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Both the Eckmann-Hilton argument and the Hopf fibration are familiar constructions to
homotopy theorists. Each construction plays an important role in the theory of higher homotopy
groups. The Eckmann-Hilton argument is behind the proof that all higher homotopy groups
are commutative. It is used to construct a path α · β = β · α, for 2-loops α and β. The
Hopf fibration is a map S3 → S2 that lends a generator of Ω3(S2), a term that we will call
the Hopf 3-loop. A deep connection between the two constructions has been suggested. In a
2011 blog comment, Michael Shulman conjectured that the Eckmann-Hilton argument can be
used to construct the Hopf fibration in HoTT. The HoTT book reiterates this claim in the
introduction of chapter 8, stating that “the generating element of π3(S2) is constructed using
the interchange law of [the Eckmann-Hilton argument]”. But no proof of this has actually been
written in HoTT (at least, not to the author’s knowledge). Progress has recently been made
in this area by Kristina Sojakova and G. A. Kavvos, who contsruct syllepsis in homotopy type
theory, in their 2022 paper of the same name. In this talk I aim to fill the gap in the results
by providing a positive answer Shulman’s original conjecture. I will present a pen and paper
proof in book HoTT that shows that the Hopf 3-loop can be constructed (up to sign) using the
Eckmann-Hilton argument. As an immediate application, I will show that this result enables
us to calculate π4(S3) with syllepsis.

To do this we first review the Eckmann-Hilton argument, which constructs a path EH(α, β) :
α·β = β ·α, for any 2-loops α and β. We will use this to construct what I will call “the Eckmann-
Hilton 3-loop” in S2. Applying EH to the generating path surf2 of S2 and its inverse surf−1

2

lends EH(surf2, surf−1
2 ) : surf2 · surf−1

2 = surf−1
2 · surf2. By “tying off the ends” with inverse laws,

we obtain the Eckmann-Hilton 3-loop eh : Ω3(S2).
Then we can use the suspension loop space adjunction to directly construct a map hpf :

S3 → S2 with hpf(surf3) = eh. We claim that this map is (up to sign) the Hopf fibration. We
will show that the fiber of hpf is indeed S1, which implies that eh is a generator of Ω3(S2). Thus
it must be the same (up to sign) as the Hopf 3-loop. This implies the desired claim.

The bulk of the proof constists in showing that the fiber of hpf is equivalent to S1. Instead
of trying to directly construct an equivalence between the fiber and S1, we will construct
a family H : S2 → U that is S1 on the base point and then give a fiberwise equivalence∏

x:S2 Hx ' fibhpf(x). This is due to a famaliar phenomena in HoTT (present in, e.g., the proof
that Ω1(S1) ' Z): we actually need to generalize our claim in order to apply the necessary
induction principles. The most interesting parts of the proof are choosing our type family H
and constructing the map

∏
x:S2 H(x)→ fibhpf(x).

The key insight of the proof, and the motivation for the construction of the family H, comes
from some preliminary analysis of the type family fibhpf . A type family over S2 is uniquely
determined by its descent data. This consists of a type X, which corresponds to the type over
the base point of S2, and a homotopy idX ∼ idX , which corresponds to the two dimensional
transport tr2(surf2) : id ∼ id. We can compute this data for fibhpf fairly easily as fibhpf(N2) and
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λ(z, p).(1z, r-unit−1
p · (1p ? surf2) · r-unitp). Call this homotopy (fib)2. Since (fib)2 is a homotopy,

it comes with an induced naturality condition. We will show that the naturality square induced
by the path (1N3

, surf−1
2 ) is (almost exactly) the Eckmann-Hilton path.

Now we are in a position to start to choose our type family H. We already know we
need the type over the base point to be S1. But we should expect that (fib)2 is a non-trivial
homotopy, since surf2 is not in the image of hpf. So now we know we need H to have non-trivial
2-dimensional descent data, i.e., a non-trival homotopy idS1 ∼ idS1 .

But, what ever homotopy we select, call it (H)2, it has an induced naturality condition.
Since S1 is a 1-type, the naturality condition is essentially trivial (since the naturality cells
are 2-paths). Thus, if we are going to have a fiberwise equivalence between H and (fib)2, the
naturality condition of (fib)2 must also be trivial. But we have already seen that the naturality
of (fib)2 is (more or less) the Eckmann-Hilton path. Thus the proof hinges upon whether or
not the Eckmann-Hilton path in the fiber is trivial.

In more detail, the construction of the map g :
∏

x:S1 Hx → fibhpf(x) by S2-induction will
require us to show that our choice of g(N2) is natural with respect to the descent data of each
type family. This essentially asks for us to construct a homotopy (fib)2 ·r g(N2) ∼ g(N2) ·l (H)2.
We will see that we are practically forced to pick L−1 for (H)2, i.e., the homotopy that sends the
base point of S1 to the inverse of the generating loop of S1. Then, through a few computations,
proving this naturality boils down to showing that (12N3

, eh) = (12N3
, 13N2

) in the fiber. But
this path space is equivalent to fibhpf(eh). And we know this later type is inhabited since
hpf(surf3) = eh.

The rest of the proof is fairly routine, using techniques from the HoTT book. Though this
proof maybe more involved than the HoTT book’s original construction of Hopf fibration, this
new proof is a worthwhile endeavor for a few reasons. First, this proof validates an interesting
perspective on the complexity of S2. We can see S2 as freely generated by a 2-loop. But a 2-loop
necessairly comes with “a braiding” that witnesses the commutivity of concatenation of paths
(i.e., EH). But this braiding is itself freely generated. Thus, the loop that the braiding induces
(i.e., eh) must be a free 3-loop. So, it should generate Ω3(S2). But then the higher structure
(at level 3 and above) of S2 should be the same as S3, since they are both freely generated by
a 3-loop. This is exactly what an analysis of the fiber sequence of hpf shows us.

Second, this proof provides new and succinct way to calculate π4(S3) in HoTT. A quick
lemma shows that functions preserve Eckmann-Hilton. That is, f : S2 → X sends eh to
the Eckmann-Hilton 3-loop induced by f(surf2). Now, surf3 : Ω3(S3) is a 2-loop in Ω(S3), so it
determines a map S2 → Ω(S3). But this map turns out to be the unit of the suspension loopspace
adjunction. As such, it is 2-connected and, in particular, the induced map π3(S2) → π4(S3)
is surjective. Thus it sends the generator of π3(S2) to the generator of π4(S3). But our result
establishes that π3(S2) is Z generated by eh. Since functions preserve Eckmann-Hilton, we know
that the image of eh under this map, and so the generator of π4(S3), is the Eckmann-Hilton
3-loop induced by surf3. Now we apply Syllepsis to calculate that π4(S3) ∼= Z/2Z.
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