Formalization & Computation: Categorical Normalization by Evaluation

David G. Berry Marcelo P. Fiore

University of Cambridge

2nd HoTT Conference Carnegie Mellon University May 2023

Outline

Categorical Normalization

- One Normalization (by Evaluation)
- Inaïve Categorical Normalization
- P-Category Theory & P-Categorical Normalization
- Correctness

Coq Formalization

- O Design Decisions
- 2 Basic Constructions
- Cartesian Structures
- (Co)Ends & Presheaf Exponential

Decide for STLC.

$$\Gamma \vdash t \equiv_{\beta\eta} t' : T$$

David G. Berry (University of Cambridge)

3

イロト イポト イヨト イヨト

Decide for STLC.

$$\Gamma \vdash t \equiv_{\beta\eta} t' : T$$

Standard Solution

 $\Gamma \vdash \mathsf{nf}(t) \equiv_{\alpha} \mathsf{nf}(t') : T$

David G. Berry (University of Cambridge)

^d HoTT Conference, CMU, May '23 3 /

э

イロト イポト イヨト イヨト

Decide for STLC.

$$\Gamma \vdash t \equiv_{\beta\eta} t' : T$$

Standard Solution

$$\Gamma \vdash \mathsf{nf}(t) \equiv_{\alpha} \mathsf{nf}(t') : T$$

- Characterizes $\beta\eta$ -equivalence.
- Clearly decidable.

< D > < A

Decide for STLC.

$$\Gamma \vdash t \equiv_{\beta\eta} t' : T$$

Standard Solution

$$\Gamma \vdash \mathsf{nf}(t) \equiv_{\alpha} \mathsf{nf}(t') : T$$

- Characterizes βη-equivalence.
- Clearly decidable.

Algorithmic Problem

How to compute?

$$\Gamma \vdash t: T \rightsquigarrow \Gamma \vdash \mathsf{nf}(t): T$$

David G. Berry (University of Cambridge)

э

Normalization by Evaluation

The standard approach after Berger and Schwichtenberg '91 proceeds as follows.

э

イロト イポト イヨト イヨト

Normalization by Evaluation

The standard approach after Berger and Schwichtenberg '91 proceeds as follows.

- Define neutral, $\mathcal{M}_{T,\Gamma}$, and normal, $\mathcal{N}_{T,\Gamma}$, terms, as subsets of all terms, $\mathcal{L}_{T,\Gamma}$.
- **2** Define a particular model for types, $[T]_{\Gamma}$.
- Interpret terms into the model, $\mathcal{L}_{T,\Gamma} \to \llbracket T \rrbracket_{\Gamma}$.
- Oefine maps
 - $q: \mathcal{M}_{T,\Gamma} \to \llbracket T \rrbracket_{\Gamma}$ • $u: \llbracket T \rrbracket_{\Gamma} \to \mathcal{N}_{T,\Gamma}$
- **5** $Define nf : \mathcal{L}_{T,\Gamma} \to \mathcal{N}_{T,\Gamma}$

Normalization by Evaluation

The standard approach after Berger and Schwichtenberg '91 proceeds as follows.

- Define neutral, $\mathcal{M}_{T,\Gamma}$, and normal, $\mathcal{N}_{T,\Gamma}$, terms, as subsets of all terms, $\mathcal{L}_{T,\Gamma}$.
- **2** Define a particular model for types, $[T]_{\Gamma}$.
- Interpret terms into the model, $\mathcal{L}_{T,\Gamma} \to \llbracket T \rrbracket_{\Gamma}$.
- Oefine maps
 - $q: \mathcal{M}_{T,\Gamma} \to \llbracket T \rrbracket_{\Gamma}$ • $u: \llbracket T \rrbracket_{\Gamma} \to \mathcal{N}_{T,\Gamma}$
- **(b)** Define $\mathsf{nf} : \mathcal{L}_{T,\Gamma} \to \mathcal{N}_{T,\Gamma}$

Mathematical/Categorical Justification?

From where does all this come?

A.H.S. '95 provides some categorical justification, using an *ad-hoc* gluing-style argument.

Č.D.S. '98 uses an alternative categorical foundation.

Fiore '02 provides a fully categorical foundation using gluing.

Generic Interpretation

For any Cartesian-closed category, \mathbb{M} , there is a universal Cartesian-closed interpretation functor, [-], from the free Cartesian-closed category, \mathcal{F} , over a basetype:

Generic Interpretation

For any Cartesian-closed category, \mathbb{M} , there is a universal Cartesian-closed interpretation functor, [-], from the free Cartesian-closed category, \mathcal{F} , over a basetype:

I-Normalization

co

A normalization function for some model, \mathbb{M} , and interpretation functor, $I: \mathcal{F} \to \mathbb{M}$, can be

$$\begin{array}{c} \bullet \quad u_{\Gamma} : I(\Gamma) \to \llbracket \Gamma \rrbracket \\ \bullet \quad \llbracket \sigma \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket \Delta \rrbracket \\ \bullet \quad \llbracket \sigma \rrbracket : \llbracket \Delta \rrbracket \to I(\Delta) \end{array} \right\} \quad \mathsf{nf}_{I}(\sigma) : I(\Gamma) \to I(\Delta)$$

3.5.4.3

Choice of \mathbb{M} and I

David G. Berry (University of Cambridge)

Image: A image: A

Choice of \mathbb{M} and I

Choice of \mathbb{M} and I

$$\mathbb{M}$$
IUtile? (\checkmark/\checkmark) \mathcal{F} Id \checkmark $\widehat{\mathcal{F}}$ \measuredangle \checkmark

David G. Berry (University of Cambridge)

3 1 4 3 2nd HoTT Conference, CMU, May '23

Choice of \mathbb{M} and I

Problem

In fact, no matter what category we choose for our model all normalization functions will be inutile as they are all extensionally the identity. Following Č.D.S. we switch to a more intensional setting: P-category theory.

Choice of \mathbb{M} and I

$$\mathbb{M}$$
IUtile? (\checkmark / \checkmark) \mathcal{F} Id \checkmark $\widehat{\mathcal{F}}$ \updownarrow \checkmark

Problem

In fact, no matter what category we choose for our model all normalization functions will be inutile as they are all extensionally the identity. Following Č.D.S. we switch to a more intensional setting: P-category theory.

Silver Lining

So far the standard category theory has created a framework for normalization which has avoided defining neutral and normal forms.

David G. Berry (University of Cambridge)

Nota Bene

In the sequel I use some terminology not in its precise HoTT/UF sense!

David G. Berry (University of Cambridge)

э

イロト イポト イヨト イヨ

P-Category Theory (I) [Č.D.S. '98]

Partial Equivalence Relation (PER)

A relation which is symmetric and transitive.

P-Set

A collection with a given PER.

We denote the underlying collection of a P-set, X, by |X|.

We denote the associated PER by \sim_X .

P-Category Theory (I) [Č.D.S. '98]

Partial Equivalence Relation (PER)

A relation which is symmetric and transitive.

P-Set

A collection with a given PER.

We denote the underlying collection of a P-set, X, by |X|.

We denote the associated PER by \sim_X .

Intuition

Think of $(|X|, \sim_X) \simeq \{x : X \mid x \sim x\} / \sim_X$.

This allows simultaneously taking a subset and a quotient.

This provides (co)completeness properties.

P-Category Theory (II)

P-Category

A P-category is given by the following:

- a collection of objects;
- a P-set of arrows between objects;
- a composition operation for arrows; and
- an identity arrow;

such that:

•
$$f \sim f' \wedge g \sim g' \Rightarrow f \circ g \sim f' \circ g';$$

• $f \sim f' \wedge g \sim g' \wedge h \sim h' \Rightarrow (f \circ g) \circ h \sim f' \circ (g' \circ h');$
• $id_x \sim id_x;$
• $f \sim f' \Rightarrow id_x \circ f \sim f': and$

• $f \sim f' \Rightarrow f \circ \operatorname{id}_x \sim f'$.

DATA

AXIOMS

P-Functor

A P-functor, F, from P-category, \mathbb{C} , to P-category, \mathbb{D} , is given by the following:

- a map of objects; and
- a P-map of arrows between objects;

such that:

•
$$f \sim f' \Rightarrow Ff \sim Ff'$$
 (this is the P-map condition);

•
$$f \sim f' \wedge g \sim g' \Rightarrow F(f \circ g) \sim Ff' \circ Fg'$$
; and

• $F \operatorname{id}_x \sim \operatorname{id}_{Fx}$.

AXIOMS

DATA

P-Functor Category

The P-functor category, $[\mathbb{C},\mathbb{D}]$, has:

- ullet P-functors, $\mathbb{C}
 ightarrow \mathbb{D}$, as objects; and
- all transformations as morphisms, where $\alpha\sim\beta$ when:
 - α is P-natural;
 - β is P-natural; and
 - $\alpha_x \sim \beta_x$, for all x.

P-Naturality

 α is P-natural when:

$$f \sim f' \Rightarrow (\alpha_y \circ F f) \sim (F f' \circ \alpha_x)$$

P-Functor Category

The P-functor category, $[\mathbb{C},\mathbb{D}]$, has:

- ullet P-functors, $\mathbb{C}
 ightarrow \mathbb{D}$, as objects; and
- $\bullet~all$ transformations as morphisms, where $\alpha\sim\beta$ when:
 - α is P-natural;
 - β is P-natural; and
 - $\alpha_x \sim \beta_x$, for all x.

Observation

Note that the PER for the morphisms in functor categories typifies the P-categorical approach of taking subsets, by predicating both α and β .

Choice of \mathbb{M} and I		
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

3

・ロト ・聞 ト ・ ヨト ・ ヨト

Choice of $\mathbb M$ and I

[[-]]	\mathbb{M}	Ι	Utile? (🖌 🗶)
\mathcal{F} $q \downarrow \uparrow u$ M	\mathcal{F}	ld	×
I	${\mathcal F}$	よ	\checkmark

Success!

By switching into the intensional P-categorical setting we can elucidate the intensional behaviour separately from the extensional properties. We now have a putative computational algorithm: only thing we have to do now is formalize it ...

Correctness

Correctness Properties

Correctness of normalization algorithms arises in these properties:

- $t \equiv_{\beta\eta} t' \Rightarrow \mathsf{nf}(t) \equiv_{\alpha} \mathsf{nf}(t');$
- $t \equiv_{\beta\eta} \mathsf{nf}(t);$
- $nf(t) \in \mathcal{N}$; and
- $t \in \mathcal{N} \Rightarrow t \equiv_{\alpha} \mathsf{nf}(t).$

Correctness Properties

Correctness of normalization algorithms arises in these properties:

•
$$t \equiv_{\beta\eta} t' \Rightarrow \mathsf{nf}(t) \equiv_{\alpha} \mathsf{nf}(t');$$

•
$$t \equiv_{\beta\eta} \mathsf{nf}(t);$$

•
$$nf(t) \in \mathcal{N}$$
; and

•
$$t \in \mathcal{N} \Rightarrow t \equiv_{\alpha} \mathsf{nf}(t).$$

Properties for Free

The P-categorical construction give us the following for free:

•
$$t \equiv_{\beta\eta} t' \Rightarrow \mathsf{nf}(t) \equiv_{\beta\eta} \mathsf{nf}(t');$$
 and

•
$$t \equiv_{\beta\eta} \mathsf{nf}(t)$$
.

Category of Renamings

The category of contexts and context renamings, \mathcal{R} , is a subcategory of \mathcal{F} with inclusion functor *i*.

Presheaves of Neutral and Normal Terms

Neutrality and Normality are preserved under renamings, allowing them to lift to type-indexed families of presheaves.

$$\mathcal{M}, \mathcal{N}: \mathsf{Ty}
ightarrow \widehat{\mathcal{R}}$$

Gluing Category

The gluing category, $\mathcal{G} \triangleq \widehat{\mathcal{R}} \downarrow i^*$, is Cartesian-closed. Furthermore, the codomain projection functor is Cartesian-closed.

Interpretation in \mathcal{G}

The interpretation in ${\mathcal G}$ is induced by:

We denote the domain presheaf in \widehat{R} by \mathcal{I} .

Diagram in \mathcal{G}

We define the following type-indexed diagram in \mathcal{G} by induction on A:

The following is induced:

Design Decisions

- Universe Polymorphism
- Cumulative Records
- Yoneda-Centric Definitions

< 行

PER

```
Cumulative Record PER@{+i +j} (A : Type@{i}) := Build_PER {
    PER_rel : A -> A -> Type@{j};
    PER_symm : forall {x y}, PER_rel x y -> PER_rel y x;
    PER_trans : forall {x y z}, PER_rel x y -> PER_rel y z -> PER_rel x z;
}.
```

P-Type

```
Cumulative Record PType@{+i +j} : Type := Build_PType {
    PType_type :> Type@{i};
    PType_per :> PER@{i j} PType_type;
}.
```

P-Category

```
Cumulative Record PCat@{+i +j +k} := Build PCat {
  PCat_obj :> Type@{i};
  PCat hom : PCat obj -> PCat obj -> PType@{j k};
  PCat_id_mor : forall x, PCat_hom x x;
  PCat comp : forall {x y z}, PCat hom y z \rightarrow PCat hom x y \rightarrow PCat hom x z;
  PCat id rel : forall x, (PCat id mor x) ~ (PCat id mor x);
  PCat comp rel : forall \{x \ y \ z \ f \ f' \ g \ g'\},
    f \sim f' \rightarrow g \sim g' \rightarrow (PCat \text{ comp } f g) \sim (PCat \text{ comp } f' g');
  . . .
}.
```

P-Terminal Objects

Definition IsPTermObj {C : PCat} (term : C) :=

PNatIso

(PBiFunPartialRight (@PHomFun C) term)

(PCompFun (PConstFun (C:=PSet) PUnit) PTermFun).

 $\mathsf{IsTerminal}(t) \triangleq \mathsf{Hom}_{\mathbb{C}}(-, t) \cong \Delta_{\{*\}}$

P-Cartesian Products

```
Definition IsPCartProd {C : PCat} (prod : C -> C -> C) :=
forall a b,
    PNatIso
        (PBiFunPartialRight PHomFun (prod a b))
        (PCompFun
            (PBiFunPartialRight (PHomFun (C:=PProdCat C C)) (a, b))
            (POppFun (PPairFun PIdFun PIdFun))
        ).
```

$$\mathsf{IsProduct}(-\times =) \triangleq \prod_{a,b:\mathbb{C}} \mathsf{Hom}_{\mathbb{C}}(\equiv, a \times b) \cong \mathsf{Hom}_{\mathbb{C} \times \mathbb{C}}((\equiv, \equiv), (a, b))$$

P-Cartesian Exponentials

```
Definition IsPCartExp {C : PCartCat} (exp : C -> C -> C) :=
  forall a b,
    PNatTso
      (PBiFunPartialRight PHomFun (exp b a))
      (PCompFun
        PHomFun
        (PPairFun
          (POppFun (PBiFunPartialRight PCartProdFun a))
          (PCompFun (PConstFun b) PTermFun))
      ).
```

$$\mathsf{IsExponential}(-\Rightarrow=) \triangleq \prod_{a,b:\mathbb{C}} \mathsf{Hom}_{\mathbb{C}}(\equiv,a\Rightarrow b) \cong \mathsf{Hom}_{\mathbb{C}\times\mathbb{C}}(\equiv\times a,b)$$

P-Ends

For $F : \mathbb{C}^{op} \times \mathbb{C} \to \mathsf{PSet}$ we have:

•
$$\left|\int_{c:\mathbb{C}} F(c,c)\right| \triangleq \prod_{c:\mathbb{C}} F(c,c)$$

•
$$w \sim w' \triangleq$$

•
$$\prod_{x,y:\mathbb{C}} \prod_{f,f':x \to y} f \sim f' \Rightarrow F(f, \mathsf{id}) (w \ y) \sim F(\mathsf{id}, f') (w \ x) \land$$

•
$$\prod_{x,y:\mathbb{C}} \prod_{f,f':x \to y} f \sim f' \Rightarrow F(f, \mathsf{id}) (w' \ y) \sim F(\mathsf{id}, f') (w' \ x) \land$$

•
$$\prod_{z:\mathbb{C}} w \ z \sim w' \ z$$

3

イロト イボト イラト イラト

P-Coends

For $F : \mathbb{C}^{op} \times \mathbb{C} \to \mathsf{PSet}$ we have:

•
$$\left|\int^{c:\mathbb{C}} F(c,c)\right| \triangleq \sum_{c:\mathbb{C}} F(c,c)$$

• $w \sim w'$ is inductively generated by the following:

•
$$\prod_{z:\mathbb{C}} \prod_{s,s':F(z,z)} s \sim s' \Rightarrow (z;s) \sim (z;s')$$

•
$$\prod_{x,y:\mathbb{C}} \prod_{f,f':y \to x} \prod_{s,s':F(x,y)} f \sim f' \Rightarrow s \sim s' \Rightarrow (y;F(f, \text{id}) s) \sim (x;F(\text{id},f') s')$$

•
$$\prod_{x,y:\mathbb{C}} \prod_{f,f':y \to x} \prod_{s,s':F(x,y)} f \sim f' \Rightarrow s \sim s' \Rightarrow (x;F(\text{id},f) s) \sim (y;F(f', \text{id}) s')$$

•
$$w_1 \sim w_2 \wedge w_2 \sim w_3 \Rightarrow w_1 \sim w_3$$

Properties

- Density Formula for coends.
- Fubini rule for ends.
- Functor Category homs as ends.
- Cocontinuity and Continuity of the Hom-functor.
- Isomorphism under duality of \mathbb{C} .

Presheaf Exponential

$$\widehat{\mathbb{C}}(K, G^{F}) \cong \int_{c} \operatorname{Set}(Kc, G^{F}c) \equiv \int_{c} \operatorname{Set}(Kc, \int_{c'} \mathbb{C}(c', c) \Rightarrow Fc' \Rightarrow Gc')$$

$$\cong \int_{c} \int_{c'} \int_{c} \operatorname{Set}(Kc, \mathbb{C}(c', c) \Rightarrow Fc' \Rightarrow Gc')$$

$$\cong \int_{c'} \int_{c} \operatorname{Set}(Kc \times \mathbb{C}(c', c), Fc' \Rightarrow Gc')$$

$$\cong \int_{c'} \int_{c} \operatorname{Set}(Kc \times \mathbb{C}(c', c), Fc' \Rightarrow Gc')$$

$$\cong \int_{c'} \operatorname{Set}(Kc', Fc' \Rightarrow Gc')$$

$$\cong \int_{c'} \operatorname{Set}(Kc', Fc' \Rightarrow Gc')$$

$$\cong \int_{c'} \operatorname{Set}(Kc' \times Fc', Gc') \cong \widehat{\mathbb{C}}(K \times F, G)$$

David G. Berry (University of Cambridge)

- Complete formalization of gluing construction
- Move to P-bicategory theory for two-dimensional simple type theory
- Find connections with other categorical/mathematical systems
- Monoidal setting with Day convolution

Any Questions?

<ロ> <四> <四> <四> <四> <四> <四</p>