
Controlling unfolding in type theory

Daniel Gratzer1 Jonathan Sterling1 Carlo Angiuli2 Thierry Coquand3 Lars Birkedal1

HoTT 2023 2023-05-23

Aarhus University, Carnegie Mellon University, Chalmers University

0

Proof assistants versus core type theory

What differentiates a core theory from an actual proof assistant?

• Advanced features: implicit arguments, unification, pattern-matching

• Intermediate features: termination checking, schemata for inductive types

• Very basic features: definitions

Our goal: improve the UX of a feature by pushing the core theory to include it.

1

Definitions in proof assistants

Turns out this is hard, so let’s start with the basics: definitions

Crucial point:

two : N
two ≜ 2

: two = 2

≜ refl

Hardly a startling insight, but it is rather crucial; only way to prove something

2

Definitions in proof assistants

Turns out this is hard, so let’s start with the basics: definitions

Crucial point:

two : N
two ≜ 2

: two = 2

≜ refl

Definitions should unfold.... definitionally

Hardly a startling insight, but it is rather crucial; only way to prove something

2

Definitions in proof assistants

Turns out this is hard, so let’s start with the basics: definitions

Crucial point:

two : N
two ≜ 2

: two = 2

≜ refl

Definitions should unfold.... definitionally

Hardly a startling insight, but it is rather crucial; only way to prove something

2

The next steps

Fully translucent definitions certainly work, but not without cost.

Pros of unfolding Cons of unfolding

We can prove things Goals become unreadable

Type-checking performance degrades

Increases coupling between implementation and use

In practice, the left-hand column wins.

3

The next steps

Fully translucent definitions certainly work, but not without cost.

Pros of unfolding Cons of unfolding

We can prove things Goals become unreadable

Type-checking performance degrades

Increases coupling between implementation and use

In practice, the left-hand column wins.

3

Controlled unfolding: desiderata

We can’t just refuse to unfold definitions, but we can control when it happens...

• Default opaque/abstract definitions

• Users may explicitly unfold a definition within a fixed scope

• The system tracks dependencies to ensure type-soundness

• Unfolding should be silent in terms; can’t obstruct further computation

Library authors leave things abstract-by-default. If a user must unfold, they can.

4

Our contributions

Our core idea is to design a mechanism satisfying these desiderata

• We revisit the type-theoretic account of translucent definitions (singleton types)

• Refine this idea by replacing singleton types with extension types

• Propose a surface syntax/elaboration mechanism

Starting with the core language makes it easy to propose various extensions

https://arxiv.org/abs/2210.05420

5

https://arxiv.org/abs/2210.05420

Singleton types: an account of translucent definitions

How does one express normal/translucent definitions type-theoretically?

• Each definition will be encoded by a variable

• ... but with a fancy type.

• This idea doesn’t come from dependent type theory, but from module systems

Encode a definition x : A ≜ M through a type SA(M) containing only one element: M.

6

Translucent definitions versus abstract definitions

Very roughly, we have the following:

• Abstract/opaque definitions:

x : A ∼=
(∑

a:A⊥ → (a = M)
)

• Normal/translucent definitions:

x : SA(M) ∼=
(∑

a:A⊤ → (a = M)
)

Either we never gain access to the proof a = M or we’re always stuck with it.

7

Translucent definitions versus abstract definitions

Very roughly, we have the following:

• Abstract/opaque definitions:

x : A ∼=
(∑

a:A⊥ → (a = M)
)

• Normal/translucent definitions:

x : SA(M) ∼=
(∑

a:A⊤ → (a = M)
)

Either we never gain access to the proof a = M or we’re always stuck with it.

(For the sake of this slide: extensional equality)

7

Extension types

• Key idea: let’s allow propositions other than ⊤ and ⊥.

• We need a universe of very strict propositions F.

• Close F under (at least) ⊤ and ∧.
• New form of context Γ, ϕ and new judgment Γ ⊢ ϕ true.

Notation and properties inspired by cofibrations from cubical type theory.

(Spoilers): F isolates subshapes ⇝ F classifies which definitions unfold.

8

New type formers: extension types

A type ϕ ⊢ M : A

{A | ϕ ↪→ M} type

N : A ϕ ⊢ N = M : A

in(N) : {A | ϕ ↪→ M}

N : {A | ϕ ↪→ M}

out(N) : A

Normal β/η rules

N : {A | ϕ ↪→ M} ϕ true

out(N) = M : A

9

New type formers: extension types

A type ϕ ⊢ M : A

{A | ϕ ↪→ M} type

N : A ϕ ⊢ N = M : A

in(N) : {A | ϕ ↪→ M}

N : {A | ϕ ↪→ M}

out(N) : A

Normal β/η rules

N : {A | ϕ ↪→ M} ϕ true

out(N) = M : A

9

New type formers: extension types

A type ϕ ⊢ M : A

{A | ϕ ↪→ M} type

N : A ϕ ⊢ N = M : A

in(N) : {A | ϕ ↪→ M}

N : {A | ϕ ↪→ M}

out(N) : A

Normal β/η rules

N : {A | ϕ ↪→ M} ϕ true

out(N) = M : A

Only defined when ϕ is true.

9

Big idea: definitions become extension types

Fix a definition x : A ≜ M.

1. Associate a fresh proposition symbol Υx to the definition.

2. Encode the definition as a constant x : {A | Υx ↪→ M}.
3. Replace subsequent occurrences of x with out(x).

Taking Υx = ⊤ gives normal definitions.

If Υx is some fresh symbol, how can we ever unfold this definition?

10

Big idea: definitions become extension types

Fix a definition x : A ≜ M.

1. Associate a fresh proposition symbol Υx to the definition.

2. Encode the definition as a constant x : {A | Υx ↪→ M}.
3. Replace subsequent occurrences of x with out(x).

Taking Υx = ⊤ gives normal definitions.

If Υx is some fresh symbol, how can we ever unfold this definition?

10

Unfolding definitions via extension types

Short answer: more extension types.

• We first consider how to unfold definitions for an entire subsequent definition.

• Following our scheme, have

x : {A | Υx ↪→ M} y : {B | Υy ↪→ N}

• If we want to make sure x unfolds definitionally in N, force Υy =⇒ Υx

We check N after assuming Υy

=⇒ so Υx holds when checking N

=⇒ so out(x) = M in N

11

Unfolding definitions via extension types

Short answer: more extension types.

• We first consider how to unfold definitions for an entire subsequent definition.

• Following our scheme, have

x : {A | Υx ↪→ M} y : {B | Υy ↪→ N}

• If we want to make sure x unfolds definitionally in N, force Υy =⇒ Υx

We check N after assuming Υy

=⇒ so Υx holds when checking N

=⇒ so out(x) = M in N

This is why we want to be sure to check N as a partial element!

11

Big idea II

Fix a definition x : A ≜ M.

1. Specify which definitions x unfolds e.g. y0 . . . yn

2. Associate a fresh proposition symbol Υx to the definition.

3. Add the following principle:

Γ ⊢ Υx true

Γ ⊢ Υyi true

4. Encode the definition as a constant x : {A | Υx ↪→ M}.
5. Replace subsequent occurrences of x with out(x).

Warning

A bunch of ways to specify what it means to add these propositions/inequalities.

Don’t worry about it.

12

Big idea II

Fix a definition x : A ≜ M.

1. Specify which definitions x unfolds e.g. y0 . . . yn

2. Associate a fresh proposition symbol Υx to the definition.

3. Add the following principle:

Γ ⊢ Υx true

Γ ⊢ Υyi true

4. Encode the definition as a constant x : {A | Υx ↪→ M}.
5. Replace subsequent occurrences of x with out(x).

Warning

A bunch of ways to specify what it means to add these propositions/inequalities.

Don’t worry about it.

12

What is a program?

• Normally, a program is a sequence of definitions

• For us then, a program is a sequence of axioms

• Each axiom either specified a proposition, an inequality, and an extension type.

neg : Z → Z
neg ≜ . . .

invol : (n : Z) → neg(neg n) = n

invol ≜ . . .

⇝

prop Υneg

axiom neg : {Z → Z | Υneg ↪→ . . . }

prop Υinvol

inequality Υinvol ≤ Υneg

axiom invol :

{(n : Z) → neg(neg n) = n | Υinvol ↪→ . . . }

13

Two forms of dependence

Dependence can now be transparent or opaque.

Suppose A depends on B depends on C.

• If A → B is transparent and B → C is transparent, so is A → C.

• Not the case for any of the other instances of 2-of-3

This is crucial: we can unfold something without having it infect the whole codebase.

14

Evaluating this mechanism

• Using extension types automatically ensures we unfold “just enough”

• Unless requested, nothing will unfold!

• Automatically type safe & respects conversions

• Equations are definitional and don’t produce coherence hell!

Not a panacea

• Currently at the granularity of definitions

• Writing these extension types is weird

15

Evaluating this mechanism

• Using extension types automatically ensures we unfold “just enough”

• Unless requested, nothing will unfold!

• Automatically type safe & respects conversions

• Equations are definitional and don’t produce coherence hell!

Not a panacea

• Currently at the granularity of definitions

• Writing these extension types is weird

15

Evaluating this mechanism

• Using extension types automatically ensures we unfold “just enough”

• Unless requested, nothing will unfold!

• Automatically type safe & respects conversions

• Equations are definitional and don’t produce coherence hell!

Not a panacea

• Currently at the granularity of definitions

• Writing these extension types is weird

Solved through elaboration!

15

A surface syntax for unfolding

• Now that we have a target core language in place, we want nice syntax

• Should abstract a bit, but the translation should be simple and predictable

• In particular, the transformation should be compositional and local

We will define the surface syntax by elaboration.

16

Anatomy of a surface-level definition

A surface-level definition consists of the following parts:

foo : A

unfolding bar0 . . . barn

foo ≜ M

M may make use definitions other than bari ! They just won’t unfold

Many other convenience features are possible (local unfolds, abbreviations, etc.)

17

Anatomy of a surface-level definition

A surface-level definition consists of the following parts:

foo : A

unfolding bar0 . . . barn

foo ≜ M

Normal components of a definition

M may make use definitions other than bari ! They just won’t unfold

Many other convenience features are possible (local unfolds, abbreviations, etc.)

17

Anatomy of a surface-level definition

A surface-level definition consists of the following parts:

foo : A

unfolding bar0 . . . barn

foo ≜ M

What is unfolded in M

M may make use definitions other than bari ! They just won’t unfold

Many other convenience features are possible (local unfolds, abbreviations, etc.)

17

Anatomy of a surface-level definition

A surface-level definition consists of the following parts:

foo : A

unfolding bar0 . . . barn

foo ≜ M

M may make use definitions other than bari ! They just won’t unfold

Many other convenience features are possible (local unfolds, abbreviations, etc.)

17

Anatomy of a surface-level definition

A surface-level definition consists of the following parts:

foo : A

unfolding bar0 . . . barn

foo ≜ M

M may make use definitions other than bari ! They just won’t unfold

Many other convenience features are possible (local unfolds, abbreviations, etc.)

17

A small amount of precision.

How can we actually crystallize this?

• Define several elaboration judgments

• Term-level components look like fancy bidirectional type-checking

• Should be decidable ⇝ elaboration can be implemented

18

The judgments for elaboration

Elaboration is controlled by 4 key judgments:

Σ ⊢ S⃗ ⇝ Σ′

Σ; Γ ⊢ τ ⇐ type ⇝ Σ′,A

Σ; Γ ⊢ e ⇐ A⇝ Σ′,M

Σ; Γ ⊢ e ⇒ A⇝ Σ′,M

Σ is a signature: a list of fresh propositions, axioms, and inequalities.

19

The judgments for elaboration

Elaboration is controlled by 4 key judgments:

Σ ⊢ S⃗ ⇝ Σ′

Σ; Γ ⊢ τ ⇐ type ⇝ Σ′,A

Σ; Γ ⊢ e ⇐ A⇝ Σ′,M

Σ; Γ ⊢ e ⇒ A⇝ Σ′,M

Main judgment; essentially flatMap

Σ is a signature: a list of fresh propositions, axioms, and inequalities.

19

The judgments for elaboration

Elaboration is controlled by 4 key judgments:

Σ ⊢ S⃗ ⇝ Σ′

Σ; Γ ⊢ τ ⇐ type ⇝ Σ′,A

Σ; Γ ⊢ e ⇐ A⇝ Σ′,M

Σ; Γ ⊢ e ⇒ A⇝ Σ′,M

Elaborate a type;

Σ: input signature

Γ: local variables

hoist local-unfolds into Σ′

Invariant: A wf wrt Σ, Γ,Σ′

Σ is a signature: a list of fresh propositions, axioms, and inequalities.

19

The judgments for elaboration

Elaboration is controlled by 4 key judgments:

Σ ⊢ S⃗ ⇝ Σ′

Σ; Γ ⊢ τ ⇐ type ⇝ Σ′,A

Σ; Γ ⊢ e ⇐ A⇝ Σ′,M

Σ; Γ ⊢ e ⇒ A⇝ Σ′,M

Elaborate a term

A is given & wf’d

Output is a core term

Σ is a signature: a list of fresh propositions, axioms, and inequalities.

19

The judgments for elaboration

Elaboration is controlled by 4 key judgments:

Σ ⊢ S⃗ ⇝ Σ′

Σ; Γ ⊢ τ ⇐ type ⇝ Σ′,A

Σ; Γ ⊢ e ⇐ A⇝ Σ′,M

Σ; Γ ⊢ e ⇒ A⇝ Σ′,MElaborate a term

Key difference: A is output.

Σ is a signature: a list of fresh propositions, axioms, and inequalities.

19

Deciding conversion

One final foray into some theory.

• As indicated before, elaboration should be decidable.

• So we need to decide conversion in the core theory.

• Our approach: normalization

• Our approach to this approach: Synthetic Tait Computability

The hard bit: the conditional rule for extension types

20

Unstable neutrals

• Crucial step in normalization proofs: carve out renamings

• Big problem: the neutrality of out(e) isn’t stable under renamings

• Authors 2 & 3 already considered STC for cubical type theory (similar problems)

• Reuse a key idea: unstable neutrals

• TLDR: type theory with extension types & partial element types enjoys

normalization.

21

Unstable neutrals

• Crucial step in normalization proofs: carve out renamings

• Big problem: the neutrality of out(e) isn’t stable under renamings

A renaming could make a proposition true, so out(e) should reduce.

• Authors 2 & 3 already considered STC for cubical type theory (similar problems)

• Reuse a key idea: unstable neutrals

• TLDR: type theory with extension types & partial element types enjoys

normalization.

21

Unstable neutrals

• Crucial step in normalization proofs: carve out renamings

• Big problem: the neutrality of out(e) isn’t stable under renamings

• Authors 2 & 3 already considered STC for cubical type theory (similar problems)

• Reuse a key idea: unstable neutrals

• TLDR: type theory with extension types & partial element types enjoys

normalization.

21

Implementations

Currently, there are two implementations of controlled unfolding:

• cooltt: already had extension types, implemented as described above.

https://github.com/RedPRL/cooltt

• Agda: doesn’t use extension types, implemented by Amélia Liao & Jesper Cockx

(now merged!)

https://github.com/agda/agda/pull/6354

22

https://github.com/RedPRL/cooltt
https://github.com/agda/agda/pull/6354

The role of extension types

We can implement controlled unfolding without fancy types, so why bother with them?

• To structure the proof of decidability of conversion

• To guide us in various design choices (what is unfolded where)

• Give a reference for users to reason about to predict interactions

However, don’t have to implement extension types to use controlled unfolding!

23

Conclusions

• We revisit the type-theoretic account of translucent definitions (singleton types)

• Refine this idea by replacing singleton types with extension types

• Show that extension types can be used to encode semi-translucent definitions

• Propose a surface syntax/elaboration mechanism

https://arxiv.org/abs/2210.05420

24

https://arxiv.org/abs/2210.05420

