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In dependent type theory, terms are type checked modulo definitional equality, a congruence
generated by α-, β−, and η-laws, as well as unfolding of definitions. The last aspect is an
important convenience in practice; it allows a user to factor their development into lemmas
and definitions without obstructing later proofs. Despite this advantage, it is not universally
beneficial to unfold definitions when type-checking. Unfolding every definition, for instance,
would result in cluttered proof states and unreadable error messages. More abstractly, allowing
every definition to unfold allows all subsequent proofs to depend on the precise implementation of
each definition and theorem. Definitional equality is notoriously brittle, so even small changes to
a widely-used definition will result in wide-spread breakage if that definition is always unfoldable.

To combat this, most proof assistants have some ability to mark definitions as abstract and
prevent them unfolding outside a well-defined scope. For instance, Agda’s abstract blocks [10]
allow a user to define an operation and prove lemmas relying on its definition but treat the
operation (and lemmas) as abstract after exiting the block. Unfortunately, it is frequently
difficult to predict exactly which lemmas need to be proven prior to sealing a definition. Faced
with the choice between having to guess an all-encompassing set of lemmas or leaving a definition
available for users, library authors are typically forced to leave their core definitions completely
translucent. For instance, as of v1.7.2 the Agda standard library uses abstract only once.

We propose a more refined mechanism for controlling which definitions may be unfolded and
when, allowing the user fine-grained control over the opacity of a definition. Concretely, in our
system every definition is abstract by default but a user may mark a definition translucent within
the scope of a particular definition. We have demonstrated the theoretical soundness of our
mechanism by providing an elaboration algorithm to type theory supplemented with extension
types [6]. We prove normalization for this calculus using synthetic Tait computability [9, 7] and
thereby derive the necessary metatheory to implement our elaboration procedure. We have also
implemented our elaboration procedure within cooltt [5] to show that controlled unfolding is
highly usable in practice. Recently, Liao and Cockx have given an independent implementation
of controlled unfolding in Agda [4]. Further details are available in our preprint on this topic [3].

Controlled unfolding by example For a running example, consider the definition of the +

operator and the constructors of a type of length-indexed lists:

ze+ n = n
su m+ n = su (m+ n)

vnil : vec ze A
vcons : A → vec n A → vec (su n) A

By default, + is opaque. Left this way, however, it becomes impossible to define an append
operation ⊕ for vectors. Accordingly, we must mark + as unfoldable in the definition of ⊕:
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(⊕) unfolds (+)
(⊕) : vec m A → vec n A → vec (m+ n) A
vnil⊕ y = y vcons(a, x)⊕ y = vcons(a, x⊕ y)

With this annotation, + unfolds definitionally within the body of ⊕ but not its type. If the
definition of + could be unfolded in the type of ⊕, any definition using the latter must also be
able to unfold the former. As is, subsequent definitions may use ⊕ without unfolding +.

While the basic picture is clear, dependency offers two complications. First, what should
be done in the case where we do wish to unfold + in a type? Second, what happens if a third
definition unfolds ⊕? The first question is handled through a design pattern: we isolate a type
that requires unfolding a definition into its own definition (of a constant of type U). The tedium
can be alleviated through a simple elaboration mechanism. The second question is more complex.
If a definition unfolds ⊕, it must also necessarily unfold +. Without this transitive unfolding,
one can quickly produce ill-typed terms.1

Elaborating controlled unfolding Rather than providing an equational theory for controlled
unfolding directly, we justify its soundness through an elaboration procedure. This algorithm
reduces the surface language with controlled unfolding to TTP, a core language featuring only
abstract definitions, constants and, crucially, extension types. Extension types {A | ϕ ↪→ M}
were first axiomatized by Riehl and Shulman [6] and have played an important role in cubical
type theory [2, 1]. To a first approximation, an element N : {A | ϕ ↪→ M} is an element of A
such that ϕ ⊢ M = N : A where ϕ is drawn from a collection of (very strict) propositions.2

More precisely, extension types are governed by the following rules:

A type ϕ prop ϕ ⊢ M : A

{A | ϕ ↪→ M}
N : A ϕ ⊢ N = M : A

N : {A | ϕ ↪→ M}
N : {A | ϕ ↪→ M}

N : A ϕ ⊢ N = M : A

Intuitively, the elaboration procedure replaces each definition D : A ≜ M with a constant
αD : {A | ϕD ↪→ M} where ϕD is a freshly generated proposition associated with the definition
D. If D unfolds another definition D′ : B ≜ N , we add an entailment ϕD ⊢ ϕD′ . Examining
the rules for extension types, this addition ensures that when checking ϕD ⊢ M : A as part of
{A | ϕD ↪→ M}, each occurrence of αD′ is definitionally equal to N .

Under this type-theoretic account of controlled unfolding many of the subtleties mentioned
previously simply disappear. For instance, that unfolding declarations does not impact the type
of definition is an consequence of the fact that the A in {A | ϕ ↪→ M} must be a well-formed
type without assuming ϕ. Similarly, unfolding is transitive automatically because entailment is
transitive: if ϕD ⊢ ϕD′ and ϕD′ ⊢ ϕD′′ , then ϕD ⊢ ϕD′′ .

In order to extend the sketch above to a bidirectional elaboration algorithm suitable for
implementation, some formal properties of type theory with extension types are required. In
particular, we must argue that (1) definitional equality of types is decidable and (2) type-
constructors such as dependent products are injective. Both are consequences of the following:

Theorem 1. TTP admits a normalization algorithm.

This result is proven using synthetic Tait computability along with Sterling and Angiuli’s
stabilized neutrals [8]. Moreover, the elaboration algorithm along with several additional
convenience features on top of controlled unfolding has been implemented in cooltt and is
available for experimentation.

1From an implementation point of view this is a failure of subject reduction.
2In homotopical theories, ϕ is a cofibration. For us, they are drawn from a fixed external partial order.
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