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My background

Homotopy theorist (student of Hovey; professor in Ohio).
Good at model categories; novice in type theory.

Want to do work that is useful; happy to get involved with projects
coming out of HoTT.

Keywords: model categories, Quillen equivalences, Bousfield
localization, operads, Goodwillie calculus, equivariant/motivic
homotopy, homological algebra, representation theory, left/right
induced model structures, Grothendieck universes, locally
presentable categories, ...

As Paul Erdös said “My brain is open” - feel free to email me.
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Monoidal Model Categories (implies Ho(M) monoidal)

(M,⊗,1) is a closed symmetric monoidal model category.

The pushout product of f ∶ A // B and g ∶ X // Y , is the corner
map: A⊗X

⇘

//

��

B ⊗X

��

��

A⊗Y //

..

P
f ◻g
%%
B ⊗Y

This is a monoidal product on the arrow category
Ð→
M◻.

Pushout Product Axiom: If f and g are cofibrations, so is f ◻ g . If
either is also a weak equivalence, so is f ◻ g .
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Main result

The projective model structure on
Ð→
M◻ has weak equivalences and

fibrations defined levelwise.

Theorem (W.-Yau; arXiv:1703.05359; Math Scandinavica 2018)

If M is a monoidal model category, then so are
Ð→
M◻, MI×n , and M◻op

.

V0

fV
��

α0 //W0

fW
��

X0

fX
��

β0
// Y0

fY
��

V1
α1 //W1 X1

β1
// Y1

The pushout product in
Ð→
M◻ is the map

(fW ◻ fX ) ∐

fV◻fX
(fV ◻ fY )

α◻2β
// fW ◻ fY
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History and applications

First proved by Hovey (unpublished) for M cofibrantly generated.
Pavlov-Scholbach 2018 inductive proof.
PP axiom in injective or Reedy: see Barwick 2010 or White 2017.

Examples of monoidal model categories: Set, Top, sSet, sModR ,
spectra (symmetric, orthogonal, S-modules), equivariant/motivic,
Ch(R), StMod(k[G ]), Cat, Groupoids, ...

Our main application: Smith O-ideals = algebras over operad
Ð→
O
◻

in
Ð→
M◻. We provide a Quillen equivalence

{Smith O-Ideals}
coker //

{O-Algebra Maps}
ker

oo
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Connection to Homotopy Type Theory

Pushout product axiom gives better understanding of (trivial)
cofibrations.

Techniques to decompose higher pushout products, e.g. α◻2 β.

Characterization of projective cofibrations (dual to Mike’s talk).

Don’t need ⊗ to be Cartesian, or cofibrations = monomorphisms.

Related to Thierry’s model structure on Set(C×◻)
op

(e.g. sSet◻
op
).

Techniques could work on prismatic cubical sets (Matt’s talk).
Or bicubical sets based on model categories of cubical sets
presented by Emily and Steve (BCH, ABCFHL, CCHM, ACCRS),
when monoidal/substructural.
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Proof of main theorem (1)

We’ll focus on
Ð→
M◻. To get MI×n and M◻op

, iterate.

To save space, write W1X0 for W1 ⊗X0, etc. Let fV ∶ V0 // V1,
and fW , fX , fY similarly.

If α ∶ fV // fW and β ∶ fX // fY , then α◻2 β is the following
commutative square in M:

David White Denison University Joint with Donald Yau

Monoidal Model Categories and Cubical Homotopy Theory



Proof (cont)

Lemma (Hovey): In
Ð→
M◻, γ from f ∶ X0 // X1 to g ∶ Y0 // Y1 is a

(trivial) cofibration iff γ0 and γ1 ⊛ g ∶ X1∐
X0

Y0 // Y1 are.

Assume α is a cofibration and β is a (trivial) cofibration in
Ð→
M◻

We must prove ζ is a (trivial) cofibration and the pushout corner
map

(W1X1 ∐
V1X1

V1Y1)∐
Z
(W1Y0 ∐

W0Y0

W0Y1)
(α1◻β1)⊛(fW◻fY )

//W1Y1

is a (trivial) cofibration.
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Proof (cont)
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Proof (cont)

ζ = δ1 ○ δ0, and δ0 is a pushout of α1 ◻ β0 so is a (trivial)
cofibration.
δ1 is a pushout of ξ, which we rewrite as the pushout product
α0 ◻ (β1 ⊛ fY ), below, so both are (trivial) cofibrations.
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Proof (cont)

To finish, rewrite

(W1X1 ∐
V1X1

V1Y1)∐
Z
(W1Y0 ∐

W0Y0

W0Y1)
(α1◻β1)⊛(fW◻fY )

//W1Y1

as:
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Recap

Theorem (W.-Yau; arXiv:1703.05359; Math Scandinavica 2018)

If M is a monoidal model category, then so are
Ð→
M◻, MI×n , and M◻op

.

Lemma (Hovey): In
Ð→
M◻, γ from f ∶ X0 // X1 to g ∶ Y0 // Y1 is a

(trivial) cofibration iff γ0 and γ1 ⊛ g ∶ X1∐
X0

Y0 // Y1 are.

If α is cof and β is (triv) cof, then let γ = α◻2 β.

We proved γ0 = ζ and γ1 ⊛ g from previous slide, are (triv) cof’s.
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A word on cofibrant generation

Hovey’s proof used that, if M is cof. gen., it’s sufficient to check
I ◻ I ⊂ Cofibrations and I ◻ J ⊂ Triv. Cofibrations.

Lots of monoidal non-cof. gen. model categories:

1 Christensen-Hovey: absolute model structure on Ch(Z).
2 Barthel-May-Riehl: r -model structure on dgRmodr .
3 Adamek-Herrlich-Rosicky-Tholen model on Cat.
4 Strom model on compactly generated spaces.
5 Pro(C) where C is a tensor model category.
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