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Definition of an EHT

Elementary topoi

Definition (Elementary
1-topos)
An elementary topos E is a
category that

is finitely complete
is finitely cocomplete
is locally cartesian closed
admits a subobject
classifier

Definition (Elementary ∞-topos)
An elementary ∞-topos E is a
category that

is finitely complete
is finitely cocomplete
is locally cartesian closed
admits a subobject classifier
admits enough “universes”
(a.k.a object classifiers)
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Definition of an EHT

Leaning toward an internal logic

Finite limits : substitution is modelled by pullback
Dependent product : Π-types
Finite colimits : some inductive types (+-types, quotients)
Subobject classifier : inbuilt “predicate logic”
Object classifiers : type-theoretic universes (inbuilt “untruncated
logic”)
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Definition of an EHT

Finite colimits

In the 1-categorical setting, the existence of finite colimits follows from the
other three axioms.

This essentially amounts to the fact that quotient can be defined by “com-
prehension”.

Precisely, the direct proof by Mikkelsen:

Proof.
Given an equivalence relation R ⊂ X × X , take the image of X → P(X )
“mapping” x ∈ X to its equivalence class. If R is not an equivalence
relation, replace it by the equivalence relation it generates.
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The 1-categorical proof

Monadicity of the powerobject endofunctor

Another proof, due to Paré, reformulates this idea in a more abstract way:

Proposition
Eop is monadic over E via the powerobject functor:

P : Eop → E

X 7→ P(X ) := ΩX

Proof.
Check the Beck monadicity theorem hypothesis are verified (notably, P is
conservative).
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The 1-categorical proof

The underlying intuition

The “universe of monomorphisms” (i.e the subobject classifier) captures the
full logic of E:

S 1

X Ω

⌟
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Toward a ∞-categorical lift

The main hindrances

Monomorphisms are not enough:

Equivalence relations on X are now groupoid objects, which are
different from monomorphisms into X × X
The powerobject functor

P : Eop → E
X 7→ ΩX

is not conservative in general (hence not monadic).

External natural numbers are not enough:
One should consider the free groupoid object on two parallel
morphisms.
The higher Beck monadicity theorem involves infinite colimits in Eop.
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Toward a ∞-categorical lift

Local universe functor

Given an α-small morphism f : Y → X in E , form the following diagram:

Ũα

Y × Ũα Uα

Y × Uα Y Ũα

X × Uα X Uα

f

χf

παf ×Uα

Y ×πα

πα

then map f to (f × Uα)∗Y × πα.
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Toward a ∞-categorical lift

Local universe functor

The mate transformation
gives the action on edges,
which is contravariant in the
domain:

Pαf (= f × Uα)∗Y × πα

= (f × Uα)∗(ϕs × Uα)∗Y ′ × πα)
↑ (mate)
(ϕt × Uα)∗Pαf ′(=
(ϕs × Uα)∗(f ′ × Uα)∗Y ′ × πα)

Y × Ũα Y ′ × Ũα

Y × Uα Y ′ × Uα

X × Uα X ′ × Uα

ϕt×Uα

ϕs×Uα

⌟
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Toward a ∞-categorical lift

Local universe functor

Write E→
α for the full subcategory of α-small morphisms.

Also write Poly(Eα) for the full subcategory of polynomial functors (of the
form 1← Y → X → 1) whose underlying map is α-small.

Proposition

Pα : E→
α → Poly(Eα)

and the analogous functor

P ′
α : Poly(Eα)→ E→

α

form an adjoint pair Pα ⊣ P ′
α.
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Toward a ∞-categorical lift

Algebraic simplicial diagrams

We define algebraic simplicial diagrams to be the diagrams

... PopT 2b PopTb Popb
χ

ϵPopb

PopPχ

ϵPopTb

PopPϵPopb

where χ = Popf , mapped to:

... T 3b T 2b Tb bfTf

PϵPopb(=µb)

T 2f

PϵPopTb

TPϵPopb

an algebra structure on b
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Toward a ∞-categorical lift

Partial (fat) geometric realizations

The fat geometric realization of a semi-simplicial diagram can be computed
as the colimit of the sequence

l0 l1 l2 ...

where ln is the colimit of the restriction of the diagram to i ≤ n.

In the case of an algebraic simplicial diagram, this sequence satisfies a rela-
tion that allows an inductive computation.
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Toward a ∞-categorical lift

Partial semi-simplex categories

∆op
+,≤2 : ... 2 1 0

d1
1

d1
0

d2
2

d2
0

d2
1

∂+∆op
+,≤2 : ... 2 1 0

d1
1

d1
0

d2
2

d2
0

d2
1

∂−∆op
+,≤2 : ... 2 1 0

d1
1

d1
0

d2
2

d2
0

d2
1

∂∆op
≤2 : ... 2 1 0

d1
1

d1
0

d2
2

d2
0

d2
1
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Toward a ∞-categorical lift

Recursive relation for truncated realizations

ln ∂−ln ×∂ln ∂+ln

X1 X1 ×∂ln X1∆

⌟
∂−ln+1 X0

Tln TX0

⌟

∂+ln + 1 = ∂+ln(= X0) ∂ln+1 = T∂+ln × X0
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Toward a ∞-categorical lift

Internal towers and their internal limit

Definition
A internal sequence is just a morphism N→ U :

uk
∑

n∈N
un Ũ

∗ N Uu

⌟

sk◦ 0
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Toward a ∞-categorical lift

Internal towers and their internal limit

Definition
An internal tower is a sequence equipped with a map f making the
following diagram commute:

∗ ⨿
∑

n∈N
un

∑
n∈N

un

∗ ⨿ N N

id∗⨿p

f

p

<0,s>
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Toward a ∞-categorical lift

Internal towers and their internal limit

Definition
The internal limit of an internal tower is the following equalizer:

u∞
∑

n∈N
un ∗ ⨿

∑
n∈N

un
f

ι1

Proposition
The internal limit of the internal tower of partial (co)geometric realizations
for an algebraic diagram defines an (external) (co)geometric realization.
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Toward a ∞-categorical lift

Wrapping up
The higher Beck (co)monadicity theorem can be applied so that E→

α is
equivalent to the category of coalgebras for the comonad at work.
It is remarkable that finite cocompleteness of Poly(Eα) can be deduced from
only the lccc structure (Poly(Eα) embeds fully in HomCat∞(Eop

α , Eop
α )).

E can be recovered from the (Eα) in a way that ensures it is finitely cocom-
plete too.

Theorem (Elementary ∞-topos)
An (∞-)category E is an elementary ∞-topos iff it

is finitely complete
is locally cartesian closed
admits a subobject classifier
admits enough “universes” (a.k.a object classifiers)
admits a natural number object
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Toward a ∞-categorical lift

Thank you for your attention!
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Toward a ∞-categorical lift
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