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In his 2016 proof of π4(S3) ∼= Z/2Z, Brunerie [Bru16] crucially uses—but never proves—that
the smash product is symmetric monoidal. Due to the vast amount of path algebra involved when
reasoning about smash products, this has since remained open. While it turns out that smash
products are not needed for Brunerie’s proof [LM23; BLM22], the problem is still interesting
in its own right. Several attempts have been made at salvaging the situation. Floris Van
Doorn [Doo18] came very close to a complete proof by considering an argument using closed
monoidal categories but left a gap where the path algebra got too technical. Another line of
attack by Cavallo and Harper [CH20; Cav21] is the addition of parametricity. This provides a
solution at the cost of complicating the type theory. In this talk, we introduce a heuristic for
reasoning about functions defined over smash products and use it to give a complete proof of the
fact that the smash product is symmetric monoidal. While all key results have been formalised
in Cubical Agda1, the argument is in plain Book HoTT.

The model of the smash product we will use here is given by the cofibre of the inclusion
A ∨B ↪→ A×B. For the sake of clarity, let us spell this out in detail:

Definition 1. The smash product of two pointed types A and B is the HIT generated by

• a point ?∧ : A ∧B

• for every pair (a, b) : A×B,
a point 〈a, b〉 : A ∧B

• for every point a : A, a path pushl(a) : 〈a, ?B〉 = ?∧

• for every point b : B, a path pushr(b) : 〈?a, b〉 = ?∧

• a coherence pushlr : pushl(?A) = pushr(?B).

The fact that the smash product is commutative is very direct. Its associativity, however, is
harder to prove. This was first proved, in HoTT, by van Doorn [Doo18], using the adjunction
(A ∧ B →? C) ' (A →? (B →? C)) and by Brunerie [Bru18], using a computer generated
proof in Agda. Here, we give an explicit proof by considering a more involved HIT

∧
(A,B,C)

satisfying (A∧B)∧C '
∧

(A,B,C) and (trivially)
∧

(A,B,C) '
∧

(C,A,B). This automatically
gives the desired equivalence αA,B,C : (A ∧ B) ∧ C ' A ∧ (B ∧ C). The advantage of this
explicit description of the equivalence is that it becomes easier to trace. In particular, it is
easy to understand its behaviour when applied to homogeneous points and 1-dimensional path
constructors. This will turn out to be precisely what we need.

The key problem in proving the fact that the smash product is symmetric monoidal is
verifying MacLane’s pengaton, i.e. the (pointed) commutativity of the following diagram.

((A ∧B) ∧ C) ∧D

(A ∧ (B ∧ C)) ∧D (A ∧B) ∧ (C ∧D)

A ∧ ((B ∧ C) ∧D) A ∧ (B ∧ (C ∧D))

αA,B,C∧1D

αA,B∧C,D

αA∧B,C,D

αA,B,C∧D
1A∧αB,C,D

1The formalisation is available at https://github.com/aljungstrom/cubical/blob/pentagon/Cubical/

HITs/SmashProduct/SymmetricMonoidal.agda (L562). Note that the definition of precategories is non-standard.

https://github.com/aljungstrom/cubical/blob/pentagon/Cubical/HITs/SmashProduct/SymmetricMonoidal.agda
https://github.com/aljungstrom/cubical/blob/pentagon/Cubical/HITs/SmashProduct/SymmetricMonoidal.agda
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A naive proof attempt by smash product induction forces us to fill (highly non-trivial) cubes
up to 5 dimensions and quickly descends into coherence hell. It turns out that we never need
to verify any coherences coming from the pushlr constructor, but this still is not enough. We
need a stronger induction principle. To this end, we recall that a pointed type A is called
homogeneous if for any point a : A we have an equality of pointed types (A, ?A) = (A, a). We
turn our attention to an incredibly useful lemma, first conjectured for Eilenberg-MacLane spaces
in work leading up to [BLM22] and later proved and generalised by Cavallo (and later further
generalised by Buchholtz, Christensen, G. Taxer̊as Flaten and Rijke [Buc+23]) which states that
any two pointed functions f, g : A→? B with B homogeneous are equal as pointed functions iff
their underlying functions are equal. Using the fact that A→? B is homogeneous whenever B
is, the adjunction (A ∧B →? C) ' (A→? (B →? C)) yields the following result.

Lemma 1. Let f, g : A∧B →? C with C homogeneous. We have f = g as pointed functions iff
f〈a, b〉 = g〈a, b〉 for (a, b) : A×B.

If we could apply Lemma 1 to functions ((A∧B)∧C)∧D → A∧ (B∧ (C∧D)), the pentagon
would be trivial. Unfortunately, arbitrary smash products are not necessarily homogeneous.
Fortunately, there is still some use for the lemma. Let us consider the following construction.

Definition 2. Let f, g : A ∧B → C and h : ((a, b) : A×B)→ f〈a, b〉 = g〈a, b〉. We define two
pointed functions Lh : A→? f(?∧) = g(?∧) and Rh : B →? f(?∧) = g(?∧) by

Lh(a) = (apf (pushl(a)))−1 · h(a, ?B) · apg(pushl(b))
Rh(b) = (apf (pushr(b)))

−1 · h(?A, b) · apg(pushr(b))

where we may simply take f(?∧) = g(?∧) to be pointed by either Lh(?A) or Rh(?A) (these are
equal by pushlr, so the choice does not matter).

We can easily derive the following induction principle.

Lemma 2. Let f, g : A ∧B → C. The following data gives an equality f = g:

• A homotopy h : ((a, b) : A×B)→ f〈a, b〉 = g〈a, b〉

• Equalities of pointed functions Lh = constLh(?B) and Rh = constRr(?B).

The second datum above looks almost absurd: it is asking us to provide equalities of pointed
functions, which is much stronger than what is actually needed. However, the codomain of these
functions is homogeneous, so we need not worry. In particular, when e.g. A is another smash
product, as is the case in the pentagon, Lemma 1 applies which in effect makes this part of the
proof trivial. In fact, Lemma 2 and Lemma 1 may be iteratively applied to any n-fold smash
product, completely removing the need to verify any higher coherences. Let us state this as an
informal theorem:

Theorem 1 (Informal). To show that two functions f, g : ((A1 ∧A2)∧ . . . )∧An → B are equal,
it suffices to provide a family of paths f〈x1, . . . , xn〉 = g〈x1, . . . , xn〉 for xi : Ai and to show that
this is coherent with f and g on any single application of pushl or pushr.

This applies to all non-trivial proofs related to the symmetric monoidal structure of the smash
product, and in particular to the pentagon. The pentagon holds by definition for homogeneous
elements 〈a, b, c, d〉 : ((A ∧B) ∧ C) ∧D, so we are only left to trace single instances of the push
constructors, which turns out to be very direct (albeit somewhat lengthy). The pointedness
requirement is equally direct. Theorem 1 can be used to show the remaining axioms and we
easily arrive at the main result:

Theorem 2. The smash product is symmetric monoidal with the type of booleans as unit.

2



Symmetric Monoidal Smash Products in HoTT Axel Ljungström

References

[Bru18] G. Brunerie. “Computer-generated proofs for the monoidal structure of the smash
product”. Homotopy Type Theory Electronic Seminar Talks. Nov. 2018. url: https:
//www.uwo.ca/math/faculty/kapulkin/seminars/hottest.html.

[Bru16] G. Brunerie. “On the homotopy groups of spheres in homotopy type theory”. PhD
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