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Introduction

HoTT as a foundation of mathematics based on types regarded
as spaces (∞-groupoids).

Question: how to define algebraic structures when equalities
behave like homotopies?

In set-level mathematics, one makes use of (set-level) algebraic
structures to organise this higher dimensional data (operad,
presheaves over a category, …).

Problem: leads to a situation of circular dependency in HoTT
where one would have to define these structures coherently in
the first place.
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Our approach

We extend type theory with a universe of polynomial monads
whose laws are definitional equalities.

Presentation of types and their higher structures as opetopic
types.

Allows the definition of fully coherent higher algebraic
structures (∞-groupoids, (∞, 1)-categories).

Examples: the universe of types, the opetopic type associated to
a type, adjunctions, joins, …
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Our type theory

Our base type theory is book HoTT with Agda’s features
(coinductive records, inductive-recursive types, …).

Most of our work has been formalised in Agda using postulates
and rewrite rules to define the universe of polynomial monads.
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Polynomial monads
We extend type theory with a universe of polynomial monads
M : U .

Elements M : M are codes for our monads. They each define a
polynomial whose data is given by the decoding functions:

• Idx M : U
• Cns M : Idx M → U
• Pos M : {i : Idx M} → Cns M(i) → U
• Typ M : {i : Idx M} {c : Cns M(i)} → Pos M(c) → Idx M

Elements depicted as corollas:
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Polynomial monads

A cartesian polynomial monad is a polynomial functor along
with a unit η and a multiplication μ:

ηM : (i : Idx M) → Cns M(i)

μM : {i : Idx M} (c : Cns M(i)) → −−−−→
Cns M(c) → Cns M(i)

Notation. For any monad M : M,

FamM :≡ Idx M → U

For any type family X : FamM,

−→
X (c) :≡ (p : Pos M(c)) → X(Typ M(c, p))



Polynomial monads
The unit

ηM : (i : Idx M) → Cns M(i)
Units η(i) are unary constructors whose source and target have
the same sort:

i

η i

i



Polynomial monads
The multiplication

μM : {i : Idx M} (c : Cns M(i)) → −−−−→
Cns M(c) → Cns M(i)

The multiplication “contracts” a tree of constructors while
preserving the type of positions and their sort.

a c d
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Polynomial monads
Laws

The operation μM is associative and unital with units ηM:

μM(c,� p → ηM(Typ M(c, p))) ≡ c
μM(ηM(i), d) ≡ d(η-pos (i))
μM(μM(c, d), e) ≡ μM(c, (� p → μM(d(p), (� q → e(pairμ(p, q))))))



Identity monad

We populate the universe by introducing codes for our monads
and by defining the relevant decoding functions.
The identity monad Id : M has a single unary constructor.

Idx Id :≡ 1
Cns Id(i) :≡ 1
Pos Id(c) :≡ 1
Typ Id(c, p) :≡ ∗

The monad structure is trivial.



Baez-Dolan slice construction

For any monad M : M and family X : FamM, their slice
construction is the monad M/X : M .

Idx M/X :≡ (i : Idx M) (y : X(i)) (c : Cns M(i)) (x :
−→
X (c))

Indices are frames: quadruplets (i, y) ⊳ (c, x) representing a
constructor of M whose sources and target are decorated with
elements in X.
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Baez-Dolan slice construction

Constructors are well-founded trees of frames which multiply
to their indexing frame under the operation μM. Defined as an
inductive types whose constructors are:

lf(i, x)

x

x

nd((i, z) ⊳ (c, y), t)

x1 x2 y2

z

y1



Baez-Dolan slice construction

The positions of a constructor are paths in the tree it represents
from its root to its different nodes:

Pos M/X(lf(i, x)) :≡ 0
Pos M/X(nd((i, z) ⊳ (c, y), t)) :≡ 1 + (p : Pos M(c)) × Pos M/X(tp)

The typing function projects out the constructor associated to a
node at a specified position:

Typ M/X(nd((i, z) ⊳ (c, y), t), inl(∗)) :≡ (i, z) ⊳ (c, y)
Typ M/X(nd((i, z) ⊳ (c, y), t), inr(p, q)) :≡ Typ M/X(tp , q)



Baez-Dolan slice construction

The constructors of M/X illustrated.

lf(i, x)

x

x

nd((i, z) ⊳ (c, y), t)

x1 x2 y2

z
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Algebras
An algebra for a monad M is
• a family X0 : FamM,
• a family X1 : FamM/X0 .

such that the type

(y : X0(i)) × X1((i, y) ⊳ (c, x))

is contractible for any constructor c : Cns M(i) and values
x :

−→
X0(c).

X1 is an entire and functional relation.
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Opetopic types

A M-opetopic type is the data of
• a family X : FamM
• a M/X-opetopic type

A M-opetopic type X is fibrant if it satisfies the following
coinductive property:
• (X0 ,X1) is an algebra.
• X>0 is a fibrant opetopic type.

OM is the type of M-opetopic types.
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Opetopic types

Examples of opetopic types:
• ∞-Grp = (X : OId) × is-fibrant(X)
• (∞, 1)-Cat = (X : OId) × is-fibrant(X>0)



The universe
0-cells

Types and their fibrant relations assemble into the
(∞, 1)-category

U o : OId

Its family of objects U o
0 is the universe of types U :

U o
0 (∗) ≡ U
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The universe
1-cells

The family of 1-cells

U o
1 : Idx Id/Uo

0
→ U

is a binary relation on U .

For example,

U o
1 (

B
A ) ' (R : (a : A) (b : B) → U) × is-fibrant(R)
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The universe
2-cells

The family of 2-cells

U o
2 : Idx Id/Uo

0/U
o
1
→ U

relates a source pasting diagram of 1-cells to a target 1-cell.

For example,

U o
2 (

C
B

F
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D

E ) ' (R : (a : A) (b : B) (c : C)
→ (d : D(a, b)) (e : E(b, c)) (f : F(a, c)) → U)
× is-fibrant(R)
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The universe
Fibrant relations

Formally, the domain of our relations are frames of the
universal fibration U o

• → U o.

a1 … an
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Thank you for your attention.


