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1 Introduction

Brunerie defined a number n with a proof that π4S3 ∼= Z/nZ, and then proved that n = ±2[2].
Brunerie proposed that the value of n might someday be computed from its definition us-
ing an implementation of homotopy type theory, a problem now called “computing Brunerie’s
number.” Recently, Ljungström provided a calculation of a version of Brunerie’s number (“a
Brunerie number”)[9]1 which led to the first successful computation in [10]. Ljungström ob-
served that this calculation provides a standalone proof of π4S3 ≤ Z/2Z using only the Freuden-
thal suspension theorem and Eckmann-Hilton, and asked in [9] for a direct proof that π4S3 is
nontrivial, which would give a standalone proof of π4S3 ∼= Z/2Z.

We report on work in progress inside CCHM[4] cubical type theory using the cubicaltt[5]
implementation:2

� We provide a direct computational proof that π4S3 is nontrivial, giving one solution to
Ljungström’s problem. We define a map π4S3 → bool which computes on a generator
in cubicaltt, inducing a proof that if π4S3 were trivial, then true = false. What is
interesting about this proof is what it does not use: no Hopf fibration, no Freudenthal,
no Blakers-Massey, no long or short exact sequences, no cohomology.

� Using similar techniques, we define another Brunerie number which computes quickly in
cubicaltt, using a new isomorphism π3S2 ∼= Z and a new definition of the Whitehead
product [i2, i2] : π3S2.

� Finally, we give very short proofs of cubical versions of Eckmann-Hilton and syllepsis[14],
which almost immediately induce a generator of π3S2 (and π4S3) and a proof that the
generator of π4S3 has order 2. Thanks to their alternative cubical statements, these proofs
are simpler than Ljungström’s formalizations[8] in Cubical Agda, and more immediately
related to π3S2 and π4S3.

We believe these constructions will lead to another new computational proof of π4S3 ∼=
Z/2Z, though we have not mechanized this yet. We are also currently attempting to compute
π3

(
S2 ∨ S2

) ∼= Z3 using similar techniques.
We will publish our WIP cubicaltt code at https://github.com/pi3js2/pi4s3.

∗Thanks to Axel Ljungström for helpful discussions and for reviewing a draft of this abstract. Thanks to
Marcin Jan Grzybowski for illuminating work on visualizations which have not been included here due to lack
of space.

1Computing Brunerie’s number as defined by Brunerie is still an open problem for implementors, but
computations of alternative “Brunerie numbers” are still interesting for the same reasons Brunerie’s number was
interesting.

2We use cubicaltt because it is the only implementation we have found where our examples work, so far.
In Cubical Agda[16], one of our examples appears to demonstrate a canonicity bug, which we have not been able
to diagnose; we hope all of our examples will work in Cubical Agda if the bug is fixed. We have also attempted
to do a similar computation in redtt[1][15], an implementation of Cartesian cubical type theory, but so far our
attempts consume too much memory.

https://github.com/pi3js2/pi4s3
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2 π4S3 ≇ 1

We define a map π4S3 → bool which computes in cubicaltt, proving by computation that
π4S3 is nontrivial. We define the map as follows:

π4S3
π3f1−−−→ π3JS2

π3f2−−−→ π3J2S2
π2f3−−−→ π2T2LJ2S2

π2f4−−−→ π2K (Z/2Z, 2) f4−→ bool

We use ad-hoc HIT representations for the James construction JS2 and its word-length
filtration J2S2. Then, “T2LJ2S2” is another ad-hoc HIT, defined like J3S1 but with an extra
3-cell, which we conjecture provides a model of ∥ΩJ2S2∥2. We speculate that this type can
be regarded as an instance of the Adams-Hilton construction as described by Carlsson and
Milgram[3], closely related to their example 5.2.

The most difficult part of this map is f3 : ΩJ2S2 → T2LJ2S2. Ideally, we would define this
using a general 4-dimensional corollary of univalence, but we failed to prove this corollary so
far. Instead, as suggested by Axel Ljungström, we considered only the specific goal for T2LJ2S2.
Relying on cubicaltt’s normalization, we were able to reduce this to a computation, using the
isomorphism π2J3S1 ∼= Z below and the inclusion J3S1 → T2LJ2S2. This involves yet another
Brunerie number: a certain 10KB term in π2J3S1 which computes to 2, but computes to 0 after
making a modification allowed by the extra 3-cell in T2LJ2S2. We rely on the fact that the
modified term computes to 0 to define the map f3.

Plugging in a generator of π4S3 (induced by our cubical Eckmann-Hilton), the map computes
as desired, giving a proof that π4S3 is nontrivial. Our cubical syllepsis then shows that this
generator is of order 2.

3 Computing another Brunerie number

We also define an alternative version of Brunerie’s number, which computes in the cubicaltt

implementation. The details are very different from both Brunerie and Ljungström, but at a
high level, we follow Brunerie’s recipe. First we define a new isomorphism π3S2 ∼= Z as follows:

π3S2
π2f1−−−→ π2JS1

π2f2−−−→ π2J3S1
π2f3−−−→ π2S2

f4[7]−−−→ Z
Note that Brunerie’s definition of this isomorphism does not go through the James construc-

tion at all, but instead involves the total space of the Hopf fibration. Also unlike Brunerie, we
use ad-hoc HIT representations for the James construction JS1 and its word-length filtration
J3S1. After accounting for this difference, the only new part of the map is f3 : J3S1 → S2. We
prove directly that this map induces an equivalence ∥J3S1∥2 ≃ S1 × ∥S2∥2, and thus a group
isomorphism π2J3S1 ∼= π2

(
S1 × ∥S2∥2

) ∼= π2S2.
We speculate that, under the Pontryagin construction[12]3 relating Ω3S2 to framed links in

R3, the map Ω3S2 → Ω2JS1 computes a link diagram from a link. The map Ω2f3 : Ω2J3S1 →
Ω2S2 then appears to compute the writhe from the link diagram.

The next ingredient for a Brunerie number is the Whitehead product [i2, i2] : π3S2. Brunerie
proves that the attaching map of the 4-cell in J2S2 is [i2, i2]. With our ad-hoc HIT representation
of J2S2, we can directly read off the attaching map for the 4-cell, giving a very short direct
definition of this element, with only two hcomps.

In the cubicaltt implementation, the integer defined by applying the above isomorphism
to this element normalizes to 2 in about 0.02s.

3We think [12] is the original source, but we cannot find it or read Russian. English translations are
reportedly available in [6]. For exposition see e.g. [13] or [11].
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