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Introduction

Problem: Semantics of Comonadic Type Theory

Comonads are pervasive. So comonadic dependent type theory (NPP
2008, Shulman 2018) has many intended models, e.g.:

e (Higher) Grothendieck toposes + Al (Shulman 2018, 2019)
e In particular, cubical sets + the 0-skeleton (LOPS 2018)
e Groupoids + discretization (cf. Zwanziger 2018)

What about a general categorical semantics for comonadic DTT?
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A Solution: Morphisms of Natural Models

e Simple picture: the comonadic operator is interpreted as a
morphism of models of DTT that is a comonad

e | will work with morphisms of natural models.
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A Solution: Morphisms of Natural Models

e Simple picture: the comonadic operator is interpreted as a
morphism of models of DTT that is a comonad

e | will work with morphisms of natural models.

e Natural models are a nice categorical characterization of
categories with families (CwFs) (Awodey 2012, 2018, Fiore
2012)

e The relevant morphisms of natural models and CwFs were
developed by Newstead (2018) and BCMMPS (2018),
respectively.
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Introduction

Morphism Semantics to Date

e BCMMPS use morphisms of CwFs to interpret DTT with an
endo-adjunction.

e In Zwanziger (2019): morphisms of natural models for DTT
with an adjunction.

e Same approach for comonadic DTT presently.

So morphisms of NMs/CwFs have a broader applicability than the
comonadic case.
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Natural Model Theory OIS

Outline

© Natural Model Theory
@ Objects
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Objects
Natural Models

Definition (Awodey, Fiore 2012)
A natural model consists of
@ a category C
a distinguished terminal object 1 € C

°
@ presheaves Ty, Tm : C°P — Set
°

a representable natural transformation p : Tm — Ty
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Natural Model Theory OIS

Conventions

Convention
@ An object I € C is a “context”.
@ An element Ae Ty(I') is a “type in context ['".

e An element a€ Tm(I") such that pr(a) = A is a “term a of type A in
context ['".
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Natural Model Theory NOLIIES

Conventions

Convention
@ An object I € C is a “context”.
@ An element Ae Ty(I') is a “type in context ['".

e An element a€ Tm(I") such that pr(a) = A is a “term a of type A in
context ['".

This last is represented by the following commutative diagram:

Tm

er>Ty

Below, as here, we will freely use the Yoneda lemma to identify presheaf
elements x € P(C) with the corresponding map x : yC — P.
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Natural Model Theory OIS

Comprehension as Representability

Representability of p : Tm — Ty means the following:
Definition
Given a context I € C and a type A € Ty(I') in the context I', there is
FAeC, pa:T. A—T,and vy :y(l'.A) — Tm such that the following
diagram is a pullback:

y(MA) 2= Tm

a1

Y PA p

yFT>Ty

These I A, pa, va constitute the comprehension of A.
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Natural Model Theory OIS

Terms vs. Sections

Remark

Terms are interchangeable with a “comprehension” as sections, as

depicted by the following:

Tm

yr———— Ty

y(rA) — A Tm
2

3{ Y Pa p

yl " Ty

See Awodey (2018) for more on natural models.
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Natural Model Theory Morphisms

© Natural Model Theory

@ Morphisms
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Morphisms
Lax Morphisms

Definition

A lax morphism of natural models F : C — D consists of:
@ a functor, also denoted F : C — D, between the underlying categories
@ a natural transformation ¢ty : ;i Tyc — Typ
@ a natural transformation ¢t : Fi Tme — Tmp

such that the following diagram commutes:

F! Tmc *M)Tm TmD

Fipc PD

FTye —— Typ
¢Ty

The definitions of this section are essentially those of Newstead (2018).
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Morphisrms
Notation

Convention

Given a lax morphism F : C — D, and a type A€ Ty(I') in context T € C,
we write F /A for the composite

yFT =Ryl % ATye -7 Ty,
Similarly, given a term a € Tm(l"), we write F/a for the composite

yFM =~ Ayl -2 A Tme 2™ Tmp

v

One may think of F/A and F/a as the results of applying the morphism F
to A and a. These operations are implicated in the interpretation of
(respectively) formation and introduction rules for modal type operators.

Zwanziger (CMU) Natural Models x Comonads 13 /31



Morphisrms
Lax Preservation of Context Extension

Remark

Let F: C — D be a lax morphism. Then, given a type A€ Ty(I) in
context I € C, there is a unique comparison map 74 : F(I'.A) — FT.(F/A)

such that Fpa = pp/a©7a and F/va = vejpa0y(7a), i.e., such that the
following diagram commutes:

F/va

y(FT) A Typ
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Morphisms
Morphisms

Definition

Let F : C — D be a lax morphism. Then F is said to preserve context
extension if, for each type A € Ty(I") in each context I € C, the
comparison map 74 : F(I.A) — F(I').(F/A) is an isomorphism.

Definition
A lax morphism F : C — D of natural models that preserves context
extension and terminal objects is called a morphism of natural models.

v
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Comonadic Type Theory

© Comonadic Type Theory
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CoTT

Contexts and Judgments

We will use the comonadic fragment of Shulman (2018)’s real-cohesive
type theory.

We have two variable judgments, denoted

and
and the typing judgement has form

U AL e Um A | X1 By ey xn t Bp et C
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CoTT

Contexts and Judgments (cont’d)

The two variable judgements lead to a duplication of the context and
variable rules:

—— Emp.
.|.|_ P

A| -+ B type Au AN |TH
» Ext.” » 7 ) Var.”
Au:B|- -+ Au:AAN|THU:A
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CoTT

Contexts and Judgments (cont’d)

The two variable judgements lead to a duplication of the context and
variable rules:

Emp.
A| -+ B type Au AN |TH
» Ext.” » 7 ) Var.”
Au:B|- -+ Au:AAN|THU:A
A | T - B type AT, x: AT
xt. ; Var.
AT, x:B+ AT, x:Al"Ex:A
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CoTT

The Comonad b

A |-+ B type Al - +t:B
A | T DHB type

A|TH¢:bB
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CoTT

The Comonad b

A |-+ B type Al - +t:B

- . b-Intro.
ATrbBtype O™ Alr—eB 0

A|T,x:bA B type
AT s:bA AuzA|T - t:B[w/x]
AT (let o :=sint): B[s/x]

b-Elim.

Zwanziger (CMU) Natural Models x Comonads 19 / 31



CoTT

The Comonad b (Conversions)

A|T,x:bA B type
Al -Fs:A AuzA|TEt:B[w/x]
AT (let v :=5int)=t[s/u]: B[s"/x]

b-3-Conv.

A|T,x:bA B type
A|THs:bA Al x:bA-t:B
A| T let o’ :=sint[u’/x] = t[s/x] : B[s/x]

b-n-Conv.
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Semantics of Comonadic Type Theory Cartesian Comonads on Natural Models

@ Semantics of Comonadic Type Theory
@ Cartesian Comonads on Natural Models
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Semantics of Comonadic Type Theory Cartesian Comonads on Natural Models

Cartesian Comonads

Our notion of model for CoTT takes an appealingly simple form:
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Semantics of Comonadic Type Theory Cartesian Comonads on Natural Models

Cartesian Comonads

Our notion of model for CoTT takes an appealingly simple form:
Definition
Letb : E — &£ be an endomorphism of natural models on £. This b is said

to be a Cartesian comonad on £ when its underlying functor is a
comonad.

The requirement that b be a morphism of natural models is a preservation
condition analogous to finite limit preservation in the topos semantics of
modal logic (cf. Zwanziger 2017).
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Semantics of Comonadic Type Theory Cartesian Comonads on Natural Models
Notation

Some further notation:
We write £ for the category of coalgebras for b, U or (=)o : £” — & for

the forgetful functor, and K : £ — &’ for the cofree functor. As the name
suggests, we have U - K.
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Semantics of Comonadic Type Theory Cartesian Comonads on Natural Models
Notation

Some further notation:

We write £ for the category of coalgebras for b, U or (=)o : £” — & for
the forgetful functor, and K : € — £° for the cofree functor. As the name
suggests, we have U - K.
Definition
Let A = (Ag, Ay : Ao — bAg) € E°. Then

@ bA:= (b/A) oy(A1) : y(Ag) — Ty, where A : y(Ag) — Ty, and

@ ba:= (h/a) oy(A1) : y(Ag) — Tm, where a: y(Ag) — Tm.

It is this new b(—), not b/(—), which will interpret the formation and
introduction rules for the type operator b of CoTT.
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Semantics of Comonadic Type Theory Interpretation

@ Semantics of Comonadic Type Theory

@ Interpretation
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Semantics of Comonadic Type Theory Interpretation

Interpretation

A context A | T will be interpreted not as an object of £, but as an arrow
[A | T] with codomain a coalgebra. However, the interpretation of a type
A | T Ais simply in Ty(dom[A | ).
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ey
Interpretation

A context A | T will be interpreted not as an object of £, but as an arrow
[A | T] with codomain a coalgebra. However, the interpretation of a type
A | T Ais simply in Ty(dom[A | ).

The partial interpretation function [—] is given by recursion on raw syntax
as follows:

(Ext.). [A|T,x:B] = [A | o pey e &/cod[A | T]

(Var.). [A [T, x: A x: Al = via) € Tmg(dom[A | T].[A])
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Semantics of Comonadic Type Theory Interpretation

Interpretation (continued)

In the special case of A | -, [A | -], abbreviated [A], will be an identity.
(Emp.). [[] =idy; € E/UK1
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Semantics of Comonadic Type Theory Interpretation

Interpretation (continued)

In the special case of A | -, [A | -], abbreviated [A], will be an identity.
(Emp.). [[] =idy; € E/UK1

(Ext.”). [A, u:: B] = idgoma]s[a] € €/ dom[A].[B]
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Semantics of Comonadic Type Theory Interpretation

Interpretation (continued)

In the special case of A | -, [A | -], abbreviated [A], will be an identity.
(Emp.). [[] =idy; € E/UK1

(Ext.”). [A, u:: B] = idgoma]s[a] € €/ dom[A].[B]

(Using that b is a morphism of NMs, dom[A].b[B] admits a
canonical coalgebra structure.)
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Semantics of Comonadic Type Theory Interpretation

Interpretation (continued)

In the special case of A | -, [A | -], abbreviated [A], will be an identity.
(Emp.). [[] =idy; € E/UK1
(Ext.”). [A, u:: B] = idgoma]s[a] € €/ dom[A].[B]

(Using that b is a morphism of NMs, dom[A].b[B] admits a
canonical coalgebra structure.)

(Var”). [Auz Al u: Al = Via] © y(aEZ']T[[A]]) € Tm(dom[A, u :: A])
(See next slide.)

Zwanziger (CMU) Natural Models x Comonads 26 / 31



Semantics of Comonadic Type Theory Interpretation

Interpretation (continued)
Here, EEZE’[[AH : dom[A].b[A] — dom[A].[A] is the “indexed counit”
induced over the coalgebra (dom[A], x : dom[A] — bdom[A]):

dom[A]
)

dom[A]b[A] —Z— b(dom[A].[JA]) ¥ bom]A].[A]

J

PriA] b(pag) PLA]
dom[[A]] ﬁ bdom[[Aﬂ T[A]]) dom[[A]]
idL[[A]]

The left-hand square exists and is a pullback because b is a morphism (not

just a lax morphism).
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Semantics of Comonadic Type Theory Interpretation

Interpretation (continued)

(b-Form.). [A | - = bB] =b[B] € Ty(dom[A])
(b-Intro.). [A | - -t : bB] = b[t] € Tm(dom[A])

(b-Elim.). [A | - (let o’ :=r in t) : B[r/x]] = [t] o y([r]) €
Tm(dom[A])
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Semantics of Comonadic Type Theory Interpretation
Result

Theorem

The interpretation [—] is sound. That is, it is defined on all derivable
contexts, types, and terms, and, furthermore, all contexts, types, and
terms identified by equations receive the same interpretation.
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Semantics of Comonadic Type Theory Interpretation

Conclusion

e We used morphisms of natural models to interpret comonadic DTT.

e This work captures the groupoid model and cubical sets, with the
comonads indicated, and other 1-topos models.

e Approach generalizes to some other type theories (BCMMPS 2018,
Zwanziger 2019), but how far can one push this (cf. LSR 2017)?
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Semantics of Comonadic Type Theory Interpretation

Thanks for your attention!
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