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Overview

• The ∞-category U∗ of pointed types and pointed functions
A→∗ B :=

∑
f :A→B f (a0) = b0 is a useful setting for

synthetic homotopy theory.
• Examples include type-theoretic Brown representability (in

progress) and the adjunctions

Σ a Ω, − ∧ A a A→∗ −

between endofunctors of U∗.
• In this talk, the construction of an arbitrary (homotopy)

colimit in U∗ as the quotient of a quotient by a quotient.

Immediate corollary: The forgetful functor U∗ → U creates
colimits over Γ if and only if Γ is a tree.
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Graphs

Consider a graph Γ := (Γ0, Γ1).

Γ0 the type of vertices, Γ1(x , y) the type of edges from x to y .

Definition
We say that Γ is a tree if the quotient Γ0�Γ1 is contractible.
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Examples of trees:

• • •

• • · · · •

0 1 2 3 · · ·

· · · −2 −1 0 1 2 · · ·

4/14



Non-set example (taken from Buchholtz et al. (2023)):

We have a 2-HIT BH such that

• BH has fundamental group the Higman group
• Σ(BH) = 1.

Take

Γ0 := bool
Γ1(0, 1) := BH.
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Colimits

Consider a diagram F of types and functions over Γ.

The 1-HIT colimΓ(F ) is generated by a cocone

F (i) F (j)

colimΓ(F )

ιi

Fi,j,g

ιj
κF

i,j,g

under F in the unpointed category U .
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Suppose that F is equipped with
• a basepoint bi of F (i) for each i : Γ0

• an identity pi ,j,g : Fi ,j,g (bi ) = bj for all i , j : Γ0 and g : Γ1(i , j).

Form the pushout square

colimΓ 1 colimΓ(F )

1 P

ϕ

inr

inl

glue

y

.

We want to exhibit P as the colimit of F in U∗.
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In particular, we want an identity

(F (i), bi ) (F (j), bj)

(P, inl(∗))

(Fi,j,g ,pi,j,g )

(inr◦ιi ,glue(ι1i (∗))−1) (inr◦ιj ,glue(ι1j (∗))−1)

of pointed maps.

We have a dependent path Ci ,j,g

apinr(κF
i ,j,g (bi ))−1 · apinr◦ιj (pi ,j,g ) · glue(ι1j (∗))−1

((
κ1

i ,j,g

)
∗

(glue(ι1j (∗)))
)−1

glue(ι1i (∗))−1

from the pointedness proof of (inr ◦ ιj)∗ ◦ F ∗i ,j,g to that of (inr ◦ ιi )∗

over the homotopy apinr◦−(κF
i ,j,g ) between underlying functions.
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Then the data

κP :=
((
λi .
(

inr ◦ ιi , glue(ι1i (∗))−1
))
, λjλiλg .

(
apinr◦−(κF

i ,j,g ),Ci ,j,g
))

equips the pointed type (P, inl(∗)) with the structure of a cocone
under F in the pointed category U∗.

Theorem
The post-composition map

(P →∗ T )→ limi :Γop(F (i)→∗ T )

is an equivalence for every pointed type T , i.e.,
(
P, κP

)
is a

colimiting pointed cocone under F .
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A colimit of F in U∗ can be postulated as a non-recursive 2-HIT K .

Constructors endow K with pointed cocone structure under F .

By van Doorn et al. (2017), K can be constructed, roughly, by
quotienting a quotient by a family of circles.

This construction has the “wrong” form for our application, but
it’s equivalent to our construction.
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If Γ0�Γ1 is contractible at, say, g , then we have a pointed cocone
under F

F (i) F (j)

(colimΓ(F ), ϕ(g))
ι∗i

(Fi,j,g ,pi,j,g )

ι∗j

whose homotopy between underlying functions is precisely κF
i ,j,g .

In this case, colimΓ(F ) inr−→ P induces an equivalence of pointed
cocones.

Corollary
The forgetful functor U∗ → U creates all colimits over Γ if and
only if Γ is a tree.
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Applications

• Every moderately nice functor (U∗)op → Set is representable
on a subuniverse consisting of iterated pointed colimits of nice
spaces.

We know that internally, such a subuniverse will include many
familiar spaces.

• Left adjoints such as Σ(−) and − ∧ A preserve colimits of
tree-indexed diagrams of pointed types and maps.
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Future work

• Formalize main theorems in Agda.

• Find / learn of new applications.
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