
Opetopic Methods in Homotopy Type Theory

Antoine Allioux
Institut de Recherche en Informatique Fondamentale, Paris, France

HoTT 2023

Joint work with Eric Finster



Introduction

HoTT as a foundation of mathematics based on types regarded
as spaces (∞-groupoids).

Question: how to define algebraic structures when equalities
behave like homotopies?

In set-level mathematics, one makes use of (set-level) algebraic
structures to organise this higher dimensional data (operad,
presheaves over a category, …).

Problem: leads to a situation of circular dependency in HoTT
where one would have to define these structures coherently in
the first place.



Introduction

HoTT as a foundation of mathematics based on types regarded
as spaces (∞-groupoids).

Question: how to define algebraic structures when equalities
behave like homotopies?

In set-level mathematics, one makes use of (set-level) algebraic
structures to organise this higher dimensional data (operad,
presheaves over a category, …).

Problem: leads to a situation of circular dependency in HoTT
where one would have to define these structures coherently in
the first place.



Introduction

HoTT as a foundation of mathematics based on types regarded
as spaces (∞-groupoids).

Question: how to define algebraic structures when equalities
behave like homotopies?

In set-level mathematics, one makes use of (set-level) algebraic
structures to organise this higher dimensional data (operad,
presheaves over a category, …).

Problem: leads to a situation of circular dependency in HoTT
where one would have to define these structures coherently in
the first place.



Introduction

HoTT as a foundation of mathematics based on types regarded
as spaces (∞-groupoids).

Question: how to define algebraic structures when equalities
behave like homotopies?

In set-level mathematics, one makes use of (set-level) algebraic
structures to organise this higher dimensional data (operad,
presheaves over a category, …).

Problem: leads to a situation of circular dependency in HoTT
where one would have to define these structures coherently in
the first place.



Our approach

We extend type theory with a universe of polynomial monads
whose laws are definitional equalities.

Presentation of types and their higher structures as opetopic
types.

Allows the definition of fully coherent higher algebraic
structures (∞-groupoids, (∞, 1)-categories).

Examples: the universe of types, the opetopic type associated to
a type, adjunctions, joins, …



Our approach

We extend type theory with a universe of polynomial monads
whose laws are definitional equalities.

Presentation of types and their higher structures as opetopic
types.

Allows the definition of fully coherent higher algebraic
structures (∞-groupoids, (∞, 1)-categories).

Examples: the universe of types, the opetopic type associated to
a type, adjunctions, joins, …



Our approach

We extend type theory with a universe of polynomial monads
whose laws are definitional equalities.

Presentation of types and their higher structures as opetopic
types.

Allows the definition of fully coherent higher algebraic
structures (∞-groupoids, (∞, 1)-categories).

Examples: the universe of types, the opetopic type associated to
a type, adjunctions, joins, …



Our approach

We extend type theory with a universe of polynomial monads
whose laws are definitional equalities.

Presentation of types and their higher structures as opetopic
types.

Allows the definition of fully coherent higher algebraic
structures (∞-groupoids, (∞, 1)-categories).

Examples: the universe of types, the opetopic type associated to
a type, adjunctions, joins, …



Our type theory

Our base type theory is book HoTT with Agda’s features
(coinductive records, inductive-recursive types, …).

Most of our work has been formalised in Agda using postulates
and rewrite rules to define the universe of polynomial monads.



Our type theory

Our base type theory is book HoTT with Agda’s features
(coinductive records, inductive-recursive types, …).

Most of our work has been formalised in Agda using postulates
and rewrite rules to define the universe of polynomial monads.



Polynomial monads
We extend type theory with a universe of polynomial monads
M : U .

Elements M : M are codes for our monads. They each define a
polynomial whose data is given by the decoding functions:

• Idx M : U
• Cns M : Idx M → U
• Pos M : {i : Idx M} → Cns M(i) → U
• Typ M : {i : Idx M} {c : Cns M(i)} → Pos M(c) → Idx M

Elements depicted as corollas:

x1
…

xn

c

y



Polynomial monads
We extend type theory with a universe of polynomial monads
M : U .

Elements M : M are codes for our monads. They each define a
polynomial whose data is given by the decoding functions:

• Idx M : U
• Cns M : Idx M → U
• Pos M : {i : Idx M} → Cns M(i) → U
• Typ M : {i : Idx M} {c : Cns M(i)} → Pos M(c) → Idx M

Elements depicted as corollas:

x1
…

xn

c

y



Polynomial monads
We extend type theory with a universe of polynomial monads
M : U .

Elements M : M are codes for our monads. They each define a
polynomial whose data is given by the decoding functions:
• Idx M : U

• Cns M : Idx M → U
• Pos M : {i : Idx M} → Cns M(i) → U
• Typ M : {i : Idx M} {c : Cns M(i)} → Pos M(c) → Idx M

Elements depicted as corollas:

x1
…

xn

c

y



Polynomial monads
We extend type theory with a universe of polynomial monads
M : U .

Elements M : M are codes for our monads. They each define a
polynomial whose data is given by the decoding functions:
• Idx M : U
• Cns M : Idx M → U

• Pos M : {i : Idx M} → Cns M(i) → U
• Typ M : {i : Idx M} {c : Cns M(i)} → Pos M(c) → Idx M

Elements depicted as corollas:

x1
…

xn

c

y



Polynomial monads
We extend type theory with a universe of polynomial monads
M : U .

Elements M : M are codes for our monads. They each define a
polynomial whose data is given by the decoding functions:
• Idx M : U
• Cns M : Idx M → U
• Pos M : {i : Idx M} → Cns M(i) → U

• Typ M : {i : Idx M} {c : Cns M(i)} → Pos M(c) → Idx M
Elements depicted as corollas:

x1
…

xn

c

y



Polynomial monads
We extend type theory with a universe of polynomial monads
M : U .

Elements M : M are codes for our monads. They each define a
polynomial whose data is given by the decoding functions:
• Idx M : U
• Cns M : Idx M → U
• Pos M : {i : Idx M} → Cns M(i) → U
• Typ M : {i : Idx M} {c : Cns M(i)} → Pos M(c) → Idx M

Elements depicted as corollas:

x1
…

xn

c

y



Polynomial monads
We extend type theory with a universe of polynomial monads
M : U .

Elements M : M are codes for our monads. They each define a
polynomial whose data is given by the decoding functions:
• Idx M : U
• Cns M : Idx M → U
• Pos M : {i : Idx M} → Cns M(i) → U
• Typ M : {i : Idx M} {c : Cns M(i)} → Pos M(c) → Idx M

Elements depicted as corollas:

x1
…

xn

c

y



Polynomial monads

A cartesian polynomial monad is a polynomial functor along
with a unit η and a multiplication μ:

ηM : (i : Idx M) → Cns M(i)

μM : {i : Idx M} (c : Cns M(i)) → −−−−→
Cns M(c) → Cns M(i)

Notation. For any monad M : M,

FamM :≡ Idx M → U

For any type family X : FamM,

−→
X (c) :≡ (p : Pos M(c)) → X(Typ M(c, p))



Polynomial monads
The unit

ηM : (i : Idx M) → Cns M(i)
Units η(i) are unary constructors whose source and target have
the same sort:

i

η i

i



Polynomial monads
The multiplication

μM : {i : Idx M} (c : Cns M(i)) → −−−−→
Cns M(c) → Cns M(i)

The multiplication “contracts” a tree of constructors while
preserving the type of positions and their sort.

a c d

g h

i

f

b e

a c d

j

f



Polynomial monads
Laws

The operation μM is associative and unital with units ηM:

μM(c,� p → ηM(Typ M(c, p))) ≡ c
μM(ηM(i), d) ≡ d(η-pos (i))
μM(μM(c, d), e) ≡ μM(c, (� p → μM(d(p), (� q → e(pairμ(p, q))))))



Identity monad

We populate the universe by introducing codes for our monads
and by defining the relevant decoding functions.
The identity monad Id : M has a single unary constructor.

Idx Id :≡ 1
Cns Id(i) :≡ 1
Pos Id(c) :≡ 1
Typ Id(c, p) :≡ ∗

The monad structure is trivial.



Baez-Dolan slice construction

For any monad M : M and family X : FamM, their slice
construction is the monad M/X : M .

Idx M/X :≡ (i : Idx M) (y : X(i)) (c : Cns M(i)) (x :
−→
X (c))

Indices are frames: quadruplets (i, y) ⊳ (c, x) representing a
constructor of M whose sources and target are decorated with
elements in X.

x1
…

xn

y



Baez-Dolan slice construction

For any monad M : M and family X : FamM, their slice
construction is the monad M/X : M .

Idx M/X :≡ (i : Idx M) (y : X(i)) (c : Cns M(i)) (x :
−→
X (c))

Indices are frames: quadruplets (i, y) ⊳ (c, x) representing a
constructor of M whose sources and target are decorated with
elements in X.

x1
…

xn

y



Baez-Dolan slice construction

For any monad M : M and family X : FamM, their slice
construction is the monad M/X : M .

Idx M/X :≡ (i : Idx M) (y : X(i)) (c : Cns M(i)) (x :
−→
X (c))

Indices are frames: quadruplets (i, y) ⊳ (c, x) representing a
constructor of M whose sources and target are decorated with
elements in X.

x1
…

xn

y



Baez-Dolan slice construction

Constructors are well-founded trees of frames which multiply
to their indexing frame under the operation μM. Defined as an
inductive types whose constructors are:

lf(i, x)

x

x

nd((i, z) ⊳ (c, y), t)

x1 x2 y2

z

y1



Baez-Dolan slice construction

The positions of a constructor are paths in the tree it represents
from its root to its different nodes:

Pos M/X(lf(i, x)) :≡ 0
Pos M/X(nd((i, z) ⊳ (c, y), t)) :≡ 1 + (p : Pos M(c)) × Pos M/X(tp)

The typing function projects out the constructor associated to a
node at a specified position:

Typ M/X(nd((i, z) ⊳ (c, y), t), inl(∗)) :≡ (i, z) ⊳ (c, y)
Typ M/X(nd((i, z) ⊳ (c, y), t), inr(p, q)) :≡ Typ M/X(tp , q)



Baez-Dolan slice construction

The constructors of M/X illustrated.

lf(i, x)

x

x

nd((i, z) ⊳ (c, y), t)

x1 x2 y2

z

y1



Algebras
An algebra for a monad M is
• a family X0 : FamM,
• a family X1 : FamM/X0 .

such that the type

(y : X0(i)) × X1((i, y) ⊳ (c, x))

is contractible for any constructor c : Cns M(i) and values
x :

−→
X0(c).

X1 is an entire and functional relation.

x1 … xn

f

y



Algebras
An algebra for a monad M is
• a family X0 : FamM,
• a family X1 : FamM/X0 .

such that the type

(y : X0(i)) × X1((i, y) ⊳ (c, x))

is contractible for any constructor c : Cns M(i) and values
x :

−→
X0(c).

X1 is an entire and functional relation.

x1 … xn

f

y



Algebras
An algebra for a monad M is
• a family X0 : FamM,
• a family X1 : FamM/X0 .

such that the type

(y : X0(i)) × X1((i, y) ⊳ (c, x))

is contractible for any constructor c : Cns M(i) and values
x :

−→
X0(c).

X1 is an entire and functional relation.

x1 … xn

f

y



Algebras
An algebra for a monad M is
• a family X0 : FamM,
• a family X1 : FamM/X0 .

such that the type

(y : X0(i)) × X1((i, y) ⊳ (c, x))

is contractible for any constructor c : Cns M(i) and values
x :

−→
X0(c).

X1 is an entire and functional relation.

x1 … xn

f

y



Algebras
An algebra for a monad M is
• a family X0 : FamM,
• a family X1 : FamM/X0 .

such that the type

(y : X0(i)) × X1((i, y) ⊳ (c, x))

is contractible for any constructor c : Cns M(i) and values
x :

−→
X0(c).

X1 is an entire and functional relation.

x1 … xn

f

y



Opetopic types

A M-opetopic type is the data of
• a family X : FamM
• a M/X-opetopic type

A M-opetopic type X is fibrant if it satisfies the following
coinductive property:
• (X0 ,X1) is an algebra.
• X>0 is a fibrant opetopic type.

OM is the type of M-opetopic types.



Opetopic types

A M-opetopic type is the data of
• a family X : FamM
• a M/X-opetopic type

A M-opetopic type X is fibrant if it satisfies the following
coinductive property:
• (X0 ,X1) is an algebra.
• X>0 is a fibrant opetopic type.

OM is the type of M-opetopic types.



Opetopic types

A M-opetopic type is the data of
• a family X : FamM
• a M/X-opetopic type

A M-opetopic type X is fibrant if it satisfies the following
coinductive property:
• (X0 ,X1) is an algebra.
• X>0 is a fibrant opetopic type.

OM is the type of M-opetopic types.



Opetopic types

Examples of opetopic types:
• ∞-Grp = (X : OId) × is-fibrant(X)
• (∞, 1)-Cat = (X : OId) × is-fibrant(X>0)



The universe
0-cells

Types and their fibrant relations assemble into the
(∞, 1)-category

U o : OId

Its family of objects U o
0 is the universe of types U :

U o
0 (∗) ≡ U



The universe
0-cells

Types and their fibrant relations assemble into the
(∞, 1)-category

U o : OId

Its family of objects U o
0 is the universe of types U :

U o
0 (∗) ≡ U



The universe
1-cells

The family of 1-cells

U o
1 : Idx Id/Uo

0
→ U

is a binary relation on U .

For example,

U o
1 (

B
A ) ' (R : (a : A) (b : B) → U) × is-fibrant(R)



The universe
1-cells

The family of 1-cells

U o
1 : Idx Id/Uo

0
→ U

is a binary relation on U .

For example,

U o
1 (

B
A ) ' (R : (a : A) (b : B) → U) × is-fibrant(R)



The universe
2-cells

The family of 2-cells

U o
2 : Idx Id/Uo

0/U
o
1
→ U

relates a source pasting diagram of 1-cells to a target 1-cell.

For example,

U o
2 (

C
B

F

A
D

E ) ' (R : (a : A) (b : B) (c : C)
→ (d : D(a, b)) (e : E(b, c)) (f : F(a, c)) → U)
× is-fibrant(R)



The universe
2-cells

The family of 2-cells

U o
2 : Idx Id/Uo

0/U
o
1
→ U

relates a source pasting diagram of 1-cells to a target 1-cell.

For example,

U o
2 (

C
B

F

A
D

E ) ' (R : (a : A) (b : B) (c : C)
→ (d : D(a, b)) (e : E(b, c)) (f : F(a, c)) → U)
× is-fibrant(R)



The universe
Fibrant relations

Formally, the domain of our relations are frames of the
universal fibration U o

• → U o.

a1 … an

c

b

A1 … An

C

B



The universe
Fibrant relations

Formally, the domain of our relations are frames of the
universal fibration U o

• → U o.

a1 … an

c

b

A1 … An

C

B



The universe
Fibrant relations

Formally, the domain of our relations are frames of the
universal fibration U o

• → U o.

a1 … an

c

b

A1 … An

C

B



The universe
Fibrant relations

Formally, the domain of our relations are frames of the
universal fibration U o

• → U o.

a1 … an

c

b

A1 … An

C

B



Thank you for your attention.


