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1. Finite-product theories and finite-limit theories
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3. Models in Higher Types
4. The Fat Small Object Argument



Finite-product theories and finite-limit theories



Functorial semantics

Idea of functorial semantics:
• Theories are categories, models are functors!

More precisely:
• Logical theories T correspond to structured categories C[T]
• Models of T correspond to structure-preserving functors C[T]→ Set
• Different kinds of theory correspond to different kinds of structure



Functorial semantics – algebraic theories

• For every algebraic theory T (like the theories of groups or rings) there’s a finite-product
category C[T] (called Lawvere theory) such that

T-Mod ' FP(C[T], Set).

• C[T] can be constructed ‘out of syntax’, and we have

C[T]
op
' {finitely generated free T-models}

full
⊆ T-Mod.



Functorial semantics – essentially algebraic theories

• For every essentially algebraic theory T (like the theory of categories) there’s a finite-limit
category L[T] such that

T-Mod ' FL(L[T], Set).

• Again, we can think of L[T] as a ‘syntactic category’, and additionally we have

L[T]
op
' {finitely presented T-models} = {compact T-models}

full
⊆ T-Mod

where a A ∈ T-Mod is called compact if

T-Mod(A,−) : T-Mod→ Set

preserves filtered colimits.



Duality for finite-limit theories

• The categories of models of essentially algebraic theories are precisely the locally finitely
presentable categories1, and we get a perfect correspondence between ‘theories’ and ‘categories
of models’:

Theorem (Gabriel–Ulmer duality)
There’s a biequivalence of 2-categories

FL LFPopL 7→ FL(L,Set)
{compact objects}op ← [ X

between the 2-category FL of small finite-limit categories, and the 2-category LFP of locally finitely
presentable categories.

• P. Gabriel and F. Ulmer. Lokal präsentierbare Kategorien. Springer-Verlag, 1971.

1i.e. locally small cocomplete categories with a dense set of compact objects



Duality for finite-product theories
An analogous duality for finite-product theories has only been formulated more recently, I found it in2.

Theorem
There is a biequivalence of 2-categories

FPcc ALGopC 7→ FP(C,Set)
{compact projectives}op ←[ X

where
• FPcc is the 2-category of small idempotent-complete finite-product categories
• ALG is the 2-category of algebraic categories and algebraic functors

An algebraic category is an l.f.p. category which is Barr-exact and where the compact (regular)
projective objects are dense
An algebraic functor is a functor that preserves small limits, filtered colimits, and regular
epimorphisms.

• We can recover finite-product theories only up to idempotent-completion, since we have to
approximate ‘free’ by ‘projective’.

2 J. Adámek, J. Rosický, and E.M. Vitale. Algebraic theories: a categorical introduction to general algebra.
Cambridge University Press, 2010.



Comparing the dualities

Finite-product duality is a special case of finite-limit duality, since
• finite-limit theories are more general than finite-product theories, and
• algebraic categories are locally finitely presentable.

FPcc ALGop

FL LFPop

C 7→ FP(C,Set)
{compact projectives}op ←[ X

F JUa

L 7→ FL(L,Set)
{compact objects}op ← [ X

Clan-duality can be viewed as a refinement of GU-duality which allows to control the amount of
limit-preservation in the models.



Clans



Clans

Definition
A clan is a small category T with a terminal object 1, equipped with a class T † ⊆ mor(T ) of
morphisms – called display maps and written _ – such that

1. pullbacks of display maps along all maps exist and are display maps
∆+ Γ+

∆ Γ

s+

q y p
s

,

2. display maps are closed under composition, and
3. isomorphisms and terminal projections Γ _ 1 are display maps.

• Observation: clans have finite products (as pullbacks over 1).
• Definition due to Taylor3, name due to Joyal4 (2017) (‘a clan is a collection of families’)
• Relation to semantics of dependent type theory: display maps represent type families.

3 P. Taylor. “Recursive domains, indexed category theory and polymorphism”. PhD thesis. University of Cambridge,
1987, ğ 4.3.2.

4 A. Joyal. “Notes on clans and tribes”. In: arXiv preprint arXiv:1710.10238 (2017).



Examples

• Finite-product categories C can be viewed as clans with C† = {product projections}
• Finite-limit categories L can be viewed as clans with L† = mor(L)
• The syntactic category of every Cartmell-style generalized algebraic theory is a clan.
• For example, the clan K for categories is the syntactic category of the GAT for categories:

` O type
x y : O ` A(x , y) type
x : O ` id(x) : A(x , x)
x y z : O , f : A(x , y) , g : A(y , z) ` g ◦ f : A(x , z)
w x y z : O , e : A(w , x) , f : A(x , y) , g : A(y , z) ` (g ◦ f ) ◦ e = g ◦ (f ◦ e) : A(w , z)
x y : O , f ∈ A(x , y) ` 1 ◦ f = f = f ◦ 1 : A(x , y)

Alternatively, K can be described semantically as dual to a category of finitely presented models:

K = {categories free on finite graphs}op ⊆ Catop

K† = {functors induced by graph inclusions}op



Models

Definition
A model of a clan T is a functor A : T → Set which preserves 1 and pullbacks of display-maps.

• The category T -Mod ⊆ [T , Set] of models is l.f.p. and contains T op.
• For FP-clans (C, C†) we have (C, C†)-Mod = FP(C, Set).
• For FL-clans (L,L†) we have (L,L†)-Mod = FL(L, Set).
• (K,K†)-Mod = Cat.

T op

T -Mod [T , Set]

よ

⊆

Observation
The same category of models may be represented by different clans.
For example, ordinary algebraic theories can be represented by FP-clans as well as FL-clans.



The weak factorization system

• Since distinct clans can have equivalent categories of models, T cannot be reconstructed from
T -Mod alone.

• Solution: equip T-Mod additional structure in form of a weak factorization system.

Definition
Let T be a clan andよ : T op → T -Mod. Define w.f.s. (E ,F) on T -Mod:

F = RLP(よ(T †)) ‘full maps’
E = LLP(F) ‘extensions’

Call A ∈ T -Mod a 0-extension, if (0→ A) ∈ E .

• Hom-algebrasよ(Γ) = T (Γ,−) are 0-extensions since all Γ _ 1 are display maps.
• The same weak factorization system was also introduced by S. Henry5, see also6.

5S. Henry, The language of a model category, HoTTEST seminar, Jan. 2020, https://youtu.be/7_X0qbSXlfk
6 S. Henry. “Algebraic models of homotopy types and the homotopy hypothesis”. In: arXiv preprint

arXiv:1609.04622 (2016).

https://youtu.be/7_X0qbSXlfk


Full maps

• f : A→ B in T -Mod is full iff it has the RLP with respect to allよ(p) for display maps
p : ∆ _ Γ.

T (Γ,−) A

T (∆,−) B
よ(p)=T (p,−) f

A(∆) B(∆)

A(Γ) B(Γ)

f∆

A(p) B(p)
fΓ

• This is equivalent to display-naturality-squares being weak pullbacks.
• Considering p : ∆ _ 1 we see that full maps are surjective and hence regular epis.
• For FL-clans, only isos are full (consider naturality square for diagonal ∆→ ∆×∆)
• For FP-clans we have

full map = regular epimorphism
0-extension = projective object



Duality for clans

Theorem
There is a bi-equivalence of 2-categories

Clancc
C(X)op ← [ X←−−−−−−−−−→
T 7→ T -Mod

cAlgop

where
• Clancc is the 2-category of Cauchy complete clans,
• cAlg is the 2-category of clan-algebraic categories, i.e. l.f.p. categories X equipped with an

‘extension/full’ WFS (E ,F) such that
1. the full subcategory CZE(X) ⊆ X on compact 0-extensions is dense in X,
2. (E ,F) is cofibrantly generated by maps in CZE(X), and
3. X has full and effective quotients of componentwise-full equivalence relations.

• Left to right: T -Mod is clan-algebraic for every clan T ,
• Right to left: for X clan-algebraic, CZE(X) ⊆ X is a coclan with extensions as codisplay maps



Proof sketch

• For the proof we have to show that
1. T ' CZE(T-Mod)op for all Cauchy-complete clans T , and
2. CZE(X)op-Mod ' X for all clan-algebraic categories X.

• For 2 we use a Reedy factorization on 2-truncated semi-simplicial algebras
• For 1 we use the fat small object argument, which implies that:

Lemma
elts(A) is filtered for all 0-extensions A ∈ T-Mod, thus 0-extensions are flat.



Models in Higher Types



Models in higher types

Let S be the ∞-topos of spaces/types.

Let C[Mon] be the finite-product theory of monoids, and let L[Mon] be the finite-limit theory of
monoids. Then

FP(C[Mon], Set) ' FL(L[Mon], Set) 'Mon

but FP(C[Mon],S) and FL(L[Mon],S) are different:
• FL(L[Mon],S) is just the category of monoids
• FP(C[Mon],S) is the ∞-category ‘A∞-algebras’, i.e. homotopy-coherent monoids.

Moral
By being ‘slimmer’, finite-product theories leave room for higher coherences when interpreted in
higher types.

This phenomenon was discussed under the name ‘animation’ in7, and earlier in8

7 K. Cesnavicius and P. Scholze. “Purity for flat cohomology”. In: arXiv preprint arXiv:1912.10932 (2019).
8 D. Quillen. Homotopical algebra. Springer, 1967.



Four clan-algebraic weak factorization systems on Cat

Cat admits several clan-algebraic weak factorization systems:
• (E1,F1) is cofib. generated by {(0→ 1), (2→ 2) }
• (E2,F2) is cofib. generated by {(0→ 1), (2→ 2), (2→ 1)}
• (E3,F3) is cofib. generated by {(0→ 1), (2→ 2), (P→ 2) }
• (E4,F4) is cofib. generated by {(0→ 1), (2→ 2), (P→ 2), (2→ 1)}

where P = (•⇒ •).

The right classes are:

F1 = {full and surjective-on-objects functors}
F2 = {full and bijective-on-objects functors}
F3 = {fully faithful and surjective-on-objects functors}
F4 = {isos}

Note that F3 is the class of trivial fibrations for the canonical model structure on Cat.



Four clans for categories

These correspond to the following clans:

T1 = {free cats on fin. graphs}op T †1 = {graph inclusions}
T2 = {free cats on fin. graphs}op T †2 = {injective-on-edges maps}
T3 = {f.p. cats}op T †3 = {injective-on-objects functors}
T4 = {f.p. cats}op T †4 = {all functors}



Syntax: four GATs for categories

• Syntactially, adding (2→ 1) to the generators turns the diagonal of the type ` O of objects
into a display map. This corresponds to adding an extensional identity type with rules

x y : O ` E(x , y) type
x : O ` r : E(x , x)

x y : O , p : E(x , y) ` x = y
x y : O , p q : E(x , y) ` p = q

to the GAT.
• Similarly, adding (P→ 2) corresponds to adding an extensional identity type with rules

x y : O , f g : A(x , y) ` F (f , g) type
x y : O , f : A(x , y) ` s : F (f , f )

x y : O , f g : A(x , y) , p : F (f , g) ` f = g
x y : O , f g : A(x , y) , p q : F (f , g) ` p = q

to the dependent type x y : O ` A(x , y) of arrows.



Models in higher types

Models of T1 in S are Segal spaces, and adding extensional identity types to ` O or to
x y : O ` A(x , y) forces the respective types to be 0-truncated. Thus:

∞-Mod(T1) = {Segal spaces}
∞-Mod(T2) = {Segal categories}
∞-Mod(T3) = {pre-categories}
∞-Mod(T4) = {discrete 1-categories}



The Fat Small Object Argument



Recall: Quillen’s small object argument

Theorem
Given a small collection J ⊆ mor(X) of arrows in a presentable category X, let

R = RLP(J) and L = LLP(R).

Then (L,R) is a weak factorization system.

Proof idea: To factor f : A→ B, form the pushout

• A

• •

B

∑
u∈J

hom(u,f )×u l f
p

f +

Then l ∈ L, and we iterate the operation on f + transfinitely until the remainder is in R.

Interpretation: Construct fibrant replacement of f in X/B by attaching cells until all lifting problems
can be solved.



Fat Small Object Argument: Idea

• If the domains of all u ∈ J are presentable, then every cell attachment factors through a finite
stage of the transfinite iteration.

• The FSOA organizes the cell attachments into a ‘fatter’, and ‘shorter’ diagram which makes this
explicit.

• We present the construction only for the special case factoring 0→ 1
• Factoring more general maps H(Γ)→ A can be reduced to this case using the following lemmas.



Slicing and coslicing

Slicing lemma
Given a clan T and A ∈ T-Mod, we have T-Mod/A ' elts←−(A)-Mod.

Coslicing lemma
Given a clan T and Γ ∈ T , we have H(Γ)/T-Mod ' T (Γ)-Mod.

Both equivalences preserve the weak factorization systems.



Finite complexes

Definition
A finite complex in a coclan9 C is a diagram D : P → C where

1. P is a finite poset,
2. colim(D<x : P<x → C) exists for all x ∈ P, and the canonical map

αx : colim(D<x ) → Dx

is a codisplay map, and
3. we have x = y whenever P<x = P<y , Dx = Dy , and αx = αy : colim(D<x )→ Dx .

• One can show that colim(D) exists for all finite complexes, in particular condition 2 is redundant.
• A finite complex describes a stratification of an object in a coclan by/into a finite set of cell

attachments.
• Condition 3 says that every cell can only be attached once at every stage.

9A coclan is the opposite of a clan.



The preorder of finite complexes

Definition
A morphimsm of finite copmlexes from (D : P → C) to (E : Q → C) is a sieve inclusion f : D → E
such that E ◦ f = D.

Lemma
The category FC(C) of finite complexes in a small coclan C is an essentially small preorder with finite
joins.

The factorization of 0→ 1 is now computed as the (filtered) colimit of the composite functor

FC(C) colim−−−→ C
H−→ Cop-Mod.

Lemma
The object C = colim(P,D)∈FC(C) H(colim(D)) is a 0-extension in Cop-Mod and C → 1 is full.



0-extensions are flat

Definition
A flat algebra over a clan T is a filtered colimit of hom-algebras hom(Γ,−). Equivalently, an algebra
A ∈ T-Mod is flat, if its category of elements elts←−(A) is filtered.

Lemma
0-extensions in T-Mod are flat.

Proof.
Let E ∈ T-Mod be a flat algebra. Applying the FSOA in T-Mod/E ' elts←−(E )-Mod, we obtain a full
map f : F � E from a 0-extension F which is a filtered colimit of hom-algebras and therefore flat. f
splits as a full maps into a 0-extension, and the claim follows since flat algebras are closed under
retract.



Strictness discussion

• Strictness in the definition of finite complexes and moprhisms of finite complexes feels crucial,
thus we have to view clans as strict 1-categories.
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Proof Sketch



Proof sketch: T op ' CZE(T-Mod)
• Easy to see that T (Γ,−) is a compact 0-extension for all Γ ∈ T , thus the Yoneda embedding

factors through CZE(T -Mod).

CZE(T -Mod)

T op T -Mod
よ

E

• To see that E is a (Morita) equivalence, it suffices to show that every compact 0-extension is a
retract of a hom-algebra T (Γ,−)

• This follows from the fat small object argument, which implies that elts←−(A) is filtered for every
0-extension A — if A is moreover compact, then one of the inclusions of the canonical colimit
A ∼= colim(elts←−(A)→ T

op よ→ T-Mod) must split:

A T (Γ,−)

colim(elts←−(A)→ T
op よ→ T-Mod)

∼= σ(Γ,x)



Proof sketch: CZE(X)op-Mod ' X

• Show that the nerve/realization adjunction

C X

CZE(X)op-Mod

J

よ
N

a
L L(A) = colim(

∫
A→ C J−→ X)

N(X ) = X(J(−),X )

is an equivalence.
• By density the right adjoint N is fully faithful, i.e. the counit is an isomorphism.
• It remains to show that the unit of the adjunction is an isomorphism, i.e.

A(C)
∼=−→ X(C , colim(

∫
A→ C J−→ X)).

for all A ∈ CZE(X)op-Mod and C ∈ C.
• The functor X(C ,−) preserves filtered colimits and quotients of componentwise-full equivalence

relations, so it suffices to decompose colim(
∫

A→ C J−→ X) in terms of these constructions.
• This is essentially what we’re doing in the following, using a Reedy style technique.



Proof sketch: CZE(X)op-Mod ' X – jointly full cones

Definition
Let D : I → X be a diagram in a clan-algebraic category.

A cone (A, φ) over D is called jointly full, if for every cone (C , γ), extension e : B → C and map
g : B → A constituting a cone morphism g : (B, γ ◦ e)→ (A, φ), there exists a map h : C → A such
that

B A

C Di

g

e φi

γi

h

commutes for all i ∈ I.

• Observation: The cone (A, φ) is jointly full iff the canonical map to the limit is full.



Proof sketch: CZE(X)op-Mod ' X – nice diagrams
Definition
A nice diagram in a clan-algebraic category X is a 2-truncated semi-simplicial diagram

A2 A1 A0
d0

d1
d2

d0
d1

where
1. A0, A1, and A2 are 0-extensions, and the maps d0, d1 : A1 → A0 are full,

2. in the square
A2 A1

A1 A0

d0
d2 d1

d0

the span constitutes a jointly full diagram over the cospan,

3. there exists a symmetry map
A1 A0

A0 A1

d1

d0
σ

d1
d0 making the triangles commute, and

4. there exists a 0-extension Ã and full maps f , g : Ã � A1 constituting a jointly full cone over the
diagram

A1 A1

A0 A0

d1

d0

d0

d1 .



Proof sketch: CZE(X)op-Mod ' X — nice diagrams
Lemma

For any nice diagram, the pairing A1
〈d0,d1〉−−−−→ A0 × A0 admits a decomposition A1 � R 〈r0,r1〉−−−→ A0 × A0

into a full map and a monomorphism, and 〈r0, r1〉 is a componentwise-full equivalence relation.

Lemma
Assume X is clan-algebraic and F : X→ Set preserves finite limits and sends full maps to surjections.
Then for every nice diagram, F preserves coequalizers of the arrows d0, d1 : A1 → A0.

Lemma
The restriction L′ of L in the nerve/realization adjunction

C X

{0-ext}

CZE(X)op-Mod

J

N

L′

a

to 0-extensions is fully faithful and preserves full maps and nice diagrams.



Proof sketch: CZE(X)op-Mod ' X — Nice diagrams
Lemma
For every object A of a clan-algebraic category X there exists a nice diagram A• such that

A = coeq(A1
d0−−⇒
d1

A0).

Proof.

• A0 is given by covering A by a 0-extension, i.e. factoring 0→ A as 0 ↪→ A0
e
� A.

• A1 is given by covering the kernel of A0 � A by a 0-extension
0 A1 R A0

A0 A

y
r0

r1 e
e

• A2 is given by covering the following pullback:
0 A2 • A1

A1 A0

y
d0

d1

Remark: The construction of A• is a Reedy-style factorization of the maps 0→ ∆(A) in 2-truncated
semi-simplicial objects.



Proof sketch: CZE(X)op-Mod ' X – the calculation

Have to show that AC ∼= X(C , LA) for all A ∈ CZE(X)op-Mod and C ∈ CZE(X). Let A• be a nice
diagram with coequalizer A. We have

X(C , LA) = X(C , L(coeq(A1 ⇒ A0))) since A = coeq(A1 ⇒ A0)
∼= X(C , coeq(LA1 ⇒ LA0)) since L preserves colimits
∼= coeq(X(C , LA1) ⇒ X(C , LA0)) since X(C ,−) preserves coeqs of nice diags
∼= coeq(A1C ⇒ A0C) since LAi = colim(

∫
Ai → C→ X) filtered

∼= coeq(hom(よ(C),A1) ⇒ hom(よ(C),A0))

∼= hom(よ(C), coeq(A1 ⇒ A0))

∼= hom(よ(C),A)
∼= AC


