
Specifying QIITs using Containers∗

Thorsten Altenkirch1 and Stefania Damato1

University of Nottingham, Nottingham, UK
{thorsten.altenkirch, stefania.damato}@nottingham.ac.uk

We present ongoing work on providing semantics and syntax for QIITs via generalised contain-
ers. Our aim is to contribute towards the long-term goal of providing a rigorous theoretical
foundation for higher inductive types in HoTT.

What are QIITS? Induction-induction allows us to simultaneuosly define a type A : Type
with a family B : A → Type over A, where the constructors of A can refer to B. This means
we can refer to a family (e.g. a predicate) over A when defining A itself. Quotient inductive
types are inductive types that not only admit point constructors, but also path constructors,
or equalities. Combining these two together, we get quotient inductive-inductive types (QIITs).
QIITs can also be viewed as set-truncated higher inductive types with induction-induction. The
QIIT of the syntax of a very basic type theory is given below as an example.

data Con : Set
data Ty : Con → Set

data Con where
⋄ : Con
, : (Γ : Con) → Ty Γ → Con
eq : (Γ : Con) (A : Ty Γ) (B : Ty (Γ , A)) → (Γ , A) , B ≡ Γ , σ Γ A B

data Ty where
ι : (Γ : Con) → Ty Γ
σ : (Γ : Con) (A : Ty Γ) (B : Ty (Γ , A)) → Ty Γ

Induction-induction allows us to refer to Ty and σ when defining Con, while quotienting allows
us to write eq as a constructor of Con.

Semantics of QIITs Simple inductive types (like natural numbers and lists) and inductive
families (like vectors and finite sets) can be described semantically as the inital algebras of
container functors and indexed container functors respectively [1, 3]. A similar semantic de-
scription for QIITs has not yet been established. The first obstacle we face is that due to the
high dependency allowed between constructors of different sorts, we have no way of expressing
QIITs using endofunctors. To overcome this first obstacle, the usual functorial semantics of
inductive types can be generalised to QIITs, by starting off with a category of the sorts of a
QIIT, and adding one constructor at a time, each time obtaining a new category. The nth

constructor is represented by a pair of functors Ln (the left hand side, or the arguments) and
∗This abstract was also submitted to the workshop on HoTT/UF 2023.

Specifying QIITs using Containers Altenkirch and Damato

Rn (the right hand side, or the target type). At the end of this process, we end up with a
category of ‘dependent dialgebras’, whose initial object corresponds to the QIIT [2].

This process tells us that if a QIIT specification has an initial algebra, then we can describe
it in a specific way. However, it doesn’t tell us which QIIT specifications have initial algebras.
This is precisely the problem we aim to tackle, namely, we want to provide a canonical way to
represent QIIT specifications that admit an initial algebra, i.e. the strictly positive ones. The
way this was achieved for simple inductive types and inductive families was using containers.
We take inspiration from this and aim to ‘containerify’ the semantics given in [2] to obtain
semantics for strictly positive QIITs. Although our investigation is in its early stages and most
of what follows is conjectural, all of our examples so far have corroborated the results below.

Containerification Our approach involves applying restrictions to the pair of functors Ln and
Rn in order to only allow QIIT specifications that are guaranteed to have an initial algebra. One
such restriction is ensuring Ln and Rn are container functors. Since these functors will have
types Ln : An → Set and Rn : ∫ Ln → Set1, and since the containers developed so far can only
represent endofunctors, we require a more general version of containers. A generalised container
[4] over an arbitrary category C is given by a set of shapes S : Set and a family of positions
over the shapes P : S → |C|, written S ◁ P . This gives rise to a functor JS ◁ P K : C → Set,
which on objects X : |C| is defined as JS ◁ P KX :=

∑
(s : S)(C(P s,X)).

The first restriction we identified is for Ln and Rn to be generalised container functors. In this
case, we would have SL,n : Set and PL,n : SL,n → |An| and be able to write Ln : An → Set as

Ln X ∼= JSL,n ◁ PL,nKX =
∑

(s : SL,n)(An(PL,n s,X)).

We would also have SR,n : Set and PR,n : SR,n → | ∫ Ln| with components PX
R,n, P

s
R,n, and P f

R,n.
Further restrictions we identified for strict positivity are (i) SR,n = SL,n and (ii) P s

R,n t = t,
which allow us to write Rn : ∫ Ln → Set just using the two parameters PX

R,n and P f
R,n:

Rn (X, (s, f)) ∼= J(t : SR,n) ◁ (P
X
R,n t, (P

s
R,n t, P

f
R,n t))K (X, (s, f))

∼=
∑

(h : An(P
X
R,n s,X))(h ◦ P f

R,n s = f).

A syntax for QIITs The ‘containerified’ semantics described above also gives rise to a syntax
for QIITs. A specification of a QIIT consists of a list of constructors, each of which is specified
by the parameters SL,n, PL,n, P

X
R,n and P f

R,n. We expect this syntax to be a refinement of
the theory of signatures presented in [5]. We hope this alternative syntax facilitates a formal
reduction from inductive-inductive types to inductive families, and helps us identify a so-called
QW-type, which would be a succinct type to which all strictly positive QIITs could be reduced.

1An is the category of algebras to which we are adding the nth constructor, and ∫ Ln is the category of
elements of Ln.

2

Specifying QIITs using Containers Altenkirch and Damato

References
[1] M. Abbott, T. Altenkirch, and N. Ghani. Containers: Constructing strictly positive types. Theo-

retical Computer Science, 342(1):3–27, 2005. Applied Semantics: Selected Topics.
[2] T. Altenkirch, P. Capriotti, G. Dijkstra, N. Kraus, and F. Nordvall Forsberg. Quotient inductive-

inductive types. In C. Baier and U. Dal Lago, editors, FoSSACS, pages 293–310. Springer, 2018.
[3] T. Altenkirch, N. Ghani, P. Hancock, C. McBride, and P. Morris. Indexed containers. Journal of

Functional Programming, 25:e5, 2015.
[4] T. Altenkirch and A. Kaposi. A container model of type theory. In TYPES 2021, 2021.
[5] A. Kaposi, A. Kovács, and T. Altenkirch. Constructing quotient inductive-inductive types. Proc.

ACM Program. Lang., 3(POPL), 2019.

3

