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In this talk, we discuss the axiom that the exo-type of natural numbers
(exo-nat), N°, is cofibrant. We both present what we gain from assuming it
and mention its semantics. Also, we briefly present a formalization of the
study in Agda.

Two-level type theory (2LTT) [2] combines two type theories: one level
as HoTT and the second level as TT validating the uniqueness of identity
proofs. Following the literature [1], we call the types in HoTT as usual and
those in the other level “exo-types”. If A is an exo-type isomorphic to a type
B, then A is called fibrant. We can weaken this definition. An exo-type A is
called cofibrant if, for any family of types Y over A, the exo type [ [, Y (a) is
fibrant, and if each Y () is contractible, then the fibrant match of [ , Y(a)
is contractible. We present another but equivalent definition of cofibrancy.

Cofibrancy is preserved under dependent sums and coproducts. It does
not seem to be possible to prove that N° is cofibrant [1], but it is sometimes
added as an axiom (called A3 in [2]). Using this, we showed that cofibrancy
is preserved under list types and binary tree types. In [1], it has been proven
that if N is cofibrant, it is sharp; namely, it has a fibrant replacement. After
obtaining new rules about cofibrancy, we tried to generalize the criteria for
being cofibrant. At least, any exo-type that can be written as a dependent
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sum of cofibrant exo-types, and(or) N¢ is cofibrant. In particular, a record!
exo-type of cofibrant exo-types is cofibrant.

We also formalized all these results about cofibrancy in Agda®. We used
one of the new features of Agda that enable a sort SSet for exo-types. One
can read the details of this feature in the documentation®.

It is known that categories with families (CwF) [3] is used to build
a model of 2LTT. A CwF has to be enhanced to the appropriate kind of
“two-level CwF” to model 2LTT. For example, as a presheaf category, the
category of simplicial sets is one such model. We analyze the semantics of
cofibrancy and investigate the models that satisfy cofibrant exo-nat. The
previous example is one such model, but it is a trivial consequence. We
also analyze the criteria for a Cwf to satisfy cofibrant exo-nat. Our study is
still in progress.

Although it is in progress, we try to generalize the cofibrancy rules for
general W-exo-types. It is reasonable to conclude that it should be added
as an axiom because W exo-types include exo-nat. However, its semantics
also should be analyzed.
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