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Algebraic geometry is the study of solutions of non-linear equations using methods from
geometry. Most prominently, algebraic geometry was essential in the proof of Fermat’s last
theorem by Wiles and Taylor. The central geometric objects in algebraic geometry are called
schemes. Their basic building blocks are called affine schemes, where, informally, an affine
scheme corresponds to a solution sets of polynomial equations. While this correspondence is
clearly visible in the functorial approach to algebraic geometry and our synthetic approach, it
is somewhat obfuscated in the most commonly used, topological appraoch.

In recent years, formalization of the intricate notion of affine schemes received some atten-
tion as a benchmark problem – this is, however, not a problem addressed by this work. Instead,
we use a synthetic approach to algebraic geometry, very much alike to that of synthetic differ-
ential geometry. This means, while a scheme in classical algebraic geometry is a complicated
compound datum, we work in a setting where schemes are types, with an additional property
that can be defined within our synthetic theory.

In our work in progress [CCH23], following ideas of Ingo Blechschmidt and Anders Kock
([Ble17], [Koc06][I.12]), we use a base ring R, which is local and satisfies an axiom reminiscent of
the Kock-Lawvere axiom. A more general axiom, is called synthetic quasi coherence (SQC) by
Blechschmidt and a version quatifying over external algbras is called the comprehensive axiom1

by Kock. The exact concise form of the SQC axiom we use, was noted by David Jaz Myers
([Mye19b; Mye19a]).

Before we state the SQC axiom, let us take a step back and look at the basic objects of
study in algebraic geometry, solutions of polynomial equations. Given a system of polynomial
equations

p1(X1, . . . , Xn) = 0, . . . , pm(X1, . . . , Xn) = 0

the solution set {x : Rn | ∀i. pi(x1, . . . , xn) = 0} is in canonical bijection to the set of R-algebra
homomorphisms

HomR(R[X1, . . . , Xn]/(p1, . . . , pm), R)

by identifying a solution (x1, . . . , xn) with the homomorphism that maps each Xi to xi. Con-
versely, for any R-algebra A, which is merely of the form R[X1, . . . , Xn]/(p1, . . . , pm), we define
the spectrum of A to be

SpecA :≡ HomR(A,R).

In contrast to classical, non-synthetic algebraic geometry, where this set needs to be equipped
with additional structure, we postulate axioms that will ensure that SpecA has the expected

∗Speaker.
1In [Koc06][I.12], Kock’s “axiom 2k” could equivalently be Theorem 12.2, which is exactly our synthetic

quasi coherence axiom, except that it only quantifies over external algebras.
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geometric properties. Namely, SQC is the statement that, for all finitely presented R-algebras
A, the canonical map

A
∼−→ (SpecA → R)

a 7→ (φ 7→ φ(a))

is an equivalence. A prime example of a spectrum is A1 :≡ SpecR[X], which turns out to
be the underlying set of R. With the SQC axiom, any function f : A1 → A1 is given as a
polynomial with coefficients in R. In fact, all functions between affine schemes are given by
polynomials. Furthermore, for any affine scheme SpecA, the axiom ensures that the algebra A
can be reconstructed as the algebra of functions SpecA → R, therefore establishing a duality
between affine schemes and algebras.

The Kock-Lawvere axiom used in synthetic differential geometry, might be stated as the SQC
axiom restricted to (external) Weil-algebras, whose spectra correspond to pointed infinitesimal
spaces. These spaces can be used in both, synthetic differential and algebraic geometry, in very
much the same way.

An important result is the construction of cohomology groups. This is where the homotopy
type theory really comes to bear – instead of the hopeless adaption of classical, non-constructive
definitions of cohomology, we make use of higher types, for example the k-th Eilenberg-MacLane
space K(R, k) of the group (R,+). As an analogue of classical cohomology with values in the
structure sheaf, we then define cohomology with coefficients in the base ring as:

Hk(X,R) :≡ ‖X → K(R, k)‖0.

This definition is very convenient for proving abstract properties of cohomology. For concrete
calculations we make use of another axiom, which we call Zariski-local choice. While this axiom
was conceived of for exactly these kind of calculations, it turned out to settle numerous questions
with no apparent connection to cohomology. One example is the equivalence of two notions of
open subspace. A pointwise definition of openness was suggested to us by Ingo Blechschmidt
and is very convenient to work with. However, classically, basic open subsets of an affine scheme
are given by functions on the scheme and the corresponding open is morally the collection of
points where the function does not vanish. With Zariski-local choice, we were able to show that
these notions of openness agree in our setup.

Apart from SQC, locality of the base ring R and Zariski-local choice, we only use homotopy
type theory, including univalent universes, truncations and some very basic higher inductive
types. Roughly, Zariski-local choice states, that any surjection into an affine scheme merely has
sections on a Zariski-cover. The latter, internal, notion of cover corresponds quite directly to
the covers in the site of the Zariski topos, which we use to construct a model of homotopy type
theory with our axioms.

The scope of our theory so far, includes quasi-compact, quasi-separated schemes of finite type
over an arbitrary ring. These are all finiteness assumptions, that were chosen for convenience
and include examples like closed subspaces of projective space, which we want to study in future
work, as example applications. So far, we know that basic internal constructions, like affine
schemes, correspond to the correct classical external constructions. This can be expanded using
our model, which is of course also important to ensure the consistency of our setup.

Since there are many aspects of our work that can be selected as a focus for a talk, we plan
to present our work at HoTT 23 in a way, that will also have novel content for listeners from
other conferences.
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