Natural Model Semantics of Comonadic Modal Type Theory

Colin Zwanziger

Department of Philosophy Carnegie Mellon University

August 15, 2019 at the International Conference on Homotopy Type Theory Carnegie Mellon University

Problem: Semantics of Comonadic Type Theory

Comonads are pervasive. So **comonadic dependent type theory** (NPP 2008, Shulman 2018) has many intended models, *e.g.*:

- (Higher) Grothendieck toposes $+ \Delta\Gamma$ (Shulman 2018, 2019)
- In particular, cubical sets + the 0-skeleton (LOPS 2018)
- Groupoids + discretization (cf. Zwanziger 2018)

What about a general **categorical semantics** for comonadic DTT?

A Solution: Morphisms of Natural Models

- Simple picture: the comonadic operator is interpreted as a morphism of models of DTT that is a comonad
- I will work with morphisms of *natural* models.

A Solution: Morphisms of Natural Models

- Simple picture: the comonadic operator is interpreted as a morphism of models of DTT that is a comonad
- I will work with morphisms of *natural* models.
- Natural models are a nice categorical characterization of categories with families (CwFs) (Awodey 2012, 2018, Fiore 2012)
- The relevant morphisms of natural models and CwFs were developed by Newstead (2018) and BCMMPS (2018), respectively.

Morphism Semantics to Date

- BCMMPS use morphisms of CwFs to interpret DTT with an endo-adjunction.
- In Zwanziger (2019): morphisms of natural models for DTT with an adjunction.
- Same approach for comonadic DTT presently.

So morphisms of NMs/CwFs have a broader applicability than the comonadic case.

Outline

- Introduction
- Natural Model Theory
 - Objects
 - Morphisms
- Comonadic Type Theory
- Semantics of Comonadic Type Theory
 - Cartesian Comonads on Natural Models
 - Interpretation

Outline

- Introduction
- Natural Model Theory
 - Objects
 - Morphisms
- 3 Comonadic Type Theory
- 4 Semantics of Comonadic Type Theory
 - Cartesian Comonads on Natural Models
 - Interpretation

Natural Models

Definition (Awodey, Fiore 2012)

A natural model consists of

- a category C
- a distinguished terminal object $1 \in C$
- presheaves Ty, Tm : $C^{op} \rightarrow Set$
- a representable natural transformation $p : Tm \rightarrow Ty$

Conventions

Convention

- An object $\Gamma \in C$ is a "context".
- An element $A \in Ty(\Gamma)$ is a "type in context Γ ".
- An element $a \in Tm(\Gamma)$ such that $p_{\Gamma}(a) = A$ is a "term a of type A in context Γ ".

Conventions

Convention

- An object $\Gamma \in C$ is a "context".
- An element $A \in Ty(\Gamma)$ is a "type in context Γ ".
- An element $a \in Tm(\Gamma)$ such that $p_{\Gamma}(a) = A$ is a "term a of type A in context Γ ".

This last is represented by the following commutative diagram:

Below, as here, we will freely use the Yoneda lemma to identify presheaf elements $x \in P(C)$ with the corresponding map $x : y C \rightarrow P$.

Comprehension as Representability

Representability of $p: Tm \rightarrow Ty$ means the following:

Definition

Given a context $\Gamma \in C$ and a type $A \in \mathsf{Ty}(\Gamma)$ in the context Γ , there is $\Gamma.A \in C$, $p_A : \Gamma.A \to \Gamma$, and $v_A : y(\Gamma.A) \to \mathsf{Tm}$ such that the following diagram is a pullback:

$$y(\Gamma.A) \xrightarrow{v_A} Tm$$

$$y_{PA} \downarrow \qquad \qquad \downarrow p$$

$$y \Gamma \xrightarrow{A} Ty$$

These $\Gamma.A$, p_A , v_A constitute the **comprehension** of A.

4 D > 4 B > 4 B > 4 B > 9 0 0

Terms vs. Sections

Remark

Terms are interchangeable with a "comprehension" as sections, as depicted by the following:

See Awodey (2018) for more on natural models.

- Introduction
- Natural Model Theory
 - Objects
 - Morphisms
- 3 Comonadic Type Theory
- 4 Semantics of Comonadic Type Theory
 - Cartesian Comonads on Natural Models
 - Interpretation

Lax Morphisms

Definition

A lax morphism of natural models $F: C \rightarrow D$ consists of:

- ullet a functor, also denoted F:C o D, between the underlying categories
- a natural transformation $\phi_{\mathsf{Ty}}: F_! \mathsf{Ty}_{C} \to \mathsf{Ty}_{D}$
- a natural transformation $\phi_{\mathsf{Tm}}: F_{!} \mathsf{Tm}_{C} \to \mathsf{Tm}_{D}$

such that the following diagram commutes:

The definitions of this section are essentially those of Newstead (2018).

Notation

Convention

Given a lax morphism $F:C\to D$, and a type $A\in \mathsf{Ty}(\Gamma)$ in context $\Gamma\in C$, we write F/A for the composite

$$y F\Gamma \cong F_! y \Gamma \xrightarrow{F_! A} F_! Ty_C \xrightarrow{\phi_{Ty}} Ty_D$$

Similarly, given a term $a \in Tm(\Gamma)$, we write F/a for the composite

$$y F \Gamma \cong F_! y \Gamma \xrightarrow{F_! a} F_! Tm_C \xrightarrow{\phi_{Tm}} Tm_D$$

One may think of F/A and F/a as the results of applying the morphism F to A and a. These operations are implicated in the interpretation of (respectively) formation and introduction rules for modal type operators.

Lax Preservation of Context Extension

Remark

Let $F:C\to D$ be a lax morphism. Then, given a type $A\in \operatorname{Ty}_C(\Gamma)$ in context $\Gamma\in C$, there is a unique comparison map $\tau_A:F(\Gamma.A)\to F\Gamma.(F/A)$ such that $Fp_A=p_{F/A}\circ \tau_A$ and $F/v_A=v_{F/A}\circ y(\tau_A)$, i.e., such that the following diagram commutes:

Morphisms

Definition

Let $F:C\to D$ be a lax morphism. Then F is said to preserve context extension if, for each type $A\in {\rm Ty}_C(\Gamma)$ in each context $\Gamma\in C$, the comparison map $\tau_A:F(\Gamma.A)\to F(\Gamma).(F/A)$ is an isomorphism.

Definition

A lax morphism $F: C \to D$ of natural models that preserves context extension and terminal objects is called a morphism of natural models.

- Introduction
- Natural Model Theory
 - Objects
 - Morphisms
- 3 Comonadic Type Theory
- 4 Semantics of Comonadic Type Theory
 - Cartesian Comonads on Natural Models
 - Interpretation

Contexts and Judgments

We will use the comonadic fragment of Shulman (2018)'s real-cohesive type theory.

We have two variable judgments, denoted

and

$$x:A$$
,

and the typing judgement has form

$$u_1 :: A_1, ..., u_m :: A_m \mid x_1 : B_1, ..., x_n : B_n \vdash t : C$$

Contexts and Judgments (cont'd)

The two variable judgements lead to a duplication of the context and variable rules:

$$\frac{\Delta \mid \cdot \vdash B \ type}{\Delta, u :: B \mid \cdot \vdash} \mathsf{Ext.}^{\flat} \quad \frac{\Delta, u :: A, \Delta' \mid \Gamma \vdash}{\Delta, u :: A, \Delta' \mid \Gamma \vdash u : A} \mathsf{Var.}^{\flat}$$

Contexts and Judgments (cont'd)

The two variable judgements lead to a duplication of the context and variable rules:

The Comonad b

$$\frac{\Delta \mid \cdot \vdash B \; type}{\Delta \mid \Gamma \vdash \flat B \; type} \flat \text{-Form.} \quad \frac{\Delta \mid \cdot \vdash t : B}{\Delta \mid \Gamma \vdash t^{\flat} : \flat B} \flat \text{-Intro.}$$

$$\frac{\Delta \mid \cdot \vdash t : B}{\Delta \mid \Gamma \vdash t^{\flat} : \flat B} \flat \text{-Intro}$$

The Comonad b

$$\frac{\Delta \mid \cdot \vdash B \text{ type}}{\Delta \mid \Gamma \vdash \flat B \text{ type}} \flat \text{-Form.} \qquad \frac{\Delta \mid \cdot \vdash t : B}{\Delta \mid \Gamma \vdash t^{\flat} : \flat B} \flat \text{-Intro.}$$

$$\frac{\Delta \mid \Gamma, x : \flat A \vdash B \ type}{\Delta \mid \Gamma \vdash s : \flat A \qquad \Delta, u :: A \mid \Gamma \vdash t : B[u^{\flat}/x]} \flat \text{-Elim.}$$

$$\frac{\Delta \mid \Gamma \vdash (\textit{let } u^{\flat} := s \ \textit{in } t) : B[s/x]}{\Delta \mid \Gamma \vdash (\textit{let } u^{\flat} := s \ \textit{in } t) : B[s/x]} \flat \text{-Elim.}$$

The Comonad ♭ (Conversions)

$$\begin{array}{c|c} \Delta \mid \Gamma, x : \flat A \vdash B \ type \\ \hline \Delta \mid \cdot \vdash s : A & \Delta, u :: A \mid \Gamma \vdash t : B[u^{\flat}/x] \\ \hline \Delta \mid \Gamma \vdash (\textit{let } u^{\flat} := s^{\flat} \ \textit{in } t) \equiv t[s/u] : B[s^{\flat}/x] \\ \hline \Delta \mid \Gamma, x : \flat A \vdash B \ type \\ \hline \Delta \mid \Gamma \vdash s : \flat A & \Delta \mid \Gamma, x : \flat A \vdash t : B \\ \hline \Delta \mid \Gamma \vdash \textit{let } u^{\flat} := s \ \textit{in } t[u^{\flat}/x] \equiv t[s/x] : B[s/x] \\ \hline \end{array} \flat \neg \eta \text{-Conv.}$$

- Introduction
- Natural Model Theory
 - Objects
 - Morphisms
- Comonadic Type Theory
- Semantics of Comonadic Type Theory
 - Cartesian Comonads on Natural Models
 - Interpretation

Cartesian Comonads

Our notion of model for **CoTT** takes an appealingly simple form:

Cartesian Comonads

Our notion of model for **CoTT** takes an appealingly simple form:

Definition

Let $\flat: \mathcal{E} \to \mathcal{E}$ be an endomorphism of natural models on \mathcal{E} . This \flat is said to be a **Cartesian comonad** on \mathcal{E} when its underlying functor is a comonad.

The requirement that \flat be a morphism of natural models is a preservation condition analogous to finite limit preservation in the topos semantics of modal logic (cf. Zwanziger 2017).

Notation

Some further notation:

We write \mathcal{E}^{\flat} for the category of coalgebras for \flat , U or $(-)_0: \mathcal{E}^{\flat} \to \mathcal{E}$ for the forgetful functor, and $K: \mathcal{E} \to \mathcal{E}^{\flat}$ for the cofree functor. As the name suggests, we have $U \to K$.

Notation

Some further notation:

We write \mathcal{E}^{\flat} for the category of coalgebras for \flat , U or $(-)_0: \mathcal{E}^{\flat} \to \mathcal{E}$ for the forgetful functor, and $K: \mathcal{E} \to \mathcal{E}^{\flat}$ for the cofree functor. As the name suggests, we have $U \dashv K$.

Definition

Let $\Delta = (\Delta_0, \Delta_1 : \Delta_0 \rightarrow \flat \Delta_0) \in \mathcal{E}^{\flat}$. Then

- $\flat A := (\flat/A) \circ y(\Delta_1) : y(\Delta_0) \to \mathsf{Ty}$, where $A : y(\Delta_0) \to \mathsf{Ty}$, and
- $\bullet \ \, \flat a :\equiv (\flat/a) \circ y(\Delta_1) : y(\Delta_0) \to \mathsf{Tm}, \ \, \textit{where} \,\, a : y(\Delta_0) \to \mathsf{Tm}.$

It is this new $\flat(-)$, not $\flat/(-)$, which will interpret the formation and introduction rules for the type operator \flat of **CoTT**.

- Introduction
- Natural Model Theory
 - Objects
 - Morphisms
- 3 Comonadic Type Theory
- Semantics of Comonadic Type Theory
 - Cartesian Comonads on Natural Models
 - Interpretation

Interpretation

A context $\Delta \mid \Gamma$ will be interpreted not as an object of \mathcal{E} , but as an arrow $\llbracket \Delta \mid \Gamma \rrbracket$ with codomain a coalgebra. However, the interpretation of a type $\Delta \mid \Gamma \vdash A$ is simply in $\mathsf{Ty}(\mathsf{dom}\llbracket \Delta \mid \Gamma \rrbracket)$.

Interpretation

A context $\Delta \mid \Gamma$ will be interpreted not as an object of \mathcal{E} , but as an arrow $\llbracket \Delta \mid \Gamma \rrbracket$ with codomain a coalgebra. However, the interpretation of a type $\Delta \mid \Gamma \vdash A$ is simply in $\mathsf{Ty}(\mathsf{dom}\llbracket \Delta \mid \Gamma \rrbracket)$.

The partial interpretation function $[\![-]\!]$ is given by recursion on raw syntax as follows:

$$(\mathsf{Ext.}). \ \ \llbracket \Delta \mid \mathsf{\Gamma}, x : B \rrbracket = \llbracket \Delta \mid \mathsf{\Gamma} \rrbracket \circ p_{\llbracket B \rrbracket} \in \mathcal{E}/\operatorname{\mathsf{cod}} \llbracket \Delta \mid \mathsf{\Gamma} \rrbracket$$

(Var.).
$$\llbracket \Delta \mid \Gamma, x : A \vdash x : A \rrbracket = v_{\llbracket A \rrbracket} \in \mathsf{Tm}_{\mathcal{E}}(\mathsf{dom}\llbracket \Delta \mid \Gamma \rrbracket.\llbracket A \rrbracket)$$

In the special case of $\Delta \mid \cdot, [\![\Delta \mid \cdot]\!]$, abbreviated $[\![\Delta]\!]$, will be an identity. (Emp.). $[\![\cdot]\!] = \mathrm{id}_{\flat 1} \in \mathcal{E}/UK1$

In the special case of $\Delta \mid \cdot, [\![\Delta \mid \cdot]\!]$, abbreviated $[\![\Delta]\!]$, will be an identity. (Emp.). $[\![\cdot]\!] = \mathrm{id}_{b1} \in \mathcal{E}/UK1$

$$(\mathsf{Ext.}^{\flat}). \ \llbracket \Delta, u :: B \rrbracket = \mathsf{id}_{\mathsf{dom}\llbracket \Delta \rrbracket. \flat \llbracket B \rrbracket} \in \mathcal{E}/\mathsf{dom}\llbracket \Delta \rrbracket. \flat \llbracket B \rrbracket$$

In the special case of $\Delta \mid \cdot, [\![\Delta \mid \cdot]\!]$, abbreviated $[\![\Delta]\!]$, will be an identity. (Emp.). $[\![\cdot]\!] = \mathrm{id}_{\flat 1} \in \mathcal{E}/UK1$

(Ext.) [$[\Delta, u :: B]$] = $\mathrm{id}_{\mathrm{dom}[\![\Delta]\!], \flat[\![B]\!]} \in \mathcal{E}/\mathrm{dom}[\![\Delta]\!], \flat[\![B]\!]$ (Using that \flat is a morphism of NMs, $\mathrm{dom}[\![\Delta]\!], \flat[\![B]\!]$ admits a canonical coalgebra structure.)

In the special case of $\Delta \mid \cdot, [\![\Delta \mid \cdot]\!]$, abbreviated $[\![\Delta]\!]$, will be an identity. (Emp.). $[\![\cdot]\!] = \mathrm{id}_{b1} \in \mathcal{E}/UK1$

- (Ext.) $[\![\Delta, u :: B]\!] = \mathrm{id}_{\mathrm{dom}[\![\Delta]\!], \flat[\![B]\!]} \in \mathcal{E}/\mathrm{dom}[\![\Delta]\!], \flat[\![B]\!]$ (Using that \flat is a morphism of NMs, $\mathrm{dom}[\![\Delta]\!], \flat[\![B]\!]$ admits a canonical coalgebra structure.)

Here, $\varepsilon_{\llbracket A\rrbracket}^{\operatorname{dom}\llbracket \Delta\rrbracket}: \operatorname{dom}\llbracket \Delta\rrbracket. \flat \llbracket A\rrbracket \to \operatorname{dom}\llbracket \Delta\rrbracket. \llbracket A\rrbracket$ is the "indexed counit" induced over the coalgebra $(\operatorname{dom}\llbracket \Delta\rrbracket, \kappa: \operatorname{dom}\llbracket \Delta\rrbracket \to \flat \operatorname{dom}\llbracket \Delta\rrbracket)$:

The left-hand square exists and is a pullback because b is a morphism (not iust a lax morphism).

(b-Form.).
$$\llbracket \Delta \mid \cdot \vdash \flat B \rrbracket = \flat \llbracket B \rrbracket \in \mathsf{Ty}(\mathsf{dom}\llbracket \Delta \rrbracket)$$

(b-Intro.). $\llbracket \Delta \mid \cdot \vdash t^{\flat} : \flat B \rrbracket = \flat \llbracket t \rrbracket \in \mathsf{Tm}(\mathsf{dom}\llbracket \Delta \rrbracket)$
(b-Elim.). $\llbracket \Delta \mid \cdot \vdash (\mathit{let}\ u^{\flat} := r\ \mathit{in}\ t) : B[r/x] \rrbracket = \llbracket t \rrbracket \circ \mathsf{y}(\overline{\llbracket r \rrbracket}) \in \mathsf{Tm}(\mathsf{dom}\llbracket \Delta \rrbracket)$

Result

Theorem

The interpretation $[\![-]\!]$ is sound. That is, it is defined on all derivable contexts, types, and terms, and, furthermore, all contexts, types, and terms identified by equations receive the same interpretation.

Conclusion

- We used morphisms of natural models to interpret comonadic DTT.
- This work captures the groupoid model and cubical sets, with the comonads indicated, and other 1-topos models.
- Approach generalizes to some other type theories (BCMMPS 2018, Zwanziger 2019), but how far can one push this (cf. LSR 2017)?

Thanks for your attention!