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Finite-product theories and finite-limit theories



Functorial semantics

Idea of functorial semantics:
e Theories are categories, models are functors!
More precisely:
o Logical theories T correspond to structured categories C[T]
e Models of T correspond to structure-preserving functors C[T] — Set

o Different kinds of theory correspond to different kinds of structure



Functorial semantics — algebraic theories

« For every algebraic theory T (like the theories of groups or rings) there's a finite-product
category C[T] (called Lawvere theory) such that

T-Mod ~ FP(C[T], Set).

e C[T] can be constructed ‘out of syntax’, and we have

o full
C|T] 2 {finitely generated free T-models} C T-Mod.



Functorial semantics — essentially algebraic theories

« For every essentially algebraic theory T (like the theory of categories) there's a finite-limit

category L[T] such that
T-Mod ~ FL(L[T], Set).

o Again, we can think of £[T] as a ‘syntactic category’, and additionally we have

o full
L[T] % {finitely presented T-models} = {compact T-models} C T-Mod
where a A € T-Mod is called compact if
T-Mod(A, —) : T-Mod — Set

preserves filtered colimits.



Duality for finite-limit theories

e The categories of models of essentially algebraic theories are precisely the locally finitely
presentable categories!, and we get a perfect correspondence between ‘theories’ and ‘categories

of models’:

Theorem (Gabriel-Ulmer duality)
There's a biequivalence of 2-categories

FL L > FL(L,Set) LEPoP

{compact objects}°” -~ X

between the 2-category FL of small finite-limit categories, and the 2-category LFP of locally finitely
presentable categories.

o P. Gabriel and F. Ulmer. Lokal prasentierbare Kategorien. Springer-Verlag, 1971.

Li.e. locally small cocomplete categories with a dense set of compact objects



Duality for finite-product theories

An analogous duality for finite-product theories has only been formulated more recently, | found it in.

Theorem

There is a biequivalence of 2-categories

C — FP(C,Set)

op

FP.. ALG

{compact projectives}°” <— X

where
o FP_. is the 2-category of small idempotent-complete finite-product categories
e ALG is the 2-category of algebraic categories and algebraic functors

o An algebraic category is an |.f.p. category which is Barr-exact and where the compact (regular)
projective objects are dense

o An algebraic functor is a functor that preserves small limits, filtered colimits, and regular
epimorphisms.

e We can recover finite-product theories only up to idempotent-completion, since we have to
approximate ‘free’ by ‘projective’.

2 J. Adémek, J. Rosicky, and E.M. Vitale. Algebraic theories: a categorical introduction to general algebra.
Cambridge University Press, 2010.



Comparing the dualities

Finite-product duality is a special case of finite-limit duality, since
o finite-limit theories are more general than finite-product theories, and

o algebraic categories are locally finitely presentable.
C s FP(C,Set)

FP_ — ALG®P
{compact projectives}? - X
Fl 4 |u J
FL L+ FL(L,Set) LEP®

{compact objects}°? <+ X

Clan-duality can be viewed as a refinement of GU-duality which allows to control the amount of
limit-preservation in the models.



Clans



Clans

Definition

A clan is a small category 7 with a terminal object 1, equipped with a class 7' C mor(7) of
morphisms — called display maps and written — — such that

At =Tt
1. pullbacks of display maps along all maps exist and are display maps al - Lp

A——T
2. display maps are closed under composition, and

8. isomorphisms and terminal projections ' — 1 are display maps.

o Observation: clans have finite products (as pullbacks over 1).
o Definition due to Taylor®, name due to Joyal* (2017) (‘a clan is a collection of families')

o Relation to semantics of dependent type theory: display maps represent type families.

3 P. Taylor. “Recursive domains, indexed category theory and polymorphism”. PhD thesis. University of Cambridge,
1987, g 4.3.2.

4 A. Joyal. “Notes on clans and tribes". In: arXiv preprint arXiv:1710.10238 (2017).



Examples

Finite-product categories C can be viewed as clans with C' = {product projections}

Finite-limit categories £ can be viewed as clans with £ = mor(£)

The syntactic category of every Cartmell-style generalized algebraic theory is a clan.

For example, the clan /C for categories is the syntactic category of the GAT for categories:

F O type

xy:0 F A(x,y) type

x: 0 F id(x) : A(x, x)

xyz:0,f:Ax,y), g : Aly,z) - gof:A(x,z)
wxyz:0,e:Alw,x), f:A(x,y), g Aly,z) F (gof)oe=go(foe): Alw,z)
xy:0,f€A(x,y) F lof=Ff=Ffol:A(x,y)

Alternatively, /C can be described semantically as dual to a category of finitely presented models:

© 06 06 06 0 o

K = {categories free on finite graphs}°® C Cat®’
IC' = {functors induced by graph inclusions}°?



Models

Definition

A model of a clan 7 is a functor A : 7 — Set which preserves 1 and pullbacks of display-maps.

The category 7-Mod C [T, Set] of models is |.f.p. and contains 7°P. Top
For FP-clans (C,C") we have (C,C")-Mod = FP(C, Set). s l
For FL-clans (£, L") we have (£, £7)-Mod = FL(L, Set). K
(K,KT)-Mod = Cat. T-Mod C [T, Set]

Observation

The same category of models may be represented by different clans.
For example, ordinary algebraic theories can be represented by FP-clans as well as FL-clans.



The weak factorization system
e Since distinct clans can have equivalent categories of models, 7 cannot be reconstructed from

T-Mod alone.
e Solution: equip 7-Mod additional structure in form of a weak factorization system.

Definition
Let 7 be a clan and & : 7°° — 7-Mod. Define w.f.s. (£,F) on T-Mod:
F = RLP(X(TT)) ‘full maps’
E = LLP(F) ‘extensions’

Call A € T-Mod a 0-extension, if (0 — A) € £.

e Hom-algebras & (I') = 7(I', —) are O-extensions since all ' — 1 are display maps

o The same weak factorization system was also introduced by S. Henry®, see also®

5S. Henry, The language of a model category, HoTTEST seminar, Jan. 2020, https://youtu.be/7_X0gbSX1fk
6'S. Henry. “Algebraic models of homotopy types and the homotopy hypothesis”. In: arXiv preprint

arXiv:1609.04622 (2016).


https://youtu.be/7_X0qbSXlfk

Full maps

e f:A— Bin T7T-Mod is full iff it has the RLP with respect to all J(p) for display maps

p:A—T.
T(r,-) —= A A(D) —2 B(A)
=T Lr Ap)) 1B(p)
T(A,—) — B A(N) —— B(I)

This is equivalent to display-naturality-squares being weak pullbacks.

o Considering p : A — 1 we see that full maps are surjective and hence regular epis.

For FL-clans, only isos are full (consider naturality square for diagonal A — A x A)

For FP-clans we have

full map = regular epimorphism

O-extension =  projective object



Duality for clans

Theorem

There is a bi-equivalence of 2-categories

E(X)P i X

cAlg°?
T — T-Mod

Clan,.
where
e Clan. is the 2-category of Cauchy complete clans,

e cAlg is the 2-category of clan-algebraic categories, i.e. |.f.p. categories X equipped with an
‘extension/full' WFS (&, F) such that

1. the full subcategory CZE(X) C X on compact 0-extensions is dense in X,
2. (&€, F) is cofibrantly generated by maps in CZE(X), and
8. X has full and effective quotients of componentwise-full equivalence relations.

o Left to right: 7-Mod is clan-algebraic for every clan 7T,
o Right to left: for X clan-algebraic, CZE(X) C X is a coclan with extensions as codisplay maps



Proof sketch

e For the proof we have to show that

1. T ~ CZE(7-Mod)°" for all Cauchy-complete clans 7, and
2. CZE(X)°"-Mod ~ X for all clan-algebraic categories X.

e For 2 we use a Reedy factorization on 2-truncated semi-simplicial algebras

e For 1 we use the fat small object argument, which implies that:

Lemma
elts(A) is filtered for all 0-extensions A € T-Mod, thus 0-extensions are flat.



Models in Higher Types



Models in higher types

Let S be the co-topos of spaces/types.

Let C[Mon] be the finite-product theory of monoids, and let £[Mon] be the finite-limit theory of
monoids. Then

FP(C[Mon], Set) ~ FL(£L[Mon], Set) ~ Mon
but FP(C[Mon],S) and FL(L[Mon], S) are different:
o FL(L[Mon],8) is just the category of monoids
e FP(C[Mon],S) is the co-category ‘A, -algebras’, i.e. homotopy-coherent monoids.

Moral
By being ‘slimmer’, finite-product theories leave room for higher coherences when interpreted in
higher types.

This phenomenon was discussed under the name ‘animation’ in’, and earlier in®

7 K. Cesnavicius and P. Scholze. “Purity for flat cohomology”. In: arXiv preprint arXiv:1912.10932 (2019).
8 D. Quillen. Homotopical algebra. Springer, 1967.



Four clan-algebraic weak factorization systems on Cat

Cat admits several clan-algebraic weak factorization systems:
o (&1, F1) is cofib. generated by {(0 — 1), (2 — 2) }
e (&, F>) is cofib. generated by {(0 — 1),(2 — 2), 2—=1}
e (&5, F3) is cofib. generated by {(0 — 1),(2 — 2),(P — 2) )
o (&4, Fy) is cofib. generated by {(0 — 1),(2 — 2),(P — 2),(2 — 1)}
where P = (e = o).

N
N

The right classes are:

F1 = {full and surjective-on-objects functors}

F> = {full and bijective-on-objects functors}

F3 = {fully faithful and surjective-on-objects functors}
Fy = {isos}

Note that 3 is the class of trivial fibrations for the canonical model structure on Cat.



Four clans for categories

These correspond to the following clans:

71 = {free cats on fin. graphs}°? 7," = {graph inclusions}
T> = {free cats on fin. graphs}°” T, = {injective-on-edges maps}
Ts = {f.p. cats}” 74 = {injective-on-objects functors}

Ta = {f.p. cats}°P 7." = {all functors}



Syntaz: four GATs for categories

o Syntactially, adding (2 — 1) to the generators turns the diagonal of the type F O of objects
into a display map. This corresponds to adding an extensional identity type with rules

o xy:0 F E(x,y) type o xy:0,p:E(x,y) F x=y
o x:0 F r:E(x,x) o xy:0,pq:E(x,y) F p=g
to the GAT.

e Similarly, adding (P — 2) corresponds to adding an extensional identity type with rules

o xy:0,fg:Alx,y) b F(f,g) type oxy:0,fg:Alx,y),p: F(f,g) - f=g
o xy:0,f:A(x,y) F s: F(f,f) o xy:0,fg:Alx,y),pq:F(f,g) F p=gq

to the dependent type xy : O = A(x,y) of arrows.



Models in higher types

Models of 77 in S are Segal spaces, and adding extensional identity types to ~ O or to
xy: O F A(x,y) forces the respective types to be 0-truncated. Thus:

oco-Mod(71
co-Mod(7;
oo-Mod(73
oo-Mod(7,

= {Segal spaces}
= {Segal categories}

= {pre-categories}

~— — ~— ~—

= {discrete 1-categories}



The Fat Small Object Argument



Recall: Quillen’s small object argument

Theorem
Given a small collection J € mor(X) of arrows in a presentable category X, let

R=RLP(J) and L =LLP(R).

Then (£, R) is a weak factorization system.

Proof idea: To factor f : A — B, form the pushout

ued

L]
>~ hom(u,f) Xlll
[ ]

.%L

M

Then / € £, and we iterate the operation on ' transfinitely until the remainder is in R.

Interpretation: Construct fibrant replacement of 7 in X/B by attaching cells until all lifting problems
can be solved.



Fat Small Object Argument: Idea

e |If the domains of all u € J are presentable, then every cell attachment factors through a finite
stage of the transfinite iteration.

o The FSOA organizes the cell attachments into a ‘fatter’, and ‘shorter’ diagram which makes this
explicit.

e We present the construction only for the special case factoring 0 — 1

o Factoring more general maps H(I') — A can be reduced to this case using the following lemmas.



Slicing and coslicing

Slicing lemma

Given a clan 7 and A € 7-Mod, we have 7-Mod/A =~ elts(A)-Mod.

Coslicing lemma
Given aclan 7 and ' € T, we have H(I")/7-Mod ~ T (I")-Mod.

Both equivalences preserve the weak factorization systems.



Finite complexes

Definition
A finite complex in a coclan® € is a diagram D : P — © where
1. P is a finite poset,

2. colim(D—, : P-, — @) exists for all x € P, and the canonical map

ay : colim(D.yx) — Dj

is a codisplay map, and

3. we have x = y whenever P, = P, D, = D,, and a, = «, : colim(D~x) — Dx.

o One can show that colim(D) exists for all finite complexes, in particular condition 2 is redundant.

« A finite complex describes a stratification of an object in a coclan by/into a finite set of cell
attachments.

o Condition 3 says that every cell can only be attached once at every stage.

9A coclan is the opposite of a clan.



The preorder of finite complexes

Definition

A morphimsm of finite copmlexes from (D : P — C) to (E : Q — C) is a sieve inclusion f : D — E
such that Eo f = D.

Lemma

The category FC(C) of finite complexes in a small coclan C is an essentially small preorder with finite
joins.

The factorization of 0 — 1 is now computed as the (filtered) colimit of the composite functor

colim

FC(e) <™ @ 2y @or_Mod.

Lemma

The object C = colim(p pyerc(e) H(colim(D)) is a O-extension in C°P-Mod and C — 1 is full.



0-extensions are flat

Definition

A flat algebra over a clan 7 is a filtered colimit of hom-algebras hom(I", —). Equivalently, an algebra
A € T-Mod is flat, if its category of elements elts(A) is filtered.

Lemma

0-extensions in T-Mod are flat.

Proof.

Let E € 7-Mod be a flat algebra. Applying the FSOA in 7-Mod/E ~ ﬂs(E)—Mod, we obtain a full
map f : F — E from a O-extension F which is a filtered colimit of hom-algebras and therefore flat. f
splits as a full maps into a 0-extension, and the claim follows since flat algebras are closed under
retract. O



Strictness discussion

o Strictness in the definition of finite complexes and moprhisms of finite complexes feels crucial,
thus we have to view clans as strict 1-categories.



Related work

e B. Ahrens, P. North, M. Shulman, and D. Tsementzis. “A higher structure identity principle”.
English. In: Proceedings of the 2020 35th annual ACM/IEEE symposium on logic in computer
science, LICS 2020, virtual event, July 8-11, 2020. New York, NY: Association for Computing
Machinery (ACM), 2020

o |. Di Liberti and J. Rosicky. “Enriched Locally Generated Categories”. In: (Sept. 2020). arXiv:
2009.10980 [math.CT]

e C.L. Subramaniam. “From dependent type theory to higher algebraic structures”. In: (Oct.
2021). arXiv: 2110.02804 [math.CT]

e S. Henry. "Algebraic models of homotopy types and the homotopy hypothesis”. In: arXiv
preprint arXiv:1609.04622 (2016)


https://arxiv.org/abs/2009.10980
https://arxiv.org/abs/2110.02804

Thanks for your attention!



Proof Sketch



Proof sketch: T ~ CZE(T-Mod)

o Easy to see that 7(I', —) is a compact 0-extension for all [ € T, thus the Yoneda embedding
factors through CZE(7-Mod).

CZE(T-Mod)

TP T> T-Mod

o To see that E is a (Morita) equivalence, it suffices to show that every compact O-extension is a
retract of a hom-algebra 7(I', —)

e This follows from the fat small object argument, which implies that ﬁs(A) is filtered for every
0-extension A — if A is moreover compact, then one of the inclusions of the canonical colimit

A = colim(elts(A) — T°P % T-Mod) must split:

A T, )

=~ l"(r-x)

colim(elts(A) — T°P % T-Mod)



Proof sketch: CZE(X)°"-Mod ~ X

Show that the nerve/realization adjunction

*J L L(A) = colim([A — C 2 %)
% N(X) = X(J(=), X)
CZE(X)°P-Mod

is an equivalence.
o By density the right adjoint NV is fully faithful, i.e. the counit is an isomorphism.

e |t remains to show that the unit of the adjunction is an isomorphism, i.e.
A(C) =5 2(C, colim([A — C 2 %)).

for all A € CZE(X)°P-Mod and C € C.
e The functor X(C, —) preserves filtered colimits and quotients of componentwise-full equivalence
relations, so it suffices to decompose colim([A — C EN X) in terms of these constructions.

e This is essentially what we're doing in the following, using a Reedy style technique.



Proof sketch: CZE(X)°"-Mod =~ X — jointly full cones

Definition
Let D : 7 — X be a diagram in a clan-algebraic category.

A cone (A, ¢) over D is called jointly full, if for every cone (C, ), extension e : B — C and map

g : B — A constituting a cone morphism g : (B,y0e) — (A, ¢), there exists a map h: C — A such
that

A

lo,
D;

1

e

commutes for all / € 7.

o Observation: The cone (A, ¢) is jointly full iff the canonical map to the limit is full.



Proof sketch: CZE(X)°*-Mod ~ X — nice diagrams

Definition
A nice diagram in a clan-algebraic category X is a 2-truncated semi-simplicial diagram
-do ——

dy Ay _ T
-dy ——>

Ao b L Ao

where
1. Ap, A1, and A, are 0-extensions, and the maps dy, di : A1 — Ag are full,

A2 H Al
2. in the square | o |4, the span constitutes a jointly full diagram over the cospan,

AlLAO
AlLAO

3. there exists a symmetry map ;| \ 14, making the triangles commute, and
AO % A1

4. there exists a 0-extension A and full maps f,g : A — A; constituting a jointly full cone over the

diagram
Al ¢ A

dol. >< L+
Ag D Ay



Proof sketch: CZE(X)°P-Mod ~ X — nice diagrams

Lemma

, , .. (do,dh) . . (ro,r)
For any nice diagram, the pairing Ay ——— Ao X Ay admits a decomposition A1 — R —— Ay x Ag
into a full map and a monomorphism, and (ro, r1) is a componentwise-full equivalence relation.

Lemma

Assume X is clan-algebraic and F : X — Set preserves finite limits and sends full maps to surjections.
Then for every nice diagram, F preserves coequalizers of the arrows dy, d; : A1 — Ap.

Lemma

The restriction L' of L in the nerve/realization adjunction

CZE(X)°"-Mod

to 0-extensions is fully faithful and preserves full maps and nice diagrams.



Proof sketch: CZE(X)°*-Mod ~ X — Nice diagrams

Lemma

For every object A of a clan-algebraic category X there exists a nice diagram A, such that

d
A = coeq(A; = Ao).
di

Proof.

e Ay is given by covering A by a 0-extension, i.e. factoring 0 — A as 0 — Ag S A

0> A — R = A

e Aj is given by covering the kernel of Ay — A by a 0-extension n] @ e
Ag = A
0— A —» ¢ — A
o A is given by covering the following pullback: 17 i
A A

O

Remark: The construction of A, is a Reedy-style factorization of the maps 0 — A(A) in 2-truncated
semi-simplicial objects.



Proof sketch: CZE(X)°"-Mod ~ X - the calculation

Have to show that AC = X(C, LA) for all A € CZE(X)°*-Mod and C € CZE(X). Let A, be a nice
diagram with coequalizer A. We have

X(C, LA)

= X(C, L(coeq(A; = Ap)))
X(C,coeq(LA; = LAY))

1R

1

coeq

coeq

coeq(hom(dk(C), A1) = hom(k(C), Ao))

(X
(ALC
(

(C, LA1) = X(C, LA)))

= AoC)

), coeq(A; = Ao))

since A = coeq(A; = Ao)

since L preserves colimits

since X(C, —) preserves coeqs of nice diags
since LA; = colim([A; — C — X) filtered



