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Summary: We will present results from [15] about fibrations of (∞, 1)-categories with notions
of fibered and extensive coproducts. These generalize 1-categorical results due to Bénabou,
Moens, Jibladze, and Streicher [13, 14, 12]. Our framework is Riehl–Shulman’s synthetic theory
of (∞, 1)-categories [7, 6], working in a simplicial extension of Book HoTT. Thus, qua Shulman’s
work [10] our results constitute a systematic study of lextensive fibrations of internal (∞, 1)-
categories (realized as complete Segal objects [9, 5]) w.r.t. an arbitrary ambient Grothendieck–
Rezk–Lurie-(∞, 1)-topos. We anticipate that our work can be used in future applications to
higher topos theory [11] as well as homotopy theory [2, 3].

1. From lextensive categories to lextensive fibrations: A category C is extensive if for
any small family of objects (ai)i∈I in C the coproduct map

∏
i∈I C/ai → C/

∐
i∈I ai is an

equivalence. If C is a lex category, i.e., it all has finite limits, it is called lextensive.
In the works of Bénabou, Moens, Jibladze, Streicher, Lietz, and Frey this has been more

generally considered in the context of fibered categories p : E → B over finitely complete bases
B via the notion of lextensive or Moens fibration: A fibration p : E → B of finitely complete
categories is called Moens fibration if it satisfies the following conditions:

1. The fibration p has internal or fibered sums, i.e., it is also an opfibration and the Beck–
Chevalley condition is satisfied meaning that both transport operations are compatible in
a canonical way.

2. The internal sums of p are stable, i.e., cocartesian arrows are closed under pullback along
arbitrary maps.

3. The internal sums of p are disjoint, i.e., cocartesian arrows are closed under diagonals.

Indeed, in [13, Corollary 15.4] it is shown that given a Moens fibration p : E → B for any
u : i → j and x ∈ Ei the functor

∐
u /x : Ei/x → Ej/

∐
u x is an equivalence, generalizing the

notion of an extensive category to the fibrational setting.

2. Classification via Moens’ Theorem: In his doctoral thesis [4] Moens shows that Moens
fibrations over a lex base can be characterized up to equivalence as Artin gluings of lex functors
whose domain is the base category, i.e., functors of the form gl(F ) = F ∗cod : C ↓ F → B, for
a lex functor F : B → C between lex categories and the codomain fibration cod : C→ → C.

3. Lextensive fibrations and Moens’ Theorem for (∞, 1)-categories, synthetically:
In the classical case of 1-categories lextensive fibrations play an important role in the fibered
viewpoint of geometric morphisms due to Bénabou cf. [13, 12]. In light of advancing studies
of higher topos theory, particularly as pertaining to the study of models of HoTT [10], we
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believe it to be worthwhile to generalize the mentioned results about extensive fibrations to
the setting of (∞, 1)-categories. This is the theme of the work [15] which main results we
present here, including a version of Moens’ Theorem. We build on our preceding study of
synthetic (co)cartesian fibrations joint work with Buchholtz [1] and principles from Riehl–
Verity’s ∞-cosmos theory [8].
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