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Thinking about algebra in a geometric way

Let 𝑅 be a ring.

Spec (

𝑋2 + 𝑌 = 0
𝑌 2 = 0

) ≔ { (𝑥, 𝑦) ∈ 𝑅2 ∣ 𝑥2 + 𝑦 = 0, 𝑦2 = 0 }

Spec ( (𝑋2 + 𝑌 , 𝑌 2)⏟⏟⏟⏟⏟
ideal in 𝑅[𝑋, 𝑌 ]

) ≔ { (𝑥, 𝑦) ∈ 𝑅2 ∣ 𝑥2 + 𝑦 = 0, 𝑦2 = 0 }

Spec (𝑅[𝑋, 𝑌 ]/(𝑋2+𝑌 , 𝑌 2)) ≔ { (𝑥, 𝑦) ∈ 𝑅2 ∣ 𝑥2+𝑦 = 0, 𝑦2 = 0 }

Spec(𝐴) ≔ Hom𝑅-Alg(𝐴, 𝑅)

But does Spec(𝐴) retain all information from 𝐴? No. :-(
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Classical vs synthetic

How can we make the functor

𝐴 ↦ Spec(𝐴)

fully faithful?

Classical algebraic geometry Synthetic algebraic geometry
Endow Spec(𝐴) with additional
structure:

▶ Zariski topology
▶ structure sheaf 𝒪Spec(𝐴)

Just postulate it! :-)
Axiom (SQC)1. The map

𝐴 → 𝑅Spec 𝐴

𝑎 ↦ (𝜑 ↦ 𝜑(𝑎))

is an equivalence, for every
finitely presented 𝑅-algebra 𝐴.

1“Synthetic Quasi-Coherence”, due to Ingo Blechschmidt



Basic consequences of SQC

𝐴 ∼−→ 𝑅Spec 𝐴

▶ Spec(𝑅[𝑋]) = 𝑅. Thus: 𝑅[𝑋] ∼−→ 𝑅𝑅

If Spec(𝐴) = ∅, then 𝐴 = 𝑅∅ = 0.

▶ Spec(𝑅/(𝑟)) = (𝑟 = 0). Thus: if 𝑟 ≠ 0, then 𝑟 is invertible.
▶ Spec(𝑅[𝑟−1]) = (𝑟 is invertible). Thus: if 𝑟 is not invertible,

then 𝑟 is nilpotent.

Axiom: The ring 𝑅 is local.

▶ If 𝑟1, … , 𝑟𝑛 ∶ 𝑅 are not all zero, then some 𝑟𝑖 is invertible.
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Closed and open propositions

For 𝑟1, … , 𝑟𝑛 ∶ 𝑅 we have the propositions

𝑉 (𝑟1, … , 𝑟𝑛) ≔ (𝑟1 = ⋯ = 𝑟𝑛 = 0),

𝐷(𝑟1, … , 𝑟𝑛) ≔ (𝑟1 inv. ∨ … ∨ 𝑟1 inv.).
Then define:

closedProp ≔ ∑
𝑝∶hProp

∃𝑟1, … , 𝑟𝑛. (𝑝 = 𝑉 (𝑟1, … , 𝑟𝑛))

openProp ≔ ∑
𝑝∶hProp

∃𝑟1, … , 𝑟𝑛. (𝑝 = 𝐷(𝑟1, … , 𝑟𝑛))

A closed subtype of 𝑋 is a map 𝑋 → closedProp.
An open subtype of 𝑋 is a map 𝑋 → openProp.



Schemes

A type 𝑋 is an affine scheme if it is of the form 𝑋 = Spec(𝐴).

A type 𝑋 is a scheme if there exist 𝑈1, … , 𝑈𝑛 ∶ 𝑋 → openProp
such that 𝑋 = ⋃𝑖 𝑈𝑖 and every 𝑈𝑖 is an affine scheme.

Example. Projective 𝑛-space:

ℙ𝑛 ≔ { lines through 0 in 𝑅𝑛+1 }
≔ { sub-𝑅-modules 𝐿 ⊆ 𝑅𝑛+1 such that ‖𝐿 = 𝑅1‖ }

is a scheme:

𝑈𝑖(𝐿) ≔ (𝑏𝑖 is invertible) (for any chosen base {𝑏} of 𝐿)
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Line bundles
The type

Lines ≔ ∑
𝐿∶𝑅-Mod

‖𝐿 = 𝑅1‖

has a wild group structure:
▶ 𝐿 ⊗ 𝐿′ is again a line
▶ 𝐿∨ ≔ Hom(𝐿, 𝑅1) is the inverse

A line bundle on 𝑋 is a map 𝑋 → Lines.
Example. tautological line bundle on ℙ𝑛

The Picard group of 𝑋 is

Pic(𝑋) ≔ ‖𝑋 → Lines‖set.

(In fact, Lines = 𝐾(𝑅×, 1) and Pic(𝑋) = 𝐻1(𝑋, 𝑅×).)
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Zariski-local choice
For 𝑓 ∶ 𝐴 define 𝐷(𝑓) ≔ { 𝜑 ∶ Spec(𝐴) ∣ 𝜑(𝑓) is invertible }.

Axiom (Zariski-local choice):
For every surjective 𝜋, there merely exist local sections 𝑠𝑖

𝐸

𝐷(𝑓𝑖) Spec(𝐴)
𝜋

𝑠𝑖

with 𝑓1, … , 𝑓𝑛 ∶ 𝐴 coprime.

Some consequences:
▶ Every line bundle (on a scheme) is locally trivial.
▶ (Spec 𝐴 → closedProp) ≅ { fin. gen. ideals in 𝐴 }
▶ (Spec 𝐴 → openProp) ≅ { fin. gen. radical ideals in 𝐴 }
▶ If 𝑈 ⊆ 𝑋 open and 𝑉 ⊆ 𝑈 open, then 𝑉 ⊆ 𝑋 open.
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The scheme classifier

Let Sch ↪ Type be the type of schemes.

Theorem. Let 𝑋 be a scheme and 𝑌 ∶ 𝑋 → Sch be given. Then
∑𝑥∶𝑋 𝑌 (𝑥) is a scheme.

Corollary. For 𝑓 ∶ 𝑌 → 𝑋 a map between schemes and 𝑥 ∶ 𝑋, the
fiber ∑𝑦∶𝑌 𝑓(𝑦) = 𝑥⏟

a scheme

is a scheme.

This means we have a scheme classifier:

Sch/𝑋 = (𝑋 → Sch)

In particular, we have a subscheme-classifier: Sch ∩ hProp.
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Thank you!


