Eckmann-Hilton and the Hopf Fibration in Homotopy Type Theory

Raymond Baker

University of Colorado Boulder morphismz.github.io/

International Confrence on Homotopy Type Theory 2023 May 25, 2023

< □ > < A >

Use the Eckmann-Hilton argument to construct the Hopf fibration and, consequently, a generator of $\Omega^3(\mathbb{S}^2)$:

- **1** Use Eckmann-Hilton to construct a 3-loop eh : $Ω^3(S^2)$. This immediately defines a map hpf : $S^3 → S^2$.
- 2 Construct a type family $\mathcal{H} : \mathbb{S}^2 \to U$ with \mathcal{H} defined to be \mathbb{S}^1 over the base point of \mathbb{S}^2 .
- **3** Construct a fiberwise equivalence $(x : \mathbb{S}^2) \to \text{fib}_{hpf}(x) \simeq \mathcal{H}(x)$

Conventions

R	2
S	

$$\begin{array}{l} \mathsf{N}_2:\mathbb{S}^2\\ \mathsf{surf}_2:\Omega^2(\mathbb{S}^2) \end{array}$$

 $\begin{array}{l} \mathsf{N}_3:\mathbb{S}^3\\ \mathsf{surf}_3:\Omega^3(\mathbb{S}^3) \end{array}$

Also I use 1 for the reflexivity path

< □ > < □ > < □ > < □ >

Э

Eckmann-Hilton

For $\beta, \alpha : \Omega^2(X)$, we have $\mathsf{EH}(\beta, \alpha) : \beta \cdot \alpha = \alpha \cdot \beta$

Where does Eckmann-Hilton come from?

For a 2-loop $\beta : \Omega^2(X, \bullet)$, we have a homotopy of type $id_{\Omega(X)} \sim id_{\Omega(X)}$ given by the formula:

Whisker_{β} := $\lambda(p).1_p \star \beta$

Eckmann-Hilton is (more or less) the *naturality condition* of this homotopy when *applied to 2-loops*.

Where does Eckmann-Hilton come from?

This homotopy has a naturality condition induced by paths in $\Omega(X)$. In particular, for $\alpha : \Omega^2(X)$:

Plus coherence paths, this lends

$$\mathsf{EH}(\beta,\alpha):\beta \cdot \alpha = \alpha \cdot \beta$$

We can use this to construct a 3-loop in \mathbb{S}^2 :

$$1^2_{N_2} - surf_2 \cdot surf_2^{-1} - \frac{EH(surf_2, surf_2^{-1})}{2} surf_2^{-1} \cdot surf_2 - 1^2_{N_2}$$

Call this loop eh.

The 3-loop eh lets us define "the Hopf fibration":

$$\begin{split} & \text{hpf}: \mathbb{S}^3 \to \mathbb{S}^2 \\ & \text{Define a map hpf}: \mathbb{S}^3 \to \mathbb{S}^2 \text{ by } \mathbb{S}^3 \text{-induction:} \\ & \text{hpf}(N_3) \coloneqq N_2 \\ & \text{hpf}(\text{surf}_3) \coloneqq \text{surf}_2. \end{split}$$

(日)

The Plan, part II

Now that we have a map $\mathbb{S}^3 \to \mathbb{S}^2$, we need to show this map is* the Hopf fibration. How are we going to do this?

- **1** Construct $\mathcal{H} : \mathbb{S}^2 \to U$ with $\mathcal{H}(N_2) :\equiv \mathbb{S}^1$
- **2** Construct $(x : \mathbb{S}^2) \to \text{fib}_{hpf}(x) \simeq \mathcal{H}(x)$

*up to sign, though I'm pretty sure it *is* the Hopf fibration. I can say more about this at the end.

Descent on S²

A type family **B** over \mathbb{S}^2 is equivalent to:

a type X, the value of $B(N_2)$

a homotopy $id_X \sim id_X$, the value of $B(surf_2)$ (together with univalence)

The equivalence is given by $(B: \mathbb{S}^2 \to U) \mapsto (B(N_2), tr^{(B)^2}(surf_2))$

Selecting the Family \mathcal{H} , some motivation

The descent data of fib_{hpf}

The type: $fib_{hpf}(N_2)$

The homotopy: $\lambda(z, p).(1_z, 1_p \star \text{surf}_2) \equiv \lambda(z, p).(1_z, \text{Whisker}_\beta(p))$

・ロト ・同ト ・ヨト ・ヨ

Selecting the Family \mathcal{H} , some motivation

The family $(x : \mathbb{S}^2) \to fib_{hpf}(x)$ comes equipped with a section $(z : \mathbb{S}^3) \to fib_{hpf}(hpf(z))$

given by

$$\lambda(z).(z, \mathbf{1}_{hpf(z)})$$

For any $B : \mathbb{S}^2 \to U$, fiberwise maps $(x : \mathbb{S}^2) \to (\text{fib}_{hpf}(x) \to B(x))$ are equivalent to sections $(z : \mathbb{S}^3) \to B \circ hpf(z)$

Universal Property of fib_{hpf}

fib_{hpf} is initial among type families $B : \mathbb{S}^2 \to U$ equipped with a section $(z : \mathbb{S}^3) \to B \circ hpf(z)$.

What does a section $(z : \mathbb{S}^3) \rightarrow B \circ hpf(z)$ mean? Such a section is equivalent to:

A point $b : B(N_2)$ A dependent 3-loop over eh. This means $tr^{(B)^3}(eh)(b) = 1_b^2$.

But what is $tr^{(B)^3}(eh)$?

Eckmann-Hilton in the Universe

Given a type X : U and $H, K : id_X \sim id_X$, there is a canonical term of type

$$H \cdot_h K \sim K \cdot H$$

given by the formula:

 $\lambda(x)$.nat-H(K(x))

I claim $tr^{(B)^3}(eh)$ is this construction repeated for $tr^{(B)^2}(surf_2)$ and $tr^{(B)^2}(surf_2^{-1})$

$$1_x - tr^{(B)^2}(surf_2)(x) \cdot tr^{(B)^2}(surf_2^{-1})(x) - tr^{(B)^2}(surf_2^{-1})(x) \cdot tr^{(B)^2}(surf_2)(x) - 1_x$$

Thus, if $tr^{(B)^3}(eh)(b)$ is trivial, it must be that

$$\mathsf{nat-}[\mathsf{tr}^{(B)^2}(\mathsf{surf}_2)](\mathsf{tr}^{(B)^2}(\mathsf{surf}_2^{-1})(b))$$

is trivial. I.e., is equal to r-inv \cdot I-inv⁻¹ (more or less)

The family fib_{hpf}

The initial type family over \mathbb{S}^2 equipped with a point in $fib_{hpf}(N_2)$ such that the naturality condition of the 2-dimensional descent data is trivial.

the family \mathcal{H}

Define ${\mathcal H}$ with the following descent data: ${\mathbb S}^1$ and L^{-1}

Where L^{-1} : $id_{\mathbb{S}^1} \sim id_{\mathbb{S}^1}$ is defined by:

 $L^{-1}(b_1) \equiv loop^{-1} \text{ and }$

 $nat-L^{-1}(b_1) \equiv I-inv_{loop} \cdot r-inv_{loop}$ which has type loop⁻¹ · loop = loop · loop⁻¹.

The section $(z: \mathbb{S}^3) \rightarrow \mathcal{H} \circ hpf(z)$

We have a section diag : $(z : \mathbb{S}^3) \rightarrow \mathcal{H} \circ hpf(z)$.

We can define this by \mathbb{S}^3 -induction:

Set diag $(N_3) \coloneqq b_1$.

Need a dependent 3-loop over $surf_3$ at $b_1.$ This amounts to a 3-path in $\mathbb{S}^1,$ a 1-type. We get this for free :)

We want an equivalence $(x : \mathbb{S}^2) \to (fib_{hpf}(x) \to \mathcal{H}(x))$. We do this as follows:

1 Construct a forwards map $f : (x : \mathbb{S}^2) \to (\mathsf{fib}_{\mathsf{hpf}}(x) \to \mathcal{H}(x))$

2 Construct a backwards map $g : (x : \mathbb{S}^2) \to (\mathcal{H}(x) \to \mathsf{fib}_{\mathsf{hpf}}(x))$

3 Construct a fiberwise homotopy $(x : \mathbb{S}^2) \to (f_x \circ g_x \sim id_{\mathcal{H}(x)})$

4 Construct a fiberwise homotopy $(x : \mathbb{S}^2) \to (g_x \circ f_x \sim \mathrm{id}_{\mathrm{fib}_{\mathrm{hpf}}(x)})$

The Forwards Map
$$f: (x: \mathbb{S}^2) \to (\mathsf{fib}_{\mathsf{hpf}}(x) \to \mathcal{H}(x))$$

The Forwards Map

We have a map
$$f : (x : \mathbb{S}^2) \to (\mathsf{fib}_{\mathsf{hpf}}(x) \to \mathcal{H}(x))$$

We can define this as:

$$f_x(z,p) \coloneqq \operatorname{tr}^H(p)(\operatorname{diag}(z))$$

$$\mathcal{H}$$
 diag(z) $tr^{H}(p)(diag(z))$

z hpf(z)
$$\xrightarrow{p}$$
 x

The Backwards Map $g: (x: \mathbb{S}^2) \rightarrow (\mathcal{H}(x) \rightarrow \mathsf{fib}_{\mathsf{hpf}}(x))$

By \mathbb{S}^2 -induction...

The data of such a map

1 A map $g_{N_2} : \mathbb{S}^1 \to \mathsf{fib}_{\mathsf{hpf}}(\mathsf{N}_2)$

2 A homotopy
$$[tr^{(fib_{hpf})^2}(surf_2)] \cdot g_{N_2} \sim g_{N_2} \cdot L^{-1}$$

equivalently...

- 1 a point a: fib_{hpf}(N₂)
- **2** loop $q : \Omega(\mathsf{fib}_{\mathsf{hpf}}(\mathsf{N}_2))$ at a
- **3** a path $tr^{(fib_{hpf})^2}(surf_2)(a) = q^{-1}$ can make this path 1
- a naturality square... showing that the naturality conditions of the two homotopies are the same

Item 4 essentially amounts to showing that $nat-[tr^{(fib_{hpf})^2}(surf_2)](q) = r-inv \cdot l-inv^{-1}$

Choosing the data

a point *a* : fib_{hpf}(N₂)
loop *q* : Ω(fib_{hpf}(N₂)) at *a*

We can write out the boundary of this square... (I won't now, since this involves a few tedious computations to determine the boundary)

The type of fillers ends up being equivalent to

 $\mathsf{fib}_{\mathsf{hpf}}(\mathsf{eh})$

use $(surf_3, 1)$

The homotopy $(x:\mathbb{S}^2) \to f_x \circ \overline{g_x} \sim \mathrm{id}_{H(x)}$

This is easy

<ロ><部</p>

The homotopy $(x:\mathbb{S}^2) \rightarrow g_x \circ f_x \sim \mathrm{id}_{H(x)}$

$$(x:\mathbb{S}^2)(w:\operatorname{fib}_{\operatorname{hpf}}(x)) \to g_x \circ f_x(w) = w$$

Not so easy... But...

Such a homotopy is equivalent to

$$(z: \mathbb{S}^3) \rightarrow g_{\mathsf{hpf}(z)}(\mathsf{diag}(z)) = (z, \mathbf{1}_{\mathsf{hpf}(z)})$$

(more or less) requires us to show that $g_{eh}(b_1) = (surf_3, 1)$

(more or less) amounts to showing we used $(surf_3, 1)$ to fill the naturality square which defined g

My Advisor

• Professor Jonathan Wise, CU Boulder

Image: A matrix and a matrix

The End :)

Questions? Comments?

◆□> ◆□> ◆目> ◆目> ◆目 ● のへで