BIASED ELEMENTARY DOCTRINES AND QUOTIENT COMPLETIONS

Cipriano Junior Cioffo Università degli Studi di Padova

2nd International Conference on Homotopy Type Theory 2023 CMU, May 22

Elementary doctrines

 $\mathsf{P}: \mathscr{C}^{\textit{op}} \to \mathsf{InfSL}$

- & has strict finite products
- For every $X \in \mathscr{C}$ there exists an element $\delta_X \in P(X \times X)$ with

$$\mathsf{P}(Y \times X) \xrightarrow[]{\mathsf{P}_{<1,2>}(-) \land \mathsf{P}_{<2,3>} \delta_X}{\overset{\bot}{\underset{\mathsf{P}_{\langle 1,2,2 \rangle}}{\overset{\bot}{\overset{\mathsf{P}_{\langle 1,2,2 \rangle}}}}} \mathsf{P}(Y \times X \times X)$$

Equivalently:

- $1 \ \top_{X} \leq \mathsf{P}_{\Delta_{X}}(\delta_{X})$ $2 \ \mathsf{P}(X) = Des(\delta_{X})$ $3 \ \delta_{X} \boxtimes \delta_{Y} \leq \delta_{X \times Y}$
- $\vdash x = x$ $A(x_1), x_1 = x_2 \vdash A(x_2)$ $x_1 = x_2, y_1 = y_2 \vdash (x_1, y_1) = (x_2, y_2)$

Examples

• (Variations) If & has strict finite products and weak pullbacks then

 $\Psi_{\mathscr{C}}: \mathscr{C}^{op} \to \mathsf{InfSL}$

• (Subobjects) If \mathscr{C} is a lex category

$$\mathsf{Sub}_{\mathscr{C}}:\mathscr{C}^{op}\to\mathsf{InfSL}$$

$$Sub_{\mathscr{C}}(X) := \{ \lfloor m \rceil \mid m : M \rightarrow X \}$$
$$Sub_{\mathscr{C}}(f) := f^*$$
$$\delta_X = \lfloor \Delta_X \rceil$$

Examples from type theory I

• Let **ML** be the category of closed types and terms up to f.e. of intensional MLTT

$$F^{ML}$$
: **ML**^{op} \rightarrow InfSL

 $F^{ML}(X) := \{x : X \vdash B(x), \text{up to equiprovability}\}\$ $F^{ML}(t)(B(x)) := B(t(y)), \text{ for a term } y : Y \vdash t(y) : X$

• Let **mTT** be the intensional level of the Minimalist Foundation¹and *CM* the syntactic category of *collections*

$$G^{\mathsf{mTT}}:\mathcal{CM}^{op}
ightarrow\mathsf{InfSL}$$

 $G^{mTT}(X) := \{B(x) \text{ prop } (x \in X), w.r.t \text{ equiprovability}\}$ $G^{mTT}(t)(B(x)) := B(t(y)), \text{ where } t(y) \in X (y : Y).$ Examples from type theory II

• Let hSets be the category of h-sets arising from HoTT

 $H^{0,-1}$: **hSets**^{op} \rightarrow InfSL

 $H^{0,-1}(X) = \{x : X \vdash B(x) | B(x) \text{ is an h-prop}\}$

Rmk. $\delta_X = Id_X$ Obs.: CM and ML have strict finite products and weak pullbacks. Obs.: $F^{ML} \cong \Psi_{ML}$. Obs.: $H^{0,-1} \cong Sub_{hSets}$.

Elementary quotient completion²

If $\mathsf{P}: \mathscr{C}^{\textit{op}} \to \mathsf{InfSL}$ is an elementary doctrine:

- A P-eq. relation on X ∈ 𝒞 is an element ρ ∈ P(X × X) + ref.+ sym.+ trans.
- A quotient of ρ is an arrow $q: X \to C$ s.t. $\rho(x_1, x_2) \vdash q(x_1) = q(x_2) + universal property$

$$\begin{array}{ccc} \overline{\mathsf{P}}: \overline{\mathscr{C}}^{op} \to \mathsf{InfSL} \\ & \overline{\mathscr{C}} & \overline{\mathsf{P}} \\ \mathsf{Obj.} & (X,\rho) & \overline{\mathsf{P}}(X,\rho) := \mathsf{Des}(\rho)^* \\ \mathsf{Arr.} & \lfloor f \rceil : (X,\rho) \to (Y,\sigma) & \overline{\mathsf{P}} \lfloor f \rceil := \mathsf{P}_f \end{array}$$

 $^{*}Des(\rho) = \{A(x) \in \mathsf{P}(X) | \rho(x_1, x_2), A(x_1) \vdash A(x_2)\}$

2	[MR13]	

Examples

() If \mathscr{C} has strict finite products and weak pullbacks then:

$$\Psi_{\mathscr{C}}: \mathscr{C}^{op} \to \mathsf{InfSL} \qquad \overline{\Psi_{\mathscr{C}}} \cong \mathsf{Sub}_{\mathscr{C}_{\mathsf{ex}/\mathsf{wlex}}}: \mathscr{C}^{op}_{\mathsf{ex}/\mathsf{wlex}} \to \mathsf{InfSL}$$

$$\begin{array}{ccc} P \text{seudo eq. relations} & & \Psi_{\mathscr{C}} \text{-eq. relations} \\ R \xrightarrow[r_2]{r_1} & X & \longleftrightarrow & & \lfloor < r_1, r_2 >: R \to X \times X \rceil \end{array}$$

- G^{mTT} : CM^{op} → InfSL provides the main example of e.q.c. that is not an exact completion. G^{mTT} describes the interpretation of (extensional level) emTT into mTT.
- $H^{0,-1}$: **hSets**^{op} \rightarrow InfSL has quotients (due to quotient type).

Q. How can I deal with "dependent setoids" within this framework?

 $x: X \vdash B(x)$ with $y, y': B(x) \vdash y \sim_{B(x)} y'$

I. Consider an arrow $\pi: S \to X$ in \mathscr{C} and an element $\sim_B \in P(W)$

My problem

Q. How can I deal with "dependent setoids" within this framework?

$$x: X \vdash B(x)$$
 with $y, y': B(x) \vdash y \sim_{B(x)} y'$

I. Consider an arrow $\pi:S o X$ in $\mathscr C$ and an element $\sim_B\in P(W)$

Rmk. $(B(x), \sim_{B(x)})$ must be *proof-irrelevant* if $p, p' : x =_X x'$ then

 $\operatorname{tr}(p, b(x)) \sim_{B(x')} b(x')$ iff $\operatorname{tr}(p', b(x)) \sim_{B(x')} b(x')$

The categorical gap

Thm. (Carboni-Vitale '98) If \mathscr{C} weakly lex the precomposition with Γ

gives an equivalence

 $Lco(\mathscr{C}, E) \cong EX(\mathscr{C}_{ex/wlex}, E)$

Thm. (Maietti-Rosolini '13) If P : $\mathscr{C}^{op} \rightarrow \text{InfSL}$ is elementary the pre-composition with (J, j)

gives a natural equivalence

 $\mathbf{EqD}(\mathbf{P}, R) \cong \mathbf{QED}(\overline{\mathbf{P}}, R)$

Outline

From now on $\mathscr C$ has weak finite products.

Definition

A functor $P : \mathscr{C}^{op} \to \text{InfSL}$ is a biased elementary doctrine if for every $X \in \mathscr{C}$ and for every weak product $X \stackrel{p_1}{\leftarrow} W \stackrel{p_2}{\to} X$ there exists an element $\delta^{(p_1,p_2)} \in P(W)$ satisfying:

My solution: Biased elementary doctrines

From now on $\mathscr C$ has weak finite products.

Definition

A functor $P : \mathscr{C}^{op} \to \text{InfSL}$ is a biased elementary doctrine if for every $X \in \mathscr{C}$ and for every weak product $X \stackrel{p_1}{\leftarrow} W \stackrel{p_2}{\to} X$ there exists an element $\delta^{(p_1,p_2)} \in P(W)$ satisfying:

1) For every commutative diagram

$$\top_X \leq \mathsf{P}_d \delta^{(\mathsf{p}_1,\mathsf{p}_2)}.$$

From now on $\mathscr C$ has weak finite products.

Definition

A functor $P : \mathscr{C}^{op} \to \text{InfSL}$ is a biased elementary doctrine if for every $X \in \mathscr{C}$ and for every weak product $X \stackrel{p_1}{\leftarrow} W \stackrel{p_2}{\to} X$ there exists an element $\delta^{(p_1,p_2)} \in P(W)$ satisfying:

2) $P(X) = Des(\delta^{(p_1,p_2)})$, *i.e.* for every $\alpha \in P(X)$

 $\mathsf{P}_{\mathsf{p}_1}\alpha \wedge \delta^{(\mathsf{p}_1,\mathsf{p}_2)} \leq \mathsf{P}_{\mathsf{p}_2}\alpha.$

My solution: Biased elementary doctrines

From now on $\mathscr C$ has weak finite products.

Definition

A functor $P : \mathscr{C}^{op} \to \text{InfSL}$ is a biased elementary doctrine if for every $X \in \mathscr{C}$ and for every weak product $X \stackrel{p_1}{\leftarrow} W \stackrel{p_2}{\to} X$ there exists an element $\delta^{(p_1,p_2)} \in P(W)$ satisfying:

3) For any weak product $X' \stackrel{p'_1}{\leftarrow} W' \stackrel{p'_2}{\rightarrow} X'$ and for every commutative diagram

we have $\delta^{(p'_1,p'_2)} \leq \mathsf{P}_g \delta^{(p_1,p_2)}$.

My solution: Biased elementary doctrines

From now on $\mathscr C$ has weak finite products.

Definition

A functor $P : \mathscr{C}^{op} \to \text{InfSL}$ is a biased elementary doctrine if for every $X \in \mathscr{C}$ and for every weak product $X \stackrel{p_1}{\leftarrow} W \stackrel{p_2}{\to} X$ there exists an element $\delta^{(p_1,p_2)} \in P(W)$ satisfying:

we have $\delta^{(p_1,p_2)} \in Des(\mathsf{P}_t \delta^{(p_1,p_2)} \wedge \mathsf{P}_{t'} \delta^{(p_1,p_2)})$, i.e. $\mathsf{P}_{r_1} \delta^{(p_1,p_2)} \wedge \mathsf{P}_t \delta^{(p_1,p_2)} \wedge \mathsf{P}_{t'} \delta^{(p_1,p_2)} \leq \mathsf{P}_{r_2} \delta^{(p_1,p_2)}.$

Examples I

Every elementary doctrine P is a biased elementary doctrine. If X ← W → X is a weak product then there exists a unique arrow < p₁, p₂ >: W → X × X

$$\delta^{(\mathsf{p}_1,\mathsf{p}_2)} := \mathsf{P}_{<\mathsf{p}_1,\mathsf{p}_2>}\delta_X$$

② If *C* is wlex then the functor Ψ_{C} : *C*^{op} → InfSL is a biased elementary doctrine and

$$\delta^{(\mathsf{p}_1,\mathsf{p}_2)} := \lfloor e \rceil$$

where

$$E \xrightarrow{e} W \xrightarrow{p_1} X$$

is a weak equalizer of p_1, p_2 .

Examples II

If P : 𝔅^{op} → InfSL is a (biased) elementary doctrine with weak comprehensions and comprehensive diagonals and A ∈ 𝔅 then the slice doctrine is a biased elementary doctrine:

$$\mathsf{P}_{/\mathsf{A}}: \mathscr{C}/\mathsf{A}^{op} \to \mathsf{InfSL}$$

$$P_{A}(x: X \to A) := P(X)$$

$$P_{A}(f: y \to x) := P_{f}$$

$$X \times_{A} X \xrightarrow{\pi_{2}} X$$

$$P_{A}(w) = P(X \times_{A} X)$$
where $w := x\pi_{1} = y\pi_{2}$ and
$$\delta^{(\pi_{1},\pi_{2})} := P_{<\pi_{1},\pi_{2}>} \delta_{X}$$

$$X \times_{A} X \xrightarrow{\pi_{2}} X$$

$$\pi_{1} \downarrow X \times X \downarrow^{x}$$

$$\chi \times_{A} X \xrightarrow{\pi_{2}} X$$

Key differences with "strict" elementary doctrines

- Two weak products $X \stackrel{p_1}{\leftarrow} W \stackrel{p_2}{\rightarrow} Y$ and $X \stackrel{p'_1}{\leftarrow} W' \stackrel{p'_2}{\rightarrow} Y$ are not necessarily isomorphic.
- The fibers P(W) and P(W') are not necessarily isomorphic.

The reindexings P_h and $P_{h'}$ are not necessarily equal.

• We have only the inequality

$$\delta_{X \times Y} \leq \delta_X \boxtimes \delta_Y$$

Intuition: $x_1 = x_2, y_1 = y_2 \Rightarrow ((x_1, y_1), p) = ((x_2, y_2), q)$

 $\delta_{X \times Y} \sim \text{proof-relevant}$ equality $\delta_X \boxtimes \delta_Y \sim \text{proof-irrelevant}$ or component-wise equality

Part 2

۲

Definition

 $X \stackrel{p_1}{\leftarrow} W \stackrel{p_2}{\rightarrow} Y$ weak product. The *proof-irrelevant (p.i.)* elements of W are the sub-poset of P(W) given by $P-Irr(W) := Des(\delta_X \boxtimes \delta_Y)^3$

• Different weak products (of X, Y) have isomorphic proof-irrelevant elements: take an arrow $W' \xrightarrow{h} W$ s.t. $p_i \circ h = p'_i$

$$\begin{array}{c} \mathsf{P}\operatorname{-Irr}(\mathsf{W}) \xrightarrow{\cong} \mathsf{P}\operatorname{-Irr}(W') \\ \downarrow & \downarrow \\ \mathsf{P}(W) \xrightarrow{\mathsf{P}_{h}} \mathsf{P}(W') \end{array}$$

- Up to iso: we denote proof-irrelevant elements of X and Y with $P^{s}[X, Y]$.
- Proof-irrelevant elements are *reindexed by projections*.

³Some work to prove that the definition depends only on W.

Part 2

Elements reindexed by projections

Definition

Let $P: \mathscr{C}^{op} \to \text{InfSL}$ a functor from \mathscr{C} with weak finite products and let $X \stackrel{p_1}{\leftarrow} W \stackrel{p_2}{\to} X$ be a weak product. An element $\alpha \in P(W)$ is reindexed by projections (r.b.p.) if for every commutative diagram

$$P_f(\alpha) = P_g(\alpha).$$

Obs.: $\delta^{(p_1,p_2)}$ is r.b.p. !

Obs.: In case of full weak comprehensions r.b.p. elements coincide with *p.i.* elements.

Main examples

• If \mathscr{C} is wlex and $X \stackrel{p_1}{\leftarrow} W \stackrel{p_2}{\rightarrow} Y$ is a weak product, the proof-irrelevant elements of $\Psi_{\mathscr{C}}(W)$ are:

Theorem

If $\ensuremath{\mathscr{C}}$ is weakly left exact, then

 $\Psi_{\mathscr{C}}$ -Irr $(W) \cong (\mathscr{C}/(X,Y))_{po}$.

Strictification...

If $\mathscr C$ is a category, we can freely 4 add strict finite products and obtain the category $\mathscr C_s:$

- Obj. are finite lists $[X_i]_{i \in [n]}$
- Arr. $(f, \hat{f}) : [X_i]_{i \in [n]} \to [Y_j]_{j \in [m]}$

If $\mathsf{P}:\mathscr{C}^{\textit{op}}\to\mathsf{InfSL}$ is a b.e.d. then we can build P^{s} using p.i. elements

Theorem

If P is a b. e. d. then $P^s \in \mathbf{ED}$. Vice versa, if $R : \mathscr{C}_s^{op} \to \text{InfSL}$ in \mathbf{ED} , the pre-composition $R \circ S : \mathscr{C}^{op} \to \text{InfSL}$ is a b. e. d.

⁴Obs: Weak products are neither preserved nor "strictified" by *S*.

...and sheafification⁵

If \mathscr{C} has weak finite products then consider the Grothendieck topology Θ on \mathscr{C}_s generated by singleton families

 $\{\mathsf{p}:[W]\to [X_1,\ldots,X_n]\}$

where $p_i: W \to X_i$, for $1 \le i \le n$, weak products of $X_1, \ldots, X_n \in \mathscr{C}$

⁵ Grothendieck topologies and weak limits for constructive mathematics. Ongoing work with: J. Emmenegger, F. Pasquali and G. Rosolini.

Extending elementary quotient completion

If $P : \mathscr{C}^{op} \to \text{InfSL}$ is a b.e.d. a P-eq. relation⁶ over $X \in \mathscr{C}$ is a $\rho \in P^{s}[X, X]$ satisfying ref., sym. and tra.. The category $\overline{\mathscr{C}}$:

Theorems

1) $\overline{\mathsf{P}} \in \mathbf{QED}$

2) $\circ(J,j)$: **QED**(\overline{P} , R) \cong **Lco**(P, R), for every $R \in$ **QED**

Obs: $\overline{\mathsf{P}} \ncong \overline{\mathsf{P}^s}$.

⁶The usual notion relies on strict fine products!

Part 2

- (Elimination of the problem) Thm. $\overline{P_{/A}} \cong \overline{P}_{/(A,\delta_{[A]})}$.
- (Filling the gap) $\mathscr{C}_{ex/wlex}$ and the e.q.c. are instances of this construction since $\Psi_{\mathscr{C}}$ -eq. relation coincides with *per* (cones + ref. + sym. + trans.)
- We can define \implies , \exists and \forall -biased elementary doctrines.
- Full generalization of the result of Carboni, Rosolini and Emmenegger about the lcc of the *ex/wlex* exact completion.

- Extending elementary quotient completion to a richer framework such as *cwf, comprehension categories....*
- Use the results obtained to describe categorically the compatibility⁷ of the Minimalist foundation with HoTT

References I

- [Cio22] C. J. Cioffo. "Homotopy setoids and generalized quotient completion". PhD thesis. Università degli Studi di Milano, 2022.
- [Cio23] C. J. Cioffo. Biased elementary doctrines and quotient completions. 2023. arXiv: 2304.03066 [math.CT].
- [CM23] M. Contente and M. E. Maietti. The Compatibility of the Minimalist Foundation with Homotopy Type Theory. 2023. arXiv: 2207.03802 [math.LO].
- [Mai09] M. E. Maietti. "A minimalist two-level foundation for constructive mathematics". In: Ann. Pure Appl. Logic 160.3 (2009), pp. 319–354.
- [MR13] M. E. Maietti and G. Rosolini. "Quotient completion for the foundation of constructive mathematics". In: Log. Univers. 7.3 (2013), pp. 371–402.

[MS05] M. E. Maietti and G. Sambin. "Toward a minimalist foundation for constructive mathematics". In: From sets and types to topology and analysis. Vol. 48. Oxford Logic Guides. Oxford Univ. Press, Oxford, 2005, pp. 91–114.