Duality for Clans and the Fat Small Object Argument

Jonas Frey

HoTT 2023 Conference Pittsburgh

Special session in honor of André Joyal's contributions to HoTT on his 80th birthday

Draft: https://github.com/jonas-frey/pdfs/blob/master/clan-duality.pdf

Overview

- 1. Finite-product theories and finite-limit theories
- 2. Clans
- ${\it 3.}$ Models in Higher Types
- 4. The Fat Small Object Argument

Finite-product theories and finite-limit theories

Functorial semantics

Idea of functorial semantics:

• Theories are categories, models are functors!

More precisely:

- Logical theories \mathbb{T} correspond to structured categories $\mathcal{C}[\mathbb{T}]$
- Models of $\mathbb T$ correspond to structure-preserving functors $\mathcal C[\mathbb T] o \mathsf{Set}$
- Different kinds of theory correspond to different kinds of structure

Functorial semantics – algebraic theories

For every algebraic theory

 (like the theories of groups or rings) there's a finite-product category

 C[T] (called Lawvere theory) such that

$$\mathbb{T}$$
-Mod \simeq **FP**($\mathcal{C}[\mathbb{T}]$, Set).

• $\mathcal{C}[\mathbb{T}]$ can be constructed 'out of syntax', and we have

```
\mathcal{C}[\mathbb{T}] \overset{\mathsf{op}}{\simeq} \ \{\mathsf{finitely} \ \mathsf{generated} \ \mathsf{free} \ \mathbb{T}\text{-}\mathsf{models}\} \overset{\mathsf{full}}{\subseteq} \mathbb{T}\text{-}\mathsf{Mod}.
```

Functorial semantics – essentially algebraic theories

• For every **essentially algebraic theory** \mathbb{T} (like the **theory of categories**) there's a finite-limit category $\mathcal{L}[\mathbb{T}]$ such that

$$\mathbb{T}$$
-Mod \simeq FL($\mathcal{L}[\mathbb{T}]$, Set).

• Again, we can think of $\mathcal{L}[\mathbb{T}]$ as a 'syntactic category', and additionally we have

$$\mathcal{L}[\mathbb{T}] \overset{\text{op}}{\simeq} \{ \text{finitely presented } \mathbb{T}\text{-models} \} = \{ \text{compact } \mathbb{T}\text{-models} \} \overset{\text{full}}{\subseteq} \mathbb{T}\text{-}\mathbf{Mod}$$

where a $A \in \mathbb{T}$ -Mod is called **compact** if

$$\mathbb{T}\text{-}\mathsf{Mod}(A,-): \mathbb{T}\text{-}\mathsf{Mod} \to \mathsf{Set}$$

preserves filtered colimits.

Duality for finite-limit theories

The categories of models of essentially algebraic theories are precisely the locally finitely
presentable categories¹, and we get a perfect correspondence between 'theories' and 'categories
of models':

Theorem (Gabriel-Ulmer duality)

There's a biequivalence of 2-categories

$$\mathsf{FL} \xleftarrow{\mathcal{L} \mapsto \mathsf{FL}(\mathcal{L},\mathsf{Set})} \mathsf{LFP}^{\mathsf{op}}$$

$$\mathsf{\{compact objects\}}^{\mathsf{op}} \leftrightarrow \mathcal{X}$$

between the 2-category **FL** of small finite-limit categories, and the 2-category **LFP** of locally finitely presentable categories.

• P. Gabriel and F. Ulmer. Lokal präsentierbare Kategorien. Springer-Verlag, 1971.

¹i.e. locally small cocomplete categories with a dense set of compact objects

Duality for finite-product theories

An analogous duality for finite-product theories has only been formulated more recently, I found it in².

Theorem

There is a biequivalence of 2-categories

$$\mathsf{FP}_\mathsf{cc} \xleftarrow{\qquad \mathcal{C} \mapsto \mathsf{FP}(\mathcal{C},\mathsf{Set})} \mathsf{ALG}^\mathsf{op}$$

$$\mathsf{\{compact projectives\}}^\mathsf{op} \leftrightarrow \mathcal{X}$$

where

- FP_{cc} is the 2-category of small idempotent-complete finite-product categories
- ALG is the 2-category of algebraic categories and algebraic functors
 - An algebraic category is an I.f.p. category which is Barr-exact and where the compact (regular)
 projective objects are dense
 - An **algebraic functor** is a functor that preserves small limits, filtered colimits, and regular epimorphisms.
- We can recover finite-product theories only up to idempotent-completion, since we have to approximate 'free' by 'projective'.

² J. Adámek, J. Rosický, and E.M. Vitale. *Algebraic theories: a categorical introduction to general algebra*. Cambridge University Press, 2010.

Comparing the dualities

Finite-product duality is a special case of finite-limit duality, since

- finite-limit theories are more general than finite-product theories, and
- algebraic categories are locally finitely presentable.

Clan-duality can be viewed as a **refinement** of GU-duality which allows to control the amount of limit-preservation in the models.

Clans

Definition

A **clan** is a small category \mathcal{T} with a terminal object 1, equipped with a class $\mathcal{T}^{\dagger} \subseteq \operatorname{mor}(\mathcal{T})$ of morphisms – called **display maps** and written \rightarrow – such that

- 1. pullbacks of display maps along all maps exist and are display maps $\begin{array}{ccc} \Delta^+ & \xrightarrow{s^+} & \Gamma^+ \\ q_{\downarrow} & & \downarrow p \end{array} ,$ $\Delta \xrightarrow{s} & \Gamma$
- 2. display maps are closed under composition, and
- 3. isomorphisms and terminal projections $\Gamma \to 1$ are display maps.
- Observation: clans have finite products (as pullbacks over 1).
- Definition due to Taylor³, name due to Joyal⁴ (2017) ('a clan is a collection of families')
- Relation to semantics of dependent type theory: display maps represent type families.

³ P. Taylor. "Recursive domains, indexed category theory and polymorphism". PhD thesis. University of Cambridge, 1987. ₹ 4.3.2.

⁴ A. Joyal. "Notes on clans and tribes". In: arXiv preprint arXiv:1710.10238 (2017).

Examples

- Finite-product categories $\mathcal C$ can be viewed as clans with $\mathcal C^\dagger = \{ \text{product projections} \}$
- Finite-limit categories $\mathcal L$ can be viewed as clans with $\mathcal L^\dagger = \operatorname{mor}(\mathcal L)$
- The syntactic category of every Cartmell-style **generalized algebraic theory** is a clan.
- For example, the clan K for categories is the syntactic category of the GAT for categories:

```
• \vdash O type

• xy: O \vdash A(x,y) type

• x: O \vdash \operatorname{id}(x): A(x,x)

• xyz: O, f: A(x,y), g: A(y,z) \vdash g \circ f: A(x,z)

• wxyz: O, e: A(w,x), f: A(x,y), g: A(y,z) \vdash (g \circ f) \circ e = g \circ (f \circ e): A(w,z)

• xy: O, f \in A(x,y) \vdash 1 \circ f = f = f \circ 1: A(x,y)
```

Alternatively, $\mathcal K$ can be described semantically as dual to a category of finitely presented models:

```
\mathcal{K} = \{\text{categories free on finite graphs}\}^{\text{op}} \subseteq \text{Cat}^{\text{op}}
\mathcal{K}^{\dagger} = \{\text{functors induced by graph inclusions}\}^{\text{op}}
```

Models

Definition

A **model** of a clan \mathcal{T} is a functor $A: \mathcal{T} \to \mathsf{Set}$ which preserves 1 and pullbacks of display-maps.

- The category $\mathcal{T}\text{-}\mathsf{Mod}\subseteq [\mathcal{T},\mathsf{Set}]$ of models is l.f.p. and contains \mathcal{T}^op .
- For FP-clans $(\mathcal{C}, \mathcal{C}^{\dagger})$ we have $(\mathcal{C}, \mathcal{C}^{\dagger})$ -Mod = $\mathbf{FP}(\mathcal{C}, \mathsf{Set})$.
- For FL-clans $(\mathcal{L}, \mathcal{L}^{\dagger})$ we have $(\mathcal{L}, \mathcal{L}^{\dagger})$ -Mod = $FL(\mathcal{L}, Set)$.
- $(\mathcal{K}, \mathcal{K}^{\dagger})$ -Mod = Cat.

 $\mathcal{T} ext{-}\mathsf{Mod} \subseteq [\mathcal{T},\mathsf{Set}]$

Observation

The same category of models may be represented by different clans.

For example, ordinary algebraic theories can be represented by FP-clans as well as FL-clans.

$The\ weak\ factorization\ system$

- Since distinct clans can have equivalent categories of models, \mathcal{T} cannot be reconstructed from \mathcal{T} -Mod alone.
- Solution: equip $\mathcal{T}\text{-Mod}$ additional structure in form of a weak factorization system.

Definition

Let \mathcal{T} be a clan and $\& : \mathcal{T}^{op} \to \mathcal{T}\text{-}Mod$. Define w.f.s. $(\mathcal{E}, \mathcal{F})$ on $\mathcal{T}\text{-}Mod$:

Call $A \in \mathcal{T}$ -Mod a 0-extension, if $(0 \to A) \in \mathcal{E}$.

- Hom-algebras $\sharp(\Gamma) = \mathcal{T}(\Gamma, -)$ are 0-extensions since all $\Gamma \to 1$ are display maps.
- The same weak factorization system was also introduced by S. Henry⁵, see also⁶.

⁶ S. Henry. "Algebraic models of homotopy types and the homotopy hypothesis". In: arXiv preprint arXiv:1609.04622 (2016).

⁵S. Henry, *The language of a model category*, HoTTEST seminar, Jan. 2020, https://youtu.be/7_X0qbSXlfk

Full maps

• $f: A \to B$ in \mathcal{T} -Mod is full iff it has the RLP with respect to all $\mathcal{L}(p)$ for display maps $p: \Delta \to \Gamma$.

$$\begin{array}{cccc}
\mathcal{T}(\Gamma,-) & \longrightarrow & A & & A(\Delta) & \xrightarrow{f_{\Delta}} & B(\Delta) \\
\downarrow^{f} & & \downarrow^{f} & & & A(p)\downarrow & \downarrow^{B(p)} \\
\mathcal{T}(\Delta,-) & \longrightarrow & B & & A(\Gamma) & \xrightarrow{f_{\Gamma}} & B(\Gamma)
\end{array}$$

- This is equivalent to display-naturality-squares being weak pullbacks.
- Considering $p: \Delta \to 1$ we see that full maps are surjective and hence regular epis.
- For FL-clans, only isos are full (consider naturality square for diagonal $\Delta \to \Delta \times \Delta$)
- For FP-clans we have

Duality for clans

Theorem

There is a bi-equivalence of 2-categories

$$\begin{array}{ccc} \text{Clan}_{\text{cc}} & \xleftarrow{\quad \mathfrak{C}(\mathfrak{X})^{\text{op}} \ \leftarrow \ \mathfrak{X}} & \text{cAlg}^{\text{op}} \end{array}$$

where

- Clan_{cc} is the 2-category of Cauchy complete clans,
- cAlg is the 2-category of clan-algebraic categories, i.e. l.f.p. categories \$\mathbf{X}\$ equipped with an 'extension/full' WFS (\$\mathcal{E}, \mathcal{F}\$) such that
 - 1. the full subcategory $CZE(\mathfrak{X}) \subseteq \mathfrak{X}$ on compact 0-extensions is dense in \mathfrak{X} ,
 - 2. $(\mathcal{E}, \mathcal{F})$ is cofibrantly generated by maps in $CZE(\mathfrak{X})$, and
 - 3. \mathfrak{X} has full and effective quotients of componentwise-full equivalence relations.
- Left to right: \mathcal{T} -Mod is clan-algebraic for every clan \mathcal{T} ,
- Right to left: for \mathfrak{X} clan-algebraic, $\mathsf{CZE}(\mathfrak{X}) \subseteq \mathfrak{X}$ is a **coclan** with extensions as codisplay maps

Proof sketch

- For the proof we have to show that
 - 1. $\mathcal{T} \simeq \mathsf{CZE}(\mathcal{T}\text{-Mod})^{\mathsf{op}}$ for all Cauchy-complete clans \mathcal{T} , and
 - 2. $\mathsf{CZE}(\mathfrak{X})^{\mathsf{op}}\operatorname{\mathsf{-Mod}} \simeq \mathfrak{X}$ for all clan-algebraic categories \mathfrak{X} .
- For 2 we use a Reedy factorization on 2-truncated semi-simplicial algebras
- For 1 we use the **fat small object argument**, which implies that:

Lemma

elts(A) is filtered for all 0-extensions $A \in \mathcal{T}$ -Mod, thus 0-extensions are **flat**.

Models in Higher Types

Models in higher types

Let \mathcal{S} be the ∞ -topos of spaces/types.

Let $\mathcal{C}[\mathsf{Mon}]$ be the finite-product theory of monoids, and let $\mathcal{L}[\mathsf{Mon}]$ be the finite-limit theory of monoids. Then

$$\mathsf{FP}(\mathcal{C}[\mathsf{Mon}],\mathsf{Set}) \simeq \mathsf{FL}(\mathcal{L}[\mathsf{Mon}],\mathsf{Set}) \simeq \mathsf{Mon}$$

but $\mathsf{FP}(\mathcal{C}[\mathsf{Mon}], \mathcal{S})$ and $\mathsf{FL}(\mathcal{L}[\mathsf{Mon}], \mathcal{S})$ are different:

- $FL(\mathcal{L}[Mon], \mathcal{S})$ is just the category of monoids
- $\mathsf{FP}(\mathcal{C}[\mathsf{Mon}], \mathcal{S})$ is the ∞ -category ' A_{∞} -algebras', i.e. homotopy-coherent monoids.

Moral

By being 'slimmer', finite-product theories leave room for higher coherences when interpreted in higher types.

This phenomenon was discussed under the name 'animation' in⁷, and earlier in⁸

⁷ K. Cesnavicius and P. Scholze. "Purity for flat cohomology". In: arXiv preprint arXiv:1912.10932 (2019).

⁸ D. Quillen. *Homotopical algebra*. Springer, 1967.

Four clan-algebraic weak factorization systems on Cat

Cat admits several clan-algebraic weak factorization systems:

- $(\mathcal{E}_1, \mathcal{F}_1)$ is cofib. generated by $\{(0 \to 1), (2 \to 2)\}$
- $(\mathcal{E}_2,\mathcal{F}_2)$ is cofib. generated by $\{(0 \to 1),(2 \to 2),$ $(2 \to 1)\}$
- $(\mathcal{E}_3,\mathcal{F}_3)$ is cofib. generated by $\{(0 \to 1),(2 \to 2),(\mathbb{P} \to 2)$
- $(\mathcal{E}_4, \mathcal{F}_4)$ is cofib. generated by $\{(0 \to 1), (2 \to 2), (\mathbb{P} \to 2), (2 \to 1)\}$ where $\mathbb{P} = (\bullet \Rightarrow \bullet)$.

The right classes are:

```
      \mathcal{F}_1 = \{ \text{full and surjective-on-objects functors} \} 
      \mathcal{F}_2 = \{ \text{full and bijective-on-objects functors} \} 
      \mathcal{F}_3 = \{ \text{fully faithful and surjective-on-objects functors} \} 
      \mathcal{F}_4 = \{ \text{isos} \}
```

Note that \mathcal{F}_3 is the class of trivial fibrations for the canonical model structure on Cat.

Four clans for categories

These correspond to the following clans:

```
\mathcal{T}_1 = \{\text{free cats on fin. graphs}\}^{\text{op}}
\mathcal{T}_2 = \{\text{free cats on fin. graphs}\}^{\text{op}}
\mathcal{T}_3 = \{\text{f.p. cats}\}^{\text{op}}
\mathcal{T}_4 = \{\text{f.p. cats}\}^{\text{op}}
```

```
\begin{split} \mathcal{T}_1^\dagger &= \{\text{graph inclusions}\} \\ \mathcal{T}_2^\dagger &= \{\text{injective-on-edges maps}\} \\ \mathcal{T}_3^\dagger &= \{\text{injective-on-objects functors}\} \\ \mathcal{T}_4^\dagger &= \{\text{all functors}\} \end{split}
```

Syntax: four GATs for categories

• Syntactially, adding $(2 \to 1)$ to the generators turns the diagonal of the type $\vdash O$ of objects into a display map. This corresponds to adding an extensional identity type with rules

```
• xy: O \vdash E(x,y) type

• x: O \vdash r: E(x,x) type

• xy: O, p: E(x,y) \vdash x = y

• xy: O, pq: E(x,y) \vdash p = q
```

to the GAT.

• Similarly, adding $(\mathbb{P} \to 2)$ corresponds to adding an extensional identity type with rules

```
• xy : O, fg : A(x,y) \vdash F(f,g) type

• xy : O, fg : A(x,y), p : F(f,g) \vdash f = g

• xy : O, f : A(x,y) \vdash s : F(f,f)

• xy : O, fg : A(x,y), pq : F(f,g) \vdash p = q
```

to the dependent type $xy: O \vdash A(x,y)$ of arrows.

Models in higher types

Models of \mathcal{T}_1 in \mathcal{S} are **Segal spaces**, and adding extensional identity types to $\vdash O$ or to $x y : O \vdash A(x, y)$ forces the respective types to be 0-truncated. Thus:

```
\infty-Mod(\mathcal{T}_1) = {Segal spaces}

\infty-Mod(\mathcal{T}_2) = {Segal categories}

\infty-Mod(\mathcal{T}_3) = {pre-categories}

\infty-Mod(\mathcal{T}_4) = {discrete 1-categories}
```

The Fat Small Object Argument

Recall: Quillen's small object argument

Theorem

Given a small collection $J \subseteq mor(\mathfrak{X})$ of arrows in a presentable category \mathfrak{X} , let

$$\mathcal{R} = \mathsf{RLP}(J)$$
 and $\mathcal{L} = \mathsf{LLP}(\mathcal{R})$.

Then $(\mathcal{L}, \mathcal{R})$ is a weak factorization system.

Proof idea: To factor $f: A \rightarrow B$, form the pushout

Then $l \in \mathcal{L}$, and we iterate the operation on f^+ transfinitely until the remainder is in \mathcal{R} .

Interpretation: Construct fibrant replacement of f in \mathfrak{X}/B by attaching cells until all lifting problems can be solved.

Fat Small Object Argument: Idea

- If the domains of all $u \in J$ are presentable, then every cell attachment factors through a finite stage of the transfinite iteration.
- The FSOA organizes the cell attachments into a 'fatter', and 'shorter' diagram which makes this
 explicit.
- We present the construction only for the special case factoring $0 \to 1$
- Factoring more general maps $H(\Gamma) \to A$ can be reduced to this case using the following lemmas.

Slicing and coslicing

Slicing lemma

Given a clan $\mathcal T$ and $A \in \mathcal T\text{-Mod}$, we have $\mathcal T\text{-Mod}/A \simeq \underline{\mathrm{elts}}(A)\text{-Mod}$.

Coslicing lemma

Given a clan $\mathcal T$ and $\Gamma \in \mathcal T$, we have $H(\Gamma)/\mathcal T\text{-Mod} \simeq \mathcal T(\Gamma)\text{-Mod}$.

Both equivalences preserve the weak factorization systems.

$Finite\ complexes$

Definition

A finite complex in a coclan⁹ \mathcal{C} is a diagram $D: P \to \mathcal{C}$ where

- 1. P is a finite poset,
- 2. $\operatorname{colim}(D_{\leq x}: P_{\leq x} \to \mathcal{C})$ exists for all $x \in P$, and the canonical map

$$\alpha_{\mathsf{x}} : \mathsf{colim}(D_{<\mathsf{x}}) \to D_{\mathsf{x}}$$

is a codisplay map, and

- 3. we have x = y whenever $P_{<x} = P_{<y}$, $D_x = D_y$, and $\alpha_x = \alpha_y$: $\operatorname{colim}(D_{<x}) \to D_x$.
- One can show that $\operatorname{colim}(D)$ exists for all finite complexes, in particular condition 2 is redundant.
- A finite complex describes a stratification of an object in a coclan by/into a finite set of cell attachments.
- Condition 3 says that every cell can only be attached once at every stage.

⁹A coclan is the opposite of a clan.

The preorder of finite complexes

Definition

A morphimsm of finite copmlexes from $(D: P \to \mathbb{C})$ to $(E: Q \to \mathbb{C})$ is a sieve inclusion $f: D \to E$ such that $E \circ f = D$.

Lemma

The category $FC(\mathcal{C})$ of finite complexes in a small coclan \mathcal{C} is an essentially small preorder with finite joins.

The factorization of $0 \to 1$ is now computed as the (filtered) colimit of the composite functor

$$FC(\mathcal{C}) \xrightarrow{\operatorname{colim}} \mathcal{C} \xrightarrow{H} \mathcal{C}^{\operatorname{op}}\operatorname{\mathsf{-Mod}}.$$

Lemma

The object $C = \operatorname{colim}_{(P,D) \in \mathsf{FC}(\mathfrak{C})} H(\operatorname{colim}(D))$ is a 0-extension in $\mathfrak{C}^{\mathsf{op}}$ -Mod and $C \to 1$ is full.

0-extensions are flat

Definition

A **flat** algebra over a clan \mathcal{T} is a filtered colimit of hom-algebras $\mathsf{hom}(\Gamma, -)$. Equivalently, an algebra $A \in \mathcal{T}\text{-}\mathsf{Mod}$ is flat, if its category of elements $\mathsf{elts}(A)$ is filtered.

Lemma

0-extensions in T-Mod are flat.

Proof.

Let $E \in \mathcal{T}\text{-Mod}$ be a flat algebra. Applying the FSOA in $\mathcal{T}\text{-Mod}/E \simeq \underline{\text{elts}}(E)\text{-Mod}$, we obtain a full map $f:F \twoheadrightarrow E$ from a 0-extension F which is a filtered colimit of hom-algebras and therefore flat. f splits as a full maps into a 0-extension, and the claim follows since flat algebras are closed under retract.

Strictness discussion	
 Strictness in the definition of finite complexes and moprhisms of finite complexes feels crucial, thus we have to view clans as strict 1-categories. 	

Related work

- B. Ahrens, P. North, M. Shulman, and D. Tsementzis. "A higher structure identity principle".
 English. In: Proceedings of the 2020 35th annual ACM/IEEE symposium on logic in computer science, LICS 2020, virtual event, July 8–11, 2020. New York, NY: Association for Computing Machinery (ACM), 2020
- I. Di Liberti and J. Rosický. "Enriched Locally Generated Categories". In: (Sept. 2020). arXiv: 2009.10980 [math.CT]
- C.L. Subramaniam. "From dependent type theory to higher algebraic structures". In: (Oct. 2021). arXiv: 2110.02804 [math.CT]
- S. Henry. "Algebraic models of homotopy types and the homotopy hypothesis". In: arXiv preprint arXiv:1609.04622 (2016)

Thanks for your attention!

Proof sketch: $\mathcal{T}^{op} \simeq CZE(\mathcal{T}\text{-Mod})$

• Easy to see that $\mathcal{T}(\Gamma, -)$ is a compact 0-extension for all $\Gamma \in \mathcal{T}$, thus the Yoneda embedding factors through CZE(\mathcal{T} -Mod).

- To see that E is a (Morita) equivalence, it suffices to show that every compact 0-extension is a retract of a hom-algebra $\mathcal{T}(\Gamma, -)$
- This follows from the **fat small object argument**, which implies that $\underbrace{\mathsf{elts}}(A)$ is filtered for every 0-extension A if A is moreover compact, then one of the inclusions of the canonical colimit $A \cong \mathsf{colim}(\mathsf{elts}(A) \to \mathcal{T}^\mathsf{op} \xrightarrow{\mbox{$^{\mathcal{L}}$}} \mathcal{T}\mathsf{-Mod})$ must split:

Proof sketch: $CZE(\mathfrak{X})^{op}$ -Mod $\simeq \mathfrak{X}$

Show that the nerve/realization adjunction

is an equivalence.

- ullet By density the right adjoint $\hbox{\it N}$ is fully faithful, i.e. the counit is an isomorphism.
- It remains to show that the unit of the adjunction is an isomorphism, i.e.

$$A(C) \xrightarrow{\cong} \mathfrak{X}(C, \operatorname{colim}(\int A \to \mathbb{C} \xrightarrow{J} \mathfrak{X})).$$

for all $A \in \mathsf{CZE}(\mathfrak{X})^\mathsf{op}\text{-}\mathbf{Mod}$ and $C \in \mathbb{C}$.

- The functor $\mathfrak{X}(\mathcal{C},-)$ preserves filtered colimits and quotients of componentwise-full equivalence relations, so it suffices to decompose $\operatorname{colim}(\int A \to \mathbb{C} \xrightarrow{J} \mathfrak{X})$ in terms of these constructions.
- This is essentially what we're doing in the following, using a Reedy style technique.

Proof sketch: $CZE(\mathfrak{X})^{op}$ -Mod $\simeq \mathfrak{X}$ – jointly full cones

Definition

Let $D: \mathcal{I} \to \mathfrak{X}$ be a diagram in a clan-algebraic category.

A cone (A, ϕ) over D is called **jointly full**, if for every cone (C, γ) , extension $e : B \to C$ and map $g : B \to A$ constituting a cone morphism $g : (B, \gamma \circ e) \to (A, \phi)$, there exists a map $h : C \to A$ such that

$$\begin{array}{ccc}
B & \xrightarrow{g} & A \\
e \downarrow & & \downarrow & \downarrow \\
C & \xrightarrow{\gamma_i} & D_i
\end{array}$$

commutes for all $i \in \mathcal{I}$.

• **Observation:** The cone (A, ϕ) is jointly full iff the canonical map to the limit is full.

Proof sketch: $CZE(\mathfrak{X})^{op}$ -Mod $\simeq \mathfrak{X}$ – nice diagrams

Definition

A **nice diagram** in a clan-algebraic category \mathfrak{X} is a 2-truncated semi-simplicial diagram

$$A_2 \xrightarrow[-d_2 \]{-d_0} A_1 \xrightarrow[-d_1 \]{-d_0} A_0$$

where

- 1. A_0 , A_1 , and A_2 are 0-extensions, and the maps d_0 , d_1 : $A_1 o A_0$ are full,
- 2. in the square $A_2 \xrightarrow[d_2]{d_0} A_1$ $A_1 \xrightarrow[d_1]{d_0} A_0$ the span constitutes a jointly full diagram over the cospan,
- 3. there exists a symmetry map $A_1 \xrightarrow{d_1} A_0 \\ A_0 \xleftarrow{d_1} A_1$ making the triangles commute, and
- 4. there exists a 0-extension \tilde{A} and full maps $f,g:\tilde{A} \to A_1$ constituting a jointly full cone over the diagram

$$\begin{array}{cccc}
A_1 & & A_1 \\
d_0 \downarrow & & \downarrow d_1 \\
A_0 & & A_0
\end{array}$$

Proof sketch: $CZE(\mathfrak{X})^{op}$ -Mod $\simeq \mathfrak{X}$ — nice diagrams

Lemma

For any nice diagram, the pairing $A_1 \xrightarrow{\langle d_0, d_1 \rangle} A_0 \times A_0$ admits a decomposition $A_1 \twoheadrightarrow R \xrightarrow{\langle r_0, r_1 \rangle} A_0 \times A_0$ into a full map and a monomorphism, and $\langle r_0, r_1 \rangle$ is a componentwise-full equivalence relation.

Lemma

Assume $\mathfrak X$ is clan-algebraic and $F:\mathfrak X\to \mathsf{Set}$ preserves finite limits and sends full maps to surjections. Then for every nice diagram, F preserves coequalizers of the arrows $d_0,d_1:A_1\to A_0$.

Lemma

The restriction L' of L in the nerve/realization adjunction

to 0-extensions is fully faithful and preserves full maps and nice diagrams.

Proof sketch: $CZE(\mathfrak{X})^{op}$ -Mod $\simeq \mathfrak{X}$ — Nice diagrams

Lemma

For every object A of a clan-algebraic category $\mathfrak X$ there exists a nice diagram A, such that

$$A = \operatorname{coeq}(A_1 \stackrel{d_0}{\underset{d_1}{\Longrightarrow}} A_0).$$

Proof.

- A_0 is given by covering A by a 0-extension, i.e. factoring $0 \to A$ as $0 \hookrightarrow A_0 \stackrel{e}{\to} A$.
- A_1 is given by covering the kernel of $A_0 woheadrightarrow A$ by a 0-extension $0 \hookrightarrow A_1 woheadrightarrow R woheadrightarrow A_0 woheadrightarro$
- A_2 is given by covering the following pullback: $\begin{matrix} 0 \hookrightarrow A_2 \longrightarrow \bullet \longrightarrow A_1 \\ \downarrow & \downarrow d_0 \\ A_1 \stackrel{d_1}{\longrightarrow} A_0 \end{matrix}$

Remark: The construction of A_{\bullet} is a Reedy-style factorization of the maps $0 \to \Delta(A)$ in 2-truncated semi-simplicial objects.

Proof sketch: $CZE(\mathfrak{X})^{op}$ -Mod $\simeq \mathfrak{X}$ - the calculation

Have to show that $AC \cong \mathfrak{X}(C, LA)$ for all $A \in \mathsf{CZE}(\mathfrak{X})^{\mathsf{op}}\text{-}\mathsf{Mod}$ and $C \in \mathsf{CZE}(\mathfrak{X})$. Let A_{\bullet} be a nice diagram with coequalizer A. We have

$$\mathfrak{X}(C,LA) = \mathfrak{X}(C,L(\mathsf{coeq}(A_1 \rightrightarrows A_0))) \qquad \mathsf{since} \ A = \mathsf{coeq}(A_1 \rightrightarrows A_0) \\ \cong \mathfrak{X}(C,\mathsf{coeq}(LA_1 \rightrightarrows LA_0)) \qquad \mathsf{since} \ L \ \mathsf{preserves} \ \mathsf{colimits} \\ \cong \mathsf{coeq}(\mathfrak{X}(C,LA_1) \rightrightarrows \mathfrak{X}(C,LA_0)) \qquad \mathsf{since} \ \mathfrak{X}(C,-) \ \mathsf{preserves} \ \mathsf{coeqs} \ \mathsf{of} \ \mathsf{nice} \ \mathsf{diags} \\ \cong \mathsf{coeq}(\mathsf{hom}(\mathcal{L}(C),A_1) \rightrightarrows \mathsf{hom}(\mathcal{L}(C),A_0)) \\ \cong \mathsf{hom}(\mathcal{L}(C),\mathsf{coeq}(A_1 \rightrightarrows A_0)) \\ \cong \mathsf{hom}(\mathcal{L}(C),A) \\ \cong \mathsf{AC}$$