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Currently, cubical type theories are the only known systems which support computational
univalence. We can use computation in these systems to shortcut some proofs, by appealing to
definitional equality of sides of equations. However, efficiency issues in existing implementations
often preclude such computational proofs, or it takes a large amount of effort to find definitions
which are feasible to compute. In this abstract we investigate the efficiency of the ABCFHL
[ABC+21] Cartesian cubical type theory with separate homogeneous composition (hcom) and
coercion (coe), although most of our findings transfer to other systems.

Cubical normalization-by-evaluation

In variants of non-cubical Martin-Löf type theory, definitional equalities are specified by refer-
ence to a substitution operation on terms. However, well-known efficient implementations do
not actually use term substitution. Instead, normalization-by-evaluation (NbE) is used, which
corresponds to certain environment machines from a more operational point of view. In these
setups, there is a distinction between syntactic terms and semantic values. Terms are viewed
as immutable program code that supports evaluation into the semantic domain but no other
operations.

In contrast, in cubical type theories interval substitution is an essential component of compu-
tation which seemingly cannot be removed from the semantics. Most existing implementations
use NbE for ordinary non-cubical computation, but also include interval substitution as an op-
eration that acts on semantic values. Unfortunately, a naive combination of NbE and interval
substitution performs poorly, as it destroys the implicit sharing of work and structure which
underlies the efficiency of NbE in the first place. We propose a restructured cubical NbE which
handles interval substitution more gracefully. The basic operations are the following.

1. Evaluation maps from syntax to semantics like before, but it additionally takes as input
an interval environment and a cofibration.

2. Interval substitution acts on values, but it has trivial cost by itself; it only shallowly stores
an explicit substitution.

3. Forcing computes a value to weak head form by sufficiently computing previously stored
delayed substitutions.

On canonical values, forcing simply pushes substitutions further down, incurring minimal
cost. But on neutral values, since neutrals are not stable under substitution, forcing has to
potentially perform arbitrary computation. Here we take a hint from the formal cubical NbE
by Sterling and Angiuli [SA21], by annotating neutral values with stability information. This
allows us to quickly determine whether a neutral value is stable under a given substitution.
When it is stable, forcing does not have to look inside it.

It turns out that there is only a single computation rule in the ABCFHL theory which can
trigger interval substitution with significant cost: the coercion rule for the Glue type former.
In every other case, only a weakening substitution may be created, but all neutral values are
stable under weakening, so forcing by weakening always has a trivial cost.



Using canonicity in closed evaluation

In non-cubical type theories, evaluation of closed terms can be more efficient than that of open
terms. For instance, when we evaluate an if−then−else expression, we know that exactly one
branch will be taken. In open evaluation, the Bool scrutinee may be neutral, in which case both
branches may have to be evaluated.

In the cubical setting, systems of partial values can be viewed as branching structures
which make case distinctions on cofibrations. Importantly, there are computation rules which
scrutinize all components of a cubical system. These are precisely the homogeneous composition
rules (hcom) for strict inductive types. For example:

hcomr→r′

N [ψ 7→ i. suc t] (suc b) = suc (hcomr→r′

N [ψ 7→ i. t] b)

When we only have interval variables and a cofibration in the context, we do not have to
compute every system component to check for suc. In this case, which we may call “closed
cubical”, we can use the canonicity property of the theory. Here suc b in the hcom base implies
that every system component is headed by suc as well. Hence, we can use the following rule
instead:

hcomr→r′

N [ψ 7→ i. t] (suc b) = suc (hcomr→r′

N [ψ 7→ i. pred t] b)

Here, pred is a metatheoretic function which takes the predecessor of a value which is already
known to be definitionally suc. The revised rule assumes nothing about the shape of t on
the left hand side, so we can compute pred lazily in the output. These lazy projections work
analogously for all non-higher inductive types. For higher-inductive types, hcom is a canonical
value, so there is no efficiency issue to begin with.

Summary

• Costly interval substitution can only arise from computing with Glue types.

• In closed cubical evaluation, no computation rule forces all components of a system.

We are optimistic that an implementation with these properties would yield significant perfor-
mance improvements. We are currently in the process of developing this system and adapting
existing benchmarks to it.
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