Controlling unfolding in type theory

Daniel Gratzer1Jonathan Sterling1Carlo Angiuli2Thierry Coquand3Lars Birkedal1HoTT 20232023-05-23

Aarhus University, Carnegie Mellon University, Chalmers University

What differentiates a core theory from an actual proof assistant?

- Advanced features: implicit arguments, unification, pattern-matching
- Intermediate features: termination checking, schemata for inductive types
- Very basic features: definitions

Our goal: improve the UX of a feature by pushing the core theory to include it.

Turns out this is hard, so let's start with the basics: definitions Crucial point:

two : ℕ two ≜ 2

 $_{-}$: two = 2 $_{-} \triangleq refl$

Definitions in proof assistants

Turns out this is hard, so let's start with the basics: definitions Crucial point:

two : \mathbb{N} two $\triangleq 2$ $_$: two = 2 $_ \triangleq$ refl

Definitions in proof assistants

Turns out this is hard, so let's start with the basics: definitions Crucial point:

Hardly a startling insight, but it is rather crucial; only way to prove something

Fully translucent definitions certainly work, but not without cost.

Pros of unfolding	Cons of unfolding
We can prove things	Goals become unreadable
	Type-checking performance degrades
	Increases coupling between implementation and use

Fully translucent definitions certainly work, but not without cost.

Pros of unfolding	Cons of unfolding
We can prove things	Goals become unreadable
	Type-checking performance degrades
	Increases coupling between implementation and use

In practice, the left-hand column wins.

We can't just refuse to unfold definitions, but we can control when it happens...

- Default opaque/abstract definitions
- Users may explicitly unfold a definition within a fixed scope
- The system tracks dependencies to ensure type-soundness
- Unfolding should be silent in terms; can't obstruct further computation

Library authors leave things abstract-by-default. If a user must unfold, they can.

Our core idea is to design a mechanism satisfying these desiderata

- We revisit the type-theoretic account of translucent definitions (singleton types)
- Refine this idea by replacing singleton types with extension types
- Propose a surface syntax/elaboration mechanism

Starting with the core language makes it easy to propose various extensions

https://arxiv.org/abs/2210.05420

How does one express normal/translucent definitions type-theoretically?

- Each definition will be encoded by a variable
- ... but with a fancy type.
- This idea doesn't come from dependent type theory, but from module systems

Encode a definition $x : A \triangleq M$ through a type $S_A(M)$ containing only one element: M.

Very roughly, we have the following:

• Abstract/opaque definitions:

$$x: A \cong \left(\sum_{a:A} \bot \to (a = M)\right)$$

• Normal/translucent definitions:

$$x: S_A(M) \cong \left(\sum_{a:A} \top \to (a = M)\right)$$

Either we never gain access to the proof a = M or we're always stuck with it.

Translucent definitions versus abstract definitions

Either we never gain access to the proof a = M or we're always stuck with it.

- Key idea: let's allow propositions other than \top and $\bot.$
- We need a universe of very strict propositions $\mathbb{F}.$
- Close \mathbb{F} under (at least) \top and \wedge .
- New form of context Γ , ϕ and new judgment $\Gamma \vdash \phi$ true.

Notation and properties inspired by cofibrations from cubical type theory.

(Spoilers): \mathbb{F} isolates subshapes $\rightsquigarrow \mathbb{F}$ classifies which definitions unfold.

$$\frac{A \text{ type } \phi \vdash M : A}{\{A \mid \phi \hookrightarrow M\} \text{ type}}$$
$$\frac{N : A \quad \phi \vdash N = M : A}{\text{in}(N) : \{A \mid \phi \hookrightarrow M\}} \qquad \qquad \frac{N : \{A \mid \phi \hookrightarrow M\}}{\text{out}(N) : A}$$

Normal β/η rules

$$\frac{A \text{ type } \phi \vdash M : A}{\{A \mid \phi \hookrightarrow M\} \text{ type}}$$
$$\frac{N : A \quad \phi \vdash N = M : A}{\text{in}(N) : \{A \mid \phi \hookrightarrow M\}} \qquad \frac{N : \{A \mid \phi \hookrightarrow M\}}{\text{out}(N) : A}$$

Normal β/η rules

$$\frac{N: \{A \mid \phi \hookrightarrow M\} \quad \phi \text{ true}}{\operatorname{out}(N) = M: A}$$

New type formers: extension types

$$\begin{array}{c} A \text{ type } \phi \vdash M : A \\ \hline \{A \mid \phi \hookrightarrow M\} \text{ type} \end{array}$$

$$\begin{array}{c} N : A \\ \hline in(N) : \{A \mid \phi \hookrightarrow M\} \end{array}$$

$$\begin{array}{c} N : \{A \mid \phi \hookrightarrow M\} \\ \hline out(N) : A \end{array}$$

Normal β/η rules

$$\frac{N: \{A \mid \phi \hookrightarrow M\} \quad \phi \text{ true}}{\operatorname{out}(N) = M: A}$$

Fix a definition $x : A \triangleq M$.

- 1. Associate a fresh proposition symbol Υ_{x} to the definition.
- 2. Encode the definition as a constant $x : \{A \mid \Upsilon_x \hookrightarrow M\}$.
- 3. Replace subsequent occurrences of x with out(x).

Taking $\Upsilon_{\chi} = \top$ gives normal definitions.

Fix a definition $x : A \triangleq M$.

- 1. Associate a fresh proposition symbol Υ_{x} to the definition.
- 2. Encode the definition as a constant $x : \{A \mid \Upsilon_x \hookrightarrow M\}$.
- 3. Replace subsequent occurrences of x with out(x).

Taking $\Upsilon_{\chi} = \top$ gives normal definitions.

If Υ_{x} is some fresh symbol, how can we ever unfold this definition?

Short answer: more extension types.

- We first consider how to unfold definitions for an entire subsequent definition.
- Following our scheme, have

$$x: \{A \mid \Upsilon_x \hookrightarrow M\} \qquad y: \{B \mid \Upsilon_y \hookrightarrow N\}$$

• If we want to make sure x unfolds definitionally in N, force $\Upsilon_y \implies \Upsilon_x$

Short answer: more extension types.

- We first consider how to unfold definitions for an entire subsequent definition.
- Following our scheme, have

$$x: \{A \mid \Upsilon_x \hookrightarrow M\} \qquad y: \{B \mid \Upsilon_y \hookrightarrow N\}$$

• If we want to make sure x unfolds definitionally in N, force $\Upsilon_y \implies \Upsilon_x$

We check N after assuming Υ_y \implies so Υ_x holds when checking N \implies so out(x) = M in N

This is why we want to be sure to check N as a partial element!

Big idea II

Fix a definition $x : A \triangleq M$.

- 1. Specify which definitions x unfolds e.g. $y_0 \ldots y_n$
- 2. Associate a fresh proposition symbol Υ_x to the definition.
- 3. Add the following principle:

 $\frac{\Gamma \vdash \Upsilon_x \ true}{\Gamma \vdash \Upsilon_{y_i} \ true}$

- 4. Encode the definition as a constant $x : \{A \mid \Upsilon_x \hookrightarrow M\}$.
- 5. Replace subsequent occurrences of x with out(x).

Big idea II

Fix a definition $x : A \triangleq M$.

- 1. Specify which definitions x unfolds e.g. $y_0 \ldots y_n$
- 2. Associate a fresh proposition symbol Υ_x to the definition.
- 3. Add the following principle:

 $\frac{\Gamma \vdash \Upsilon_x \ true}{\Gamma \vdash \Upsilon_{y_i} \ true}$

- 4. Encode the definition as a constant $x : \{A \mid \Upsilon_x \hookrightarrow M\}$.
- 5. Replace subsequent occurrences of x with out(x).

Warning

A bunch of ways to specify what it means to add these propositions/inequalities.

Don't worry about it.

- Normally, a program is a sequence of definitions
- For us then, a program is a sequence of axioms
- Each axiom either specified a proposition, an inequality, and an extension type.

 $\begin{array}{l} \operatorname{prop} \ \Upsilon_{\operatorname{neg}} \\ \operatorname{neg} \stackrel{\triangleq}{=} \ldots \\ \operatorname{invol} : (n : \mathbb{Z}) \to \operatorname{neg}(\operatorname{neg} n) = n \\ \operatorname{invol} \stackrel{\triangleq}{=} \ldots \end{array} \xrightarrow{\qquad} \begin{array}{l} \operatorname{prop} \ \Upsilon_{\operatorname{neg}} \\ \operatorname{prop} \ \Upsilon_{\operatorname{invol}} \\ \operatorname{inequality} \ \Upsilon_{\operatorname{invol}} \leq \Upsilon_{\operatorname{neg}} \\ \operatorname{axiom} \operatorname{invol} : \\ \operatorname{axiom} \operatorname{invol} : \\ \left\{ (n : \mathbb{Z}) \to \operatorname{neg}(\operatorname{neg} n) = n \mid \Upsilon_{\operatorname{invol}} \hookrightarrow \ldots \right\} \end{array}$

Dependence can now be *transparent* or *opaque*.

Suppose A depends on B depends on C.

- If A \rightarrow B is transparent and B \rightarrow C is transparent, so is A \rightarrow C.
- Not the case for any of the other instances of 2-of-3

This is crucial: we can unfold something without having it infect the whole codebase.

- Using extension types automatically ensures we unfold "just enough"
- Unless requested, nothing will unfold!
- Automatically type safe & respects conversions
- Equations are *definitional* and don't produce coherence hell!

- Using extension types automatically ensures we unfold "just enough"
- Unless requested, nothing will unfold!
- Automatically type safe & respects conversions
- Equations are *definitional* and don't produce coherence hell!

Not a panacea

- Currently at the granularity of definitions
- Writing these extension types is weird

- Using extension types automatically ensures we unfold "just enough"
- Unless requested, nothing will unfold!
- Automatically type safe & respects conversions
- Equations are *definitional* and don't produce coherence hell!

Not a panacea

- Currently at the granularity of definitions _____ Solved through elaboration!
- Writing these extension types is weird

- Now that we have a target core language in place, we want nice syntax
- Should abstract a bit, but the translation should be simple and predictable
- In particular, the transformation should be compositional and local

We will define the surface syntax by elaboration.

foo : A **unfolding** bar₀...bar_n foo $\triangleq M$

foo : A **unfolding** bar₀... bar_n What is unfolded in Mfoo $\triangleq M$

```
foo : A
unfolding bar<sub>0</sub> . . . bar<sub>n</sub>
foo \triangleq M
```

M may make use definitions other than bar_i! They just won't unfold

```
foo : A

unfolding bar<sub>0</sub>...bar<sub>n</sub>

foo \triangleq M
```

M may make use definitions other than bar_i! They just won't unfold Many other convenience features are possible (local unfolds, abbreviations, etc.) How can we actually crystallize this?

- Define several *elaboration judgments*
- Term-level components look like fancy bidirectional type-checking
- Should be decidable \rightsquigarrow elaboration can be implemented

Elaboration is controlled by 4 key judgments:

$$\begin{split} \Sigma \vdash \vec{S} \rightsquigarrow \Sigma' \\ \Sigma; \Gamma \vdash \tau \Leftarrow type \rightsquigarrow \Sigma', A \\ \Sigma; \Gamma \vdash e \Leftarrow A \rightsquigarrow \Sigma', M \\ \Sigma; \Gamma \vdash e \Rightarrow A \rightsquigarrow \Sigma', M \end{split}$$

 Σ is a signature: a list of fresh propositions, axioms, and inequalities.

Elaboration is controlled by 4 key judgments:

$$\Sigma \vdash \vec{S} \rightsquigarrow \Sigma' \checkmark Main judgment; essentially flatMap$$
$$\Sigma; \Gamma \vdash \tau \Leftarrow type \rightsquigarrow \Sigma', A$$
$$\Sigma; \Gamma \vdash e \Leftarrow A \rightsquigarrow \Sigma', M$$
$$\Sigma; \Gamma \vdash e \Rightarrow A \rightsquigarrow \Sigma', M$$

 $\boldsymbol{\Sigma}$ is a signature: a list of fresh propositions, axioms, and inequalities.

 Σ is a signature: a list of fresh propositions, axioms, and inequalities.

Elaboration is controlled by 4 key judgments:

$$\Sigma \vdash \vec{S} \rightsquigarrow \Sigma'$$

$$\Sigma; \Gamma \vdash \tau \Leftarrow type \rightsquigarrow \Sigma', A$$

$$\Sigma; \Gamma \vdash e \Leftarrow A \rightsquigarrow \Sigma', M$$

Elaborate a term
A is given & wf'd
Output is a core term

 $\boldsymbol{\Sigma}$ is a signature: a list of fresh propositions, axioms, and inequalities.

Elaboration is controlled by 4 key judgments:

$$\Sigma \vdash \vec{S} \rightsquigarrow \Sigma'$$

$$\Sigma; \Gamma \vdash \tau \Leftarrow type \rightsquigarrow \Sigma', A$$

$$\Sigma; \Gamma \vdash e \Leftarrow A \rightsquigarrow \Sigma', M$$

Elaborate a term
Key difference: A is output.

$$\Sigma; \Gamma \vdash e \Rightarrow A \rightsquigarrow \Sigma', M$$

 $\boldsymbol{\Sigma}$ is a signature: a list of fresh propositions, axioms, and inequalities.

One final foray into some theory.

- As indicated before, elaboration should be decidable.
- So we need to decide conversion in the core theory.
- Our approach: normalization
- Our approach to this approach: Synthetic Tait Computability

The hard bit: the conditional rule for extension types

- Crucial step in normalization proofs: carve out renamings
- Big problem: the neutrality of **out**(e) isn't stable under renamings

- Crucial step in normalization proofs: carve out renamings
- Big problem: the neutrality of **out**(e) isn't stable under renamings

A renaming could make a proposition true, so out(e) should reduce.

- Crucial step in normalization proofs: carve out renamings
- Big problem: the neutrality of **out**(*e*) isn't stable under renamings

- Authors 2 & 3 already considered STC for cubical type theory (similar problems)
- Reuse a key idea: unstable neutrals
- TLDR: type theory with extension types & partial element types enjoys normalization.

Currently, there are two implementations of controlled unfolding:

- cooltt: already had extension types, implemented as described above. https://github.com/RedPRL/cooltt
- Agda: doesn't use extension types, implemented by Amélia Liao & Jesper Cockx (*now merged!*)

https://github.com/agda/agda/pull/6354

We can implement controlled unfolding without fancy types, so why bother with them?

- To structure the proof of decidability of conversion
- To guide us in various design choices (what is unfolded where)
- Give a reference for users to reason about to predict interactions

However, don't have to implement extension types to use controlled unfolding!

- We revisit the type-theoretic account of translucent definitions (singleton types)
- Refine this idea by replacing singleton types with extension types
- Show that extension types can be used to encode semi-translucent definitions
- Propose a surface syntax/elaboration mechanism

https://arxiv.org/abs/2210.05420