Internal higher topos theory

Louis Martini^{1*} and Sebastian Wolf²

¹ Department of Mathematical Sciences, Norwegian University of Science and Technology louis.o.martini@ntnu.no
² Fakultät für Mathematik, Universität Regensburg Sebastian1.Wolf@mathematik.uni-regensburg.de

One of the main ideas behind the notion of a topos is that it provides semantics for a very rich logic, which can be used to interpret many of the constructions from classical mathematics internal to a topos. In particular, one can interpret the theory of categories itself internally, and even the theory of topoi, which leads to the notion of a topos *internal* to another topos. By a theorem of Moens [Moe82], the datum of such a topos internal to some base topos \mathcal{B} is equivalent to that of a topos \mathcal{X} together with a structure map $\mathcal{X} \to \mathcal{B}$. In other words, the category of topoi internal to \mathcal{B} is equivalent to the category of topoi over \mathcal{B} .

In my talk, I will report on ongoing joint work with Sebastian Wolf, in which we tell the analogous story in the world of ∞ -topoi: given an arbitrary base ∞ -topos \mathcal{B} , we developed a theory of categories internal to \mathcal{B} . Such an internal category, hereafter referred to as a \mathcal{B} -category, is by definition a univalent Segal object in \mathcal{B} , i.e. a functor $\Delta^{\text{op}} \to \mathcal{B}$ satisfying certain conditions. Equivalently, a \mathcal{B} -category can be encoded by a limit-preserving functor $\mathcal{B}^{\text{op}} \to \text{Cat}_{\infty}$. The theory of \mathcal{B} -categories, as developed in our paper series [Mar21, MW21, Mar22, MW22], moves along similar lines as the theory of ∞ -categories; so that one can work with \mathcal{B} -categories in essentially the same way as with usual ∞ -categories:

- 1. The ∞ -category $\operatorname{Cat}(\mathcal{B})$ of \mathcal{B} -categories is cartesian closed, so that one obtains a functor \mathcal{B} -category $\operatorname{Fun}(\mathsf{C},\mathsf{D})$ for every pair of \mathcal{B} -categories C and D .
- 2. The ∞ -category Cat(\mathcal{B}) of \mathcal{B} -categories admits an $(\infty, 2)$ -categorical enhancement, which gives rise to a notion of *adjunctions* between \mathcal{B} -categories, and in particular of *Bousfield localisations* (which are adjunctions in which the counit is an equivalence).
- 3. By combining the first two constructions, one obtains a notion of limits and colimits in a \mathcal{B} -category C indexed by a \mathcal{B} -category I: one simply defines the limit (colimit) functor $\lim_{I} (\operatorname{colim}_{I})$ as the right (left) adjoint of the diagonal map $C \to \operatorname{Fun}(I, C)$.
- 4. The internal analogue of the ∞ -category of spaces S is played by the *universe* Ω , defined via the limit-preserving functor $\mathcal{B}_{/-}: \mathcal{B}^{\mathrm{op}} \to \mathrm{Cat}_{\infty}$.
- 5. By combining (1) and (4), one can define the \mathcal{B} -category of presheaves $\mathsf{PSh}(\mathsf{C}) = \mathsf{Fun}(\mathsf{C}^{\mathrm{op}}, \Omega)$ on an arbitrary \mathcal{B} -category C .

By making use of the building blocks of \mathcal{B} -category theory as outlined above, one can now define the notion of a \mathcal{B} -topos:

Definition. A \mathcal{B} -category X is a \mathcal{B} -topos if there is a (small) \mathcal{B} -category C such that X arises as a left exact and accessible Bousfield localisation of PSh(C).

The definition of \mathcal{B} -topoi is entirely analogous to that of ∞ -topoi, and one can similarly prove internal analogues of most statements from higher topos theory, so that \mathcal{B} -topoi behave no different than ordinary ∞ -topoi. However, from an external point of view, one is now working with ∞ -topoi over \mathcal{B} :

^{*}Speaker.

Theorem. The ∞ -category of \mathcal{B} -topoi is equivalent to the ∞ -category of ∞ -topoi over \mathcal{B} .

For this reason, the language of \mathcal{B} -topoi is well-suited for dealing with relative problems in higher topos theory. If time permits, I will discuss some examples where this principle is put to use.

References

- [Mar21] Louis Martini. Yoneda's lemma for internal higher categories. arXiv preprint, 2021, arXiv:2103.17141.
- [Mar22] Louis Martini. Cocartesian fibrations and straightening internal to an ∞-topos. *arXiv preprint*, April 2022, arXiv:2204.00295.
- [Moe82] J. L. Moens. Caractérisation des topos de faisceaux sur un site interne à un topos. PhD thesis, Univ. catholique de Louvain, 1982.
- [MW21] Louis Martini and Sebastian Wolf. Limits and colimits in internal higher category theory. arXiv preprint, November 2021, arXiv:2111.14495.
- [MW22] Louis Martini and Sebastian Wolf. Presentable categories internal to an ∞ -topos. arXiv preprint, September 2022, arXiv:2209.05103.