BIASED ELEMENTARY DOCTRINES AND QUOTIENT COMPLETIONS

Cipriano Junior Cioffo
Università degli Studi di Padova

2nd International Conference on Homotopy Type Theory 2023
CMU, May 22

Outline

(1) Part 1
(2) Part 2

Elementary doctrines

$$
\mathrm{P}: \mathscr{C}^{o p} \rightarrow \operatorname{InfSL}
$$

- \mathscr{C} has strict finite products
- For every $X \in \mathscr{C}$ there exists an element $\delta_{X} \in P(X \times X)$ with

$$
\mathrm{P}(Y \times X) \underset{\mathrm{P}_{\langle 1,2,2\rangle}}{\stackrel{\mathrm{P}_{<1,2\rangle}(-) \wedge \mathrm{P}_{<2,3\rangle} \delta_{X}}{\stackrel{ }{\leftrightarrows}} \mathrm{P}(Y \times X \times X), ~(Y \times X)}
$$

Equivalently:
$1 \top_{X} \leq \mathrm{P}_{\Delta_{X}}\left(\delta_{X}\right)$
$\vdash x=x$
$2 \mathrm{P}(X)=\operatorname{Des}\left(\delta_{X}\right)$
$3 \delta_{X} \boxtimes \delta_{Y} \leq \delta_{X \times Y}$
$A\left(x_{1}\right), x_{1}=x_{2} \vdash A\left(x_{2}\right)$
$x_{1}=x_{2}, y_{1}=y_{2} \vdash\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$

Examples

- (Variations) If \mathscr{C} has strict finite products and weak pullbacks then

$$
\Psi_{\mathscr{C}}: \mathscr{C}^{o p} \rightarrow \operatorname{InfSL}
$$

$$
\begin{aligned}
& \Psi_{\mathscr{C}}(X):=(\mathscr{C} / X)_{p o} \\
& \Psi_{\mathscr{C}}(f):=f^{*} \\
& \delta_{X}=\left\lfloor\Delta_{X}\right\rceil
\end{aligned}
$$

- (Subobjects) If \mathscr{C} is a lex category

$$
\operatorname{Sub}_{\mathscr{C}}: \mathscr{C}^{o p} \rightarrow \operatorname{InfSL}
$$

$\operatorname{Sub}_{\mathscr{C}}(X):=\{\lfloor m\rceil \mid m: M \mapsto X\}$
$\operatorname{Sub}_{\mathscr{C}}(f):=f^{*}$
$\delta_{X}=\left\lfloor\Delta_{X}\right\rceil$

Examples from type theory I

- Let ML be the category of closed types and terms up to f.e. of intensional MLTT

$$
F^{M L}: \mathrm{ML}^{o p} \rightarrow \operatorname{InfSL}
$$

$F^{M L}(X):=\{x: X \vdash B(x)$, up to equiprovability $\}$
$F^{M L}(t)(B(x)):=B(t(y))$, for a term $y: Y \vdash t(y): X$

- Let mTT be the intensional level of the Minimalist Foundation ${ }^{1}$ and $\mathcal{C M}$ the syntactic category of collections

$$
G^{\mathrm{mTT}}: \mathcal{C} \mathcal{M}^{o p} \rightarrow \operatorname{InfSL}
$$

$G^{\mathbf{m T T}}(X):=\{B(x)$ prop $(x \in X)$, w.r.t equiprovability $\}$ $G^{\mathbf{m T T}}(t)(B(x)):=B(t(y))$, where $t(y) \in X(y: Y)$.

Examples from type theory II

- Let hSets be the category of h-sets arising from HoTT

$$
\begin{array}{r}
H^{0,-1}: \text { hSets }^{o p} \rightarrow \text { InfSL } \\
H^{0,-1}(X)=\{x: X \vdash B(x) \mid B(x) \text { is an } \mathrm{h} \text {-prop }\}
\end{array}
$$

Rmk. $\delta_{X}=\mathrm{Id}_{\mathrm{x}}$
Obs.: $\mathcal{C M}$ and ML have strict finite products and weak pullbacks.
Obs.: $F^{M L} \cong \Psi_{\mathrm{ML}}$.
Obs:: $H^{0,-1} \cong$ Sub $_{\text {hSets }}$.

Elementary quotient completion²

If $P: \mathscr{C}^{o p} \rightarrow \operatorname{InfSL}$ is an elementary doctrine:

- A P-eq. relation on $X \in \mathscr{C}$ is an element $\rho \in \mathrm{P}(X \times X)+$ ref. + sym. + trans.
- A quotient of ρ is an arrow $q: X \rightarrow C$ s.t. $\rho\left(x_{1}, x_{2}\right) \vdash q\left(x_{1}\right)=q\left(x_{2}\right)$ + universal property

$$
\overline{\mathrm{P}}: \overline{\mathscr{C}}^{o p} \rightarrow \operatorname{InfSL}
$$

	$\overline{\mathscr{C}}$	$\overline{\mathrm{P}}$
Obj.	(X, ρ)	$\overline{\mathrm{P}}(X, \rho):=\operatorname{Des}(\rho)^{\star}$
Arr.	$\lfloor f\rceil:(X, \rho) \rightarrow(Y, \sigma)$	$\overline{\mathrm{P}}\lfloor f\rceil:=\mathrm{P}_{f}$
	${ }^{\star} \operatorname{Des}(\rho)=\left\{A(x) \in \mathrm{P}(X) \mid \rho\left(x_{1}, x_{2}\right), A\left(x_{1}\right) \vdash A\left(x_{2}\right)\right\}$	

Examples

(1) If \mathscr{C} has strict finite products and weak pullbacks then:

$$
\Psi_{\mathscr{C}}: \mathscr{C}^{o p} \rightarrow \operatorname{InfSL} \quad \overline{\Psi_{\mathscr{C}}} \cong \operatorname{Sub}_{\mathscr{C}_{\text {ex } / \text { wlex }}}: \mathscr{C}_{\text {ex } / \text { wlex }}^{o p} \rightarrow \operatorname{InfSL}
$$

Pseudo eq. relations

$$
R \underset{r_{2}}{\stackrel{r_{1}}{\leftrightarrows}} X
$$

$$
\begin{gathered}
\Psi_{\mathscr{C}} \text {-eq. relations } \\
\left\lfloor<r_{1}, r_{2}>: R \rightarrow X \times X\right\rceil
\end{gathered}
$$

(2) $\overline{G^{\mathbf{m T T}}}: \overline{\mathcal{C M}}^{o p} \rightarrow \operatorname{InfSL}$ provides the main example of e.q.c. that is not an exact completion. $\overline{G^{\mathbf{m T T}}}$ describes the interpretation of (extensional level) emTT into mTT.
(3) $F^{M L}: \mathrm{ML}^{o p} \rightarrow \operatorname{InfSL} \quad \overline{F^{M L}}: \overline{M L}^{o p} \rightarrow \operatorname{InfSL}$
$(\overline{\mathrm{ML}} \cong \mathbf{S t d})$
(9) $H^{0,-1}:$ hSets $^{o p} \rightarrow \operatorname{InfSL}$ has quotients (due to quotient type).

My problem

Q. How can I deal with "dependent setoids" within this framework?

$$
x: X \vdash B(x) \quad \text { with } \quad y, y^{\prime}: B(x) \vdash y \sim_{B(x)} y^{\prime}
$$

I. Consider an arrow $\pi: S \rightarrow X$ in \mathscr{C} and an element $\sim_{B} \in P(W)$

My problem

Q. How can I deal with "dependent setoids" within this framework?

$$
x: X \vdash B(x) \quad \text { with } \quad y, y^{\prime}: B(x) \vdash y \sim_{B(x)} y^{\prime}
$$

I. Consider an arrow $\pi: S \rightarrow X$ in \mathscr{C} and an element $\sim_{B} \in P(W)$
P. We may have just weak pull- $\quad \sum_{s, s^{\prime}: S} \pi(s)=x \pi\left(s^{\prime}\right) \longrightarrow S$ backs!

Rmk. $\left(B(x), \sim_{B(x)}\right)$ must be proof-irrelevant if $p, p^{\prime}: x=x x^{\prime}$ then

$$
\operatorname{tr}(p, b(x)) \sim_{B\left(x^{\prime}\right)} b\left(x^{\prime}\right) \quad \text { iff } \quad \operatorname{tr}\left(p^{\prime}, b(x)\right) \sim_{B\left(x^{\prime}\right)} b\left(x^{\prime}\right)
$$

The categorical gap

Thm. (Carboni-Vitale '98)
If \mathscr{C} weakly lex the precomposition with 「

gives an equivalence

$$
\operatorname{Lco}(\mathscr{C}, E) \cong \mathbf{E X}\left(\mathscr{C}_{e x / w l e x}, E\right)
$$

Thm. (Maietti-Rosolini '13)
If $P: \mathscr{C}^{\circ P} \rightarrow \operatorname{InfSL}$ is elementary the pre-composition with (J, j)

gives a natural equivalence
$\mathbf{E q D}(\mathrm{P}, R) \cong \mathbf{Q E D}(\overline{\mathrm{P}}, R)$

Outline

(1) Part 1
(2) Part 2

My solution: Biased elementary doctrines

From now on \mathscr{C} has weak finite products.

Definition

A functor $\mathrm{P}: \mathscr{C}^{\circ p} \rightarrow \operatorname{InfSL}$ is a biased elementary doctrine if for every
 $\delta^{\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)} \in \mathrm{P}(W)$ satisfying:

My solution: Biased elementary doctrines

From now on \mathscr{C} has weak finite products.

Definition

A functor $P: \mathscr{C}$ op $\rightarrow \operatorname{InfSL}$ is a biased elementary doctrine if for every
$X \in \mathscr{C}$ and for every weak product $X \stackrel{\mathrm{P}_{1}}{\leftarrow} W \xrightarrow{\mathrm{P}_{2}} X$ there exists an element
$\delta^{\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)} \in \mathrm{P}(W)$ satisfying:

$$
\top_{x} \leq \mathrm{P}_{d} \delta^{\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)}
$$

My solution: Biased elementary doctrines

From now on \mathscr{C} has weak finite products.

Definition

A functor $P: \mathscr{C}$ op $\rightarrow \operatorname{InfSL}$ is a biased elementary doctrine if for every $X \in \mathscr{C}$ and for every weak product $X \stackrel{\mathrm{P}_{1}}{\leftarrow} W \xrightarrow{\mathrm{P}_{2}} X$ there exists an element $\delta\left(\mathrm{p}_{1}, \mathrm{P}_{2}\right) \in \mathrm{P}(W)$ satisfying:
2) $\mathrm{P}(X)=\operatorname{Des}\left(\delta^{\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)}\right)$, i.e. for every $\alpha \in \mathrm{P}(X)$

$$
\mathrm{P}_{\mathrm{p}_{1}} \alpha \wedge \delta^{\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)} \leq \mathrm{P}_{\mathrm{p}_{2}} \alpha
$$

My solution: Biased elementary doctrines

From now on \mathscr{C} has weak finite products.

Definition

A functor $P: \mathscr{C}^{\circ p} \rightarrow \operatorname{InfSL}$ is a biased elementary doctrine if for every and for every weak product $X \stackrel{\mathrm{p}_{1}}{\leftarrow} W \xrightarrow{\mathrm{P}_{2}} X$ there exists an element $\delta\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right) \in \mathrm{P}(W)$ satisfying:
3) For any weak product $X^{\prime} \stackrel{p_{1}^{\prime}}{\leftarrow} W^{\prime} \xrightarrow{p_{2}^{\prime}} X^{\prime}$ and for every commutative diagram

we have $\delta^{\left(\mathrm{p}_{1}^{\prime}, \mathrm{p}_{2}^{\prime}\right)} \leq \mathrm{P}_{\mathrm{g}} \delta^{\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)}$.

My solution: Biased elementary doctrines

From now on \mathscr{C} has weak finite products.

Definition

A functor P : $\mathscr{C}^{\circ p} \rightarrow \operatorname{InfSL}$ is a biased elementary doctrine if for every and for every weak product $X \stackrel{\mathrm{P}_{1}}{\leftarrow} W \xrightarrow{\mathrm{P}_{2}} X$ there exists an element $\delta\left(p_{1}, p_{2}\right) \in P(W)$ satisfying:
4) For every commutative diagram where $W \stackrel{r_{1}}{\leftarrow} U \xrightarrow{r_{2}} W$ is a weak product

we have $\delta^{\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)} \in \operatorname{Des}\left(\mathrm{P}_{t} \delta^{\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)} \wedge \mathrm{P}_{t^{\prime}} \delta^{\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)}\right)$, i.e.

$$
\mathrm{P}_{\mathrm{r}_{1}} \delta^{\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)} \wedge \mathrm{P}_{t} \delta^{\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)} \wedge \mathrm{P}_{t^{\prime}} \delta^{\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)} \leq \mathrm{P}_{\mathrm{r}_{2}} \delta^{\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)}
$$

Examples I

(1) Every elementary doctrine P is a biased elementary doctrine. If $X \stackrel{\mathrm{p}_{1}}{\leftarrow} W \xrightarrow{\mathrm{p}_{2}} X$ is a weak product then there exists a unique arrow $<\mathrm{p}_{1}, \mathrm{p}_{2}>: W \rightarrow X \times X$

$$
\delta^{\left(\mathbf{p}_{1}, \mathrm{p}_{2}\right)}:=\mathrm{P}_{\left.<\mathrm{p}_{1}, \mathrm{p}_{2}\right\rangle} \delta_{X}
$$

(2) If \mathscr{C} is wlex then the functor $\Psi_{\mathscr{C}}: \mathscr{C}^{o p} \rightarrow \operatorname{InfSL}$ is a biased elementary doctrine and

$$
\delta^{\left(\mathfrak{p}_{1}, \mathfrak{p}_{2}\right)}:=\lfloor e\rceil
$$

where

$$
E \xrightarrow{e} W \xrightarrow[\mathrm{p}_{2}]{\xrightarrow{\mathrm{p}_{1}}} X
$$

is a weak equalizer of p_{1}, p_{2}.

Examples II

(3) If $P: \mathscr{C}^{o p} \rightarrow \operatorname{InfSL}$ is a (biased) elementary doctrine with weak comprehensions and comprehensive diagonals and $A \in \mathscr{C}$ then the slice doctrine is a biased elementary doctrine:

$$
\mathrm{P}_{/ A}: \mathscr{C} / A^{o p} \rightarrow \operatorname{InfSL}
$$

$$
\begin{aligned}
& \mathrm{P}_{/ A}(x: X \rightarrow A):=\mathrm{P}(X) \\
& \mathrm{P}_{/ A}(f: y \rightarrow x):=\mathrm{P}_{f} \\
& \mathrm{P}_{/ A}(w)=\mathrm{P}\left(X \times_{A} X\right) \\
& \text { where } w:=x \pi_{1}=y \pi_{2} \text { and } \\
& \qquad \delta^{\left(\pi_{1}, \pi_{2}\right)}:=\mathrm{P}_{<\pi_{1}, \pi_{2}>} \delta X
\end{aligned}
$$

Key differences with "strict" elementary doctrines

- Two weak products $X \stackrel{p_{1}}{\leftarrow} W \xrightarrow{p_{2}} Y$ and $X \stackrel{p_{1}^{\prime}}{\leftarrow} W^{\prime} \xrightarrow{p_{2}^{\prime}} Y$ are not necessarily isomorphic.
- The fibers $\mathrm{P}(W)$ and $\mathrm{P}\left(W^{\prime}\right)$ are not necessarily isomorphic.

The reindexings P_{h} and $P_{h^{\prime}}$ are not necessarily equal.

- We have only the inequality

$$
\delta_{X \times Y} \leq \delta_{X} \boxtimes \delta_{Y}
$$

Intuition: $x_{1}=x_{2}, y_{1}=y_{2} \nRightarrow\left(\left(x_{1}, y_{1}\right), p\right)=\left(\left(x_{2}, y_{2}\right), q\right)$
$\delta_{X \times Y} \sim$ proof-relevant equality $\delta_{X} \boxtimes \delta_{Y} \sim$ proof-irrelevant or component-wise equality

Proof-irrelevant elements

Definition

$X \stackrel{p_{1}}{\leftarrow} W \xrightarrow{\mathrm{p}_{2}} Y$ weak product. The proof-irrelevant (p.i.) elements of W are the sub-poset of $\mathrm{P}(W)$ given by $\mathrm{P}-\operatorname{lrr}(W):=\operatorname{Des}\left(\delta_{X} \boxtimes \delta_{Y}\right)^{3}$

- Different weak products (of X, Y) have isomorphic proof-irrelevant elements: take an arrow $W^{\prime} \xrightarrow{h} W$ s.t. $\mathrm{p}_{i} \circ h=\mathrm{p}^{\prime}{ }_{i}$

$$
\begin{aligned}
& \mathrm{P}-\operatorname{lrr}(\mathrm{W}) \xrightarrow{\cong} \mathrm{P}-\operatorname{Irr}\left(W^{\prime}\right)
\end{aligned}
$$

- Up to iso: we denote proof-irrelevant elements of X and Y with $P^{s}[X, Y]$.
- Proof-irrelevant elements are reindexed by projections.

${ }^{3}$ Some work to prove that the definition depends only on W.

Elements reindexed by projections

Definition

Let $\mathrm{P}: \mathscr{C}^{o p} \rightarrow \operatorname{InfSL}$ a functor from \mathscr{C} with weak finite products and let $X \stackrel{\mathrm{p}_{1}}{\leftarrow} W \xrightarrow{\mathrm{p}_{2}} X$ be a weak product. An element $\alpha \in \mathrm{P}(W)$ is reindexed by projections (r.b.p.) if for every commutative diagram

$$
P_{f}(\alpha)=P_{g}(\alpha)
$$

Obs.: $\delta^{\left(\mathrm{p}_{1}, \mathfrak{p}_{2}\right)}$ is r.b.p.!
Obs.: In case of full weak comprehensions r.b.p. elements coincide with p.i. elements.

Main examples

- $\ln F_{/ A}^{M L}: \mathbf{M L} / A^{o p} \rightarrow \operatorname{InfSL}$, if

$$
\begin{aligned}
& W:=\sum_{x: X, y: Y} \operatorname{ld}_{A}(f(x), g(y)) \xrightarrow{\pi_{2}} Y \\
& \pi_{1} \downarrow \\
& X \xrightarrow{Y} \\
& A
\end{aligned}
$$

$$
F_{/ A}^{M L} \operatorname{Irr}(W)=\{(x, y, p): W \vdash R(x, y, p) \mid
$$

$$
\left.\operatorname{ld}_{x}\left(x, x^{\prime}\right), \operatorname{Id}_{Y}\left(y, y^{\prime}\right), R(x, y, p) \vdash R\left(x^{\prime}, y^{\prime}, p^{\prime}\right)\right\}
$$

- If \mathscr{C} is wlex and $X \stackrel{\mathrm{p}_{1}}{\leftarrow} W \xrightarrow{\mathrm{p}_{2}} Y$ is a weak product, the proof-irrelevant elements of $\Psi_{\mathscr{C}}(W)$ are:

Theorem

If \mathscr{C} is weakly left exact, then

$$
\Psi_{\mathscr{C}}-\operatorname{Irr}(W) \cong(\mathscr{C} /(X, Y))_{p o}
$$

Strictification...

If \mathscr{C} is a category, we can freely ${ }^{4}$ add strict finite products and obtain the category \mathscr{C}_{s} :
Obj. are finite lists $\left[X_{i}\right]_{i \in[n]}$
Arr. $(f, \hat{f}):\left[X_{i}\right]_{i \in[n]} \rightarrow\left[Y_{j}\right]_{j \in[m]}$
If $\mathrm{P}: \mathscr{C}^{o p} \rightarrow \operatorname{lnfSL}$ is a b.e.d. then we can build P^{s} using p.i. elements

Theorem

If P is a b. e. d. then $\mathrm{P}^{s} \in E D$. Vice versa, if $R: \mathscr{C}_{s}^{o p} \rightarrow \operatorname{lnfSL}$ in ED, the pre-composition $R \circ S: \mathscr{C}^{o p} \rightarrow \operatorname{InfSL}$ is a b. e. d.
${ }^{4}$ Obs: Weak products are neither preserved nor "strictified" by S.

...and sheafification ${ }^{5}$

If \mathscr{C} has weak finite products then consider the Grothendieck topology Θ on \mathscr{C}_{s} generated by singleton families

$$
\left\{\mathrm{p}:[W] \rightarrow\left[X_{1}, \ldots, X_{n}\right]\right\}
$$

where $\mathrm{p}_{i}: W \rightarrow X_{i}$, for $1 \leq i \leq n$, weak products of $X_{1}, \ldots, X_{n} \in \mathscr{C}$

[^0]
Extending elementary quotient completion

If $\mathrm{P}: \mathscr{C}^{o p} \rightarrow \operatorname{lnfSL}$ is a b.e.d. a P-eq. relation ${ }^{6}$ over $X \in \mathscr{C}$ is a $\rho \in \mathrm{P}^{s}[X, X]$ satisfying ref., sym. and tra.. The category $\overline{\mathscr{C}}$:

Obj. Pairs (X, ρ)
Arr. $\lfloor f\rceil:(X, \rho) \rightarrow(Y, \sigma)$ are $f: X \rightarrow Y$ s.t. $\rho \leq \mathrm{P}_{[f] \times[f]}^{s}(\sigma)$.

Theorems

1) $\bar{P} \in \mathbf{Q E D}$
2) $\circ(J, j): \mathbf{Q E D}(\overline{\mathrm{P}}, R) \cong \mathbf{L} \mathbf{c o}(\mathrm{P}, R)$, for every $R \in \mathbf{Q E D}$

Obs: $\overline{\mathrm{P}} \not \approx \overline{\mathrm{P}^{s}}$.
${ }^{6}$ The usual notion relies on strict fine products!

Applications

- (Elimination of the problem) Thm. $\overline{\mathrm{P}_{/ A}} \cong \overline{\mathrm{P}}_{/\left(A, \delta_{[A]}\right)}$.
- (Filling the gap) $\mathscr{C}_{\text {ex }}$ wlex and the e.q.c. are instances of this construction since $\Psi_{\mathscr{C}}$-eq. relation coincides with per (cones + ref. + sym. + trans.)
- We can define \Longrightarrow, \exists and \forall-biased elementary doctrines.
- Full generalization of the result of Carboni, Rosolini and Emmenegger about the Icc of the ex/wlex exact completion.

Current research / Future work

- Extending elementary quotient completion to a richer framework such as cwf, comprehension categories....
- Use the results obtained to describe categorically the compatibility ${ }^{7}$ of the Minimalist foundation with HoTT

References I

[Cio22] C. J. Cioffo. "Homotopy setoids and generalized quotient completion". PhD thesis. Università degli Studi di Milano, 2022.
[Cio23] C. J. Cioffo. Biased elementary doctrines and quotient completions. 2023. arXiv: 2304.03066 [math. CT].
[CM23] M. Contente and M. E. Maietti. The Compatibility of the Minimalist Foundation with Homotopy Type Theory. 2023. arXiv: 2207.03802 [math.LO].
[Mai09] M. E. Maietti. "A minimalist two-level foundation for constructive mathematics". In: Ann. Pure Appl. Logic 160.3 (2009), pp. 319-354.
[MR13] M. E. Maietti and G. Rosolini. "Quotient completion for the foundation of constructive mathematics". In: Log. Univers. 7.3 (2013), pp. 371-402.

References II

[MS05] M. E. Maietti and G. Sambin. "Toward a minimalist foundation for constructive mathematics". In: From sets and types to topology and analysis. Vol. 48. Oxford Logic Guides. Oxford Univ. Press, Oxford, 2005, pp. 91-114.

[^0]: ${ }^{5}$ Grothendieck topologies and weak limits for constructive mathematics. Ongoing work with: J. Emmenegger, F. Pasquali and G. Rosolini.

