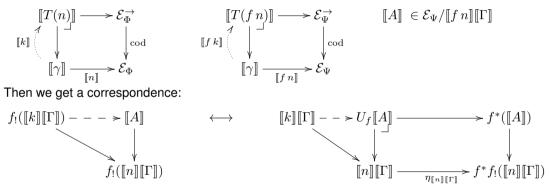
$$\frac{\Gamma \vdash_{\gamma \vdash k: T(\Phi)(n)} N: U_f A \qquad \gamma \vdash n: c_{\Phi}}{\Gamma \vdash_{\gamma \vdash f(k): T(f\Phi)(n)} N()_f : A} \text{ U-Elim } \lambda^f N()_f \equiv N \qquad \lambda^f M()_f \equiv M$$

Right adjoint types III

One can show that the action of the mode morphism when forming a *U*-type builds upon the structure of a dependent right adjoint, cf. [BCM18] *et al.*, 2018:

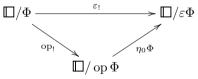
Assume an operation $f : \Phi \to \Psi$, inducing $f_! \dashv f^* : \mathcal{E}_\Phi \to \mathcal{E}_\Psi$.

For $\llbracket \Gamma \rrbracket \in \llbracket \gamma \rrbracket$ and $\llbracket n \rrbracket : \llbracket \gamma \rrbracket \to \mathcal{E}_{\Phi}$, consider $\llbracket A \rrbracket$ and $\llbracket k \rrbracket$ as in:



Twisted arrow types I

Externally, the twisted arrow simplicial space is constructed by reindexing along the functor $\varepsilon := \operatorname{op} * \operatorname{id}$. Thus, we internalize it by considering the *U*-type w.r.t. the endofunctor ε . Note that there are two natural transformations $\eta_0 : \operatorname{op} \Rightarrow \varepsilon \leftarrow \operatorname{id} : \eta_1$ in particular, for any shape Φ giving rise to a diagram:



Twisted arrow types II

$$\begin{split} & \Gamma \vdash_{\overline{\gamma} \vdash T(\varepsilon\Phi)(\varepsilon n)} A \qquad \Gamma \vdash_{\overline{\gamma} \vdash k:T(\Phi)(n)} a_0 : (U_{\eta_0} \bullet A)^{\mathrm{op}} \\ & \underline{\Gamma} \vdash_{\overline{\gamma} \vdash k:T(\Phi)(n)} a_1 : U_{\eta_1} \bullet A \qquad \gamma \vdash k : T(\Phi)(n) \qquad \gamma \vdash n : c_{\Phi} \\ & \Gamma \vdash_{\overline{\gamma} \vdash T(\Phi)(n)} \operatorname{tw}_A^k(a_0, a_1) \\ \\ & \underline{\Gamma} \vdash_{\overline{\gamma} \vdash T(\varepsilon\Phi)(\varepsilon n)} A \qquad \Gamma \vdash_{\overline{\gamma} \vdash \varepsilon(k):T(\varepsilon\Phi)(\varepsilon n)} a : A \\ & \underline{(\lambda^{\eta_0} \bullet a)}^{\mathrm{op}} \equiv a_0 \qquad \lambda^{\eta_1 \bullet a} \equiv a_1 \qquad \gamma \vdash k : T(\Phi)(n) \qquad \gamma \vdash n : c_{\Phi} \\ & \Gamma \vdash_{\overline{\gamma} \vdash k:T(\Phi)(n)} \lambda^{\mathrm{tw}} a : \operatorname{tw}_A^k(a_0, a_1) \\ \\ & \underline{\Gamma} \vdash_{\overline{\gamma} \vdash k:T(\Phi)(n)} b : \operatorname{tw}_A^k(a_0, a_1) \qquad \gamma \vdash k : T(\Phi)(n) \qquad \gamma \vdash n : c_{\Phi} \\ & \Gamma \vdash_{\overline{\gamma} \vdash \varepsilon(k):T(\varepsilon\Phi)(\varepsilon n)} b()_{\mathrm{tw}} : A \\ \\ & (\lambda^{\eta_0} \bullet b()_{\mathrm{tw}})^{\mathrm{op}} \equiv a_0 \qquad \lambda^{\eta_1} \bullet b()_{\mathrm{tw}} \equiv a_1 \qquad \lambda^{\mathrm{tw}} a()_{\mathrm{tw}} \equiv a \qquad \lambda^{\mathrm{tw}} b()_{\mathrm{tw}} \equiv b \end{split}$$

Using that the flat modality can be defined as the *U*-type w.r.t. the terminal projection functor $!: \square \to \square$ one can show for crisp Segal types *A* that e.g. $\flat \hom_A(a_0, a_1) \simeq \flat \operatorname{tw}_A(a_0, a_1)$ using the ensuing computation rules for *U*-types.

Outline

1 Introduction

- 2 Model in simplicial spaces (inside cubical spaces)
- 3 Modalities from shape operations
- 4 Right adjoint types
- 5 Perspectives

Perspectives

Work in progress:

- Give a full proof of an analog of the "classical Yoneda Lemma" using twisted arrow types.
- Define fibrancy structures internally on the universes ${\rm Simp,\,Cat},$ and ${\rm Space},$ possibly á la Orton (PhD thesis).
- Do we get (enough of) the expected 2-dimensional structure for the theory of Segal/Rezk types, cf. Riehl–Shulman, Riehl–Verity's ∞-cosmos theory?

Based on the same frameworks:

- Cavallo-Riehl-Sattler: Directed univalence for simplicial type theory [CRS18]
- · Licata–Weaver: Directed univalence for bicubical directed type theory [LW18]

Selection of further work on directed type theory:

- Altenkirch-Sestini: "Naturality for free", 2019)
- Cavallo–Harper: parametric CTT, 2019)
- North: directed HoTT & wfs, 2018/19
- Nuyts: directed HoTT, 2015+; w/ Devriese: Menkar, ultimode presheaf proof assistant https://github.com/anuyts/menkar

References I

- L. Birkedal, R. Clouston, B. Mannaa, R. E. Møgelberg, A. M. Pitts, B. Spitters (2018): Modal Dependent Type Theory and Dependent Right Adjoints arXiv:1804.05236
- E. Cavallo, E. Riehl, C. Sattler (2018): On the directed univalence axiom Talk at AMS Special Session on Homotopy Type Theory, JMM, San Diego.
- C. Kapulkin, V. Voevodsky (2018): Cubical approach to straightening PDF
- D. Licata, I. Orton, A. M. Pitts, B. Spitters (2018): Internal universes in models of homotopy type theory LIPIcs, Vol. 108, pp. 22:1-22:17, 2018
- D. Licata, M. Weaver (2018): Directed univalence in bicubical directed type theory Presentation at MURI Meeting, Pittsburgh
- D. Licata, M. Riley, M. Shulman (2019): Substructural and modal dependent type theories HoTTEST talk

References II

- E. Riehl, M. Shulman (2017): A type theory for synthetic ∞ -categories Higher Structures **1** (2017), no. 1, 147–224.
- E. Riehl, D. Verity (2019): Elements of ∞ -Category Theory Book in progress
- E. Rijke, M. Shulman, B. Spitters (2017): Modalities in homotopy type theory arXiv:1706.07526
- E. Rijke (2018): Classifying types PhD thesis, CMU
- C. Sattler (2018): Idempotent completion of cubes in posets arXiv:1805.04126
- M. Shulman (2019): All $(\infty, 1)$ -toposes have strict univalent universes arXiv:1904.07004
- Th. Streicher, J. Weinberger (2018): Simplicial sets inside cubical sets Preprint

Thank you!